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Nonresponse occurs when individuals either have
no chance of being included in a study (noncov-

erage), refuse to take part (unit nonresponse), or fail
to give complete information (item nonresponse).
The purpose of this article is to test the possible
biasing effects of nonresponse on the results of
behavioral-genetic studies. Simulations and a real
data ‘natural’ experiment were used to determine
the impact of nonresponse on estimates of additive
genetic and environmental effects. The simulations
used realistic twin-pair correlations and models of
nonresponse derived from prior research. The real
data ‘natural experiment’ used data from a nationally
representative birth-cohort twin study (E-Risk Study)
and compared model results from families who had
responded to a mail survey to those from all study
cases. Results showed that the primary influence of
nonresponse was to attenuate the effect of the
shared environment and to inflate estimates of non-
shared environment and additive genetic effects. 
At high levels of nonresponse a spurious nonaddi-
tive genetic effect (suggesting genetic dominance)
was also found. Study nonresponse was shown to
have the potential to bias the findings of behavioral-
genetic research. Design and analysis methods that
can be used to alleviate this potentially important
biasing effect in behavioral-genetic studies are dis-
cussed in light of these findings.

In recent years, behavioral-genetic research has
assumed increased importance for two reasons. First,
as research on molecular genetics has blossomed due
to technical advances (Plomin & Crabbe, 2001),
quantitative behavioral-genetic studies have become a
necessary preliminary step to identifying heritable
phenotypes that can be usefully examined at the 
molecular-genetic level (Martin et al., 1997). Second,
social scientists have also turned their attention to
behavioral-genetic methods as a tool for testing causal
hypotheses about the effects of measured environ-
mental influences (Rutter et al., 2001). It is therefore
important to establish any potential methodological
limitations of behavioral-genetic research so that spe-

cific research findings can be appropriately evaluated.
Many of the basic assumptions of the behavioral-
genetic approach have been repeatedly tested (e.g.,
Kendler et al., 1993, on the equal-environments
assumption), so that the substantive results can have
maximum credibility. Stoolmiller (1999) has drawn
attention to the issue of nonresponse bias in the
context of adoption studies. Because of demographic
changes, adoption studies are now less frequently
used and it is thus important to evaluate nonresponse
effects on the primary method of behavioral genetics:
the twin study. The goal of this article is therefore to
evaluate how sample selection or nonresponse affects
estimates of genetic and environmental variation
derived from twin studies.

The effects of nonresponse on study estimates are
well-documented in survey research (e.g., Brick &
Kalton, 1996). Nonresponse is a pervasive problem in
all social and medical research and a large literature
details the problem and discusses possible remedies
(e.g., Brick & Kalton, 1996; Levy & Lemeshow,
1991; Skinner et al., 1989). The effect of nonresponse
is to bias study estimates of population characteristics
if the sample units which provide valid information
are systematically different from those that are
missing from the study. For this bias to occur, the
probability of responding must vary differentially
across the sample. Nonresponse is typically subclassi-
fied into three groups. Firstly, noncoverage occurs
when the list of units to be sampled, which may be at
the level of individuals, households or geographic
areas, fails to contain all the units in the population
of interest. For example, in a study of twins born in a
given year, a sample obtained from a register of births
would suffer from noncoverage if the registration pro-
cedures did not capture illegitimate births. Similarly, 
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a population study investigating the prevalence of
psychiatric morbidity would suffer from noncoverage
if the sample was selected based on a list of private
households, as there would be no representation of
individuals who were homeless or institutionalised.
Secondly, after a sample has been selected, a further
type of nonresponse bias can occur when those
selected refuse to take part in the study or, as is some-
times the case, cannot be found based on information
available on the sampling frame. This type of bias is
termed unit nonresponse, as no data are collected
from certain sample units. Thirdly, nonresponse bias
can occur even for sample units that have consented
to be included in the study as they may fail to give
complete information. This type of nonresponse is
termed item nonresponse. This is particularly prob-
lematic for psychological and psychiatric studies as
their substantive focus requires asking highly personal
questions about sensitive topics such as substance
abuse, antisocial behavior and mental illness. In any
given study all of these types of nonresponse biases are
liable to appear to varying degrees. To aid discussion
we will subsume all types of nonresponse identified
above under the generic heading of nonresponse.

The processes generating the biasing effects of
nonresponse are of two interrelated types. Firstly,
units in the population may have differing probabili-
ties of response to a given study. This may be due to a
low probability of inclusion in the sampling frame
(noncoverage), a low probability of response to the
whole study (unit nonresponse) or a low probability
of response to certain items (item nonresponse). If this
propensity to respond is positively correlated with
one of the measures of interest in the study, be it a
risk factor or an outcome, the study sample will
underrepresent units with high values of the measure.
This type of differential nonresponse is also termed
selection in the social-science literature (Berk, 1983),
and soft selection in behavioral genetics (Neale et al.,
1989). Secondly, the propensity to respond may be
constant over a large range but shift to zero at the
upper tail. Again, if the propensity to respond is 
positively correlated with a measure of interest, indi-
viduals scoring at the high end of the measure will fail
to respond. This type of nonresponse is sometimes
termed truncation in the social-science literature
(Berk, 1983) and hard selection in behavioral genetics
(Neale et al., 1989).

As an illustration of the effects of differential non-
response, consider the twin data in Figure 1. The
figure shows the effects of differential nonresponse on
twin-pair correlations of .7 (top row) and .5 (bottom
row). The first panel in each row gives the true scatter
of phenotypic values at these correlations, while the
second panel gives the scatter after differential nonre-
sponse. This example was generated by assuming that
the probability of response decreases as the phenotypic
value increases. For both correlations, differential
response reduces the estimate of the population corre-

lation between twins, and the effect is larger for the
lower correlation (as can be seen from the regression
lines in the final panel). Therefore, differential non-
response has the potential to bias estimated cor-
relations, which will lead to biased behavioral-genetic
estimates obtained from model-fitting.

Previous studies of nonresponse bias in behav-
ioral-genetic research have used mathematical models
of the probability of response to investigate the
effects of nonresponse on twin correlations (Martin
& Wilson, 1982; Neale et al., 1989). Building on
these earlier studies, the present article uses two 
different approaches to investigate the impact of non-
response. Firstly, simulations are used to explicitly
test the substantive impact of particular forms of
nonresponse. Secondly, real data are used to confirm
the results from simulations using data from a large
nationally representative twin study that included 
a ‘natural’ experiment in nonresponse. Previous
research on nonresponse in behavioral-genetic
research has focused on investigating the effects of
nonresponse on correlations. In the present study, we
sought to further illustrate the effects of nonresponse
by fitting standard behavioral-genetic models using
Mx (Neale et al., 1999) so that both the attenuation
in correlations and the resulting effects on behav-
ioral-genetic model parameters could be investigated
and illustrated. 

Study 1A: The Consequences of Differential
Study Participation on Genetic and
Environmental Effects in Twin Studies
Study 1A investigated the effects on study estimates 
of population parameters when units of a popula-
tion, such as individuals or twin pairs, have differing
probabilities of responding. There are likely to be
many substantive instances where the probability of
response is related to the actual phenotype under
investigation. Certain values of the phenotype are then
likely to be underrepresented in the final sample,
giving rise to concern over the generality of study
results. For example, it is likely that those with high
levels of disruptive or aggressive behavior are more at
risk of nonresponse than those with lower levels.
Therefore, results from studies about the genetic and
environmental determinants of human aggression
may be affected by differential response probabilities.

Method

Correlation Patterns

The simulations were based on samples of twins.
Differing patterns of monozygotic (MZ) and dizygotic
(DZ) correlations were simulated so that the effect of
differential nonresponse could be investigated over
varying twin-pair correlations. S-Plus (S-Plus 2000
User’s Guide, 1999) was used to simulate standard
normal variables for each twin in a pair so that the
expected correlations were of a specified form. The
values of the correlations used are given in the first
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two columns of Table 1. The last three columns indi-
cate the expected components of variance for each of
the parameters of a behavioral-genetic model for
these pairs of correlations. We chose this pattern of
correlations because the primary effect of differential
nonresponse is to reduce the size of correlations, as
demonstrated in Figure 1 (Martin & Wilson, 1982);
we wanted to investigate the effect of varying the
absolute magnitude of the correlations. Under a stan-
dard biometric genetic model (Plomin et al., 2001)
consisting of the effects of additive genes (A), shared
(C), and nonshared (E) environments (ACE model),
DZ twin correlations will be smaller than MZ twin
correlations unless there is no effect of additive genes
(where correlations will be the same for both zygosi-
ties). Under an ACE model, this implies that
differential nonresponse would have the effect of
increasing the difference between the MZ and DZ
correlations. As the estimate of the shared environ-
ment is determined by the similarity of these
correlations, this would imply that differential

response would have its largest effect on estimates 
of the shared environment. Therefore, the DZ cor-
relations were increased by a value of .05 and the 
MZ correlations adjusted to allow for the investiga-
tion of both the effect of the magnitude of the twin
correlations and of differing magnitudes of the
shared-environment effect. Three values of the
shared-environment effect were used that cover the
range of effects commonly found in behavioral-
genetic research about cognitive abilities, personality,
and psychiatric disorders: a small shared-environment
effect of 10%; a medium effect of 20%, and a large
effect of 30% (Rhee & Waldman, 2002; Nigg &
Goldsmith, 1994; Loehlin, 1989).

This profile of correlations provides a realistic
basis from which to extrapolate the likely effects of
nonresponse on substantive research. The chosen cor-
relations give an adequate distribution of MZ/DZ
profiles, while focusing on DZ correlations that cover
the lower end of the range. This allowed us to investi-
gate the maximum possible effects of nonresponse

Figure 1
Effect of differential nonresponse on twin correlations of .7 (upper row) and .5 (lower row).
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bias. Also, as published meta-analyses (Rhee &
Waldman, 2002) indicate that studies show wide vari-
ations in estimated MZ/DZ correlations, simulations
were focused on the range of correlation profiles that
would be most susceptible to the effects of differential
nonresponse. 

Propensity for Nonresponse

To simulate the effects of nonresponse, a third vari-
able was generated which can be viewed as indexing
the propensity for nonresponse for a given twin pair.
This variable was simulated to correlate at different
levels with the simulated phenotypic variables, and
was specified at values from .0 to .8 using increments
of .1. This allowed us to investigate the differential
effects of nonresponse when the propensity for nonre-
sponse was correlated at different levels with the
phenotype under investigation. This propensity vari-
able can be thought of as a latent construct indexing
the many individual variables which have been shown
to be related to nonresponse (e.g., Rosenthal &
Rosnow, 1975; Groves, 1989). This additional com-
plexity was added to simulations to make them more
realistic since it is unlikely that in real studies, the
propensity for nonresponse would be completely cor-
related with the phenotypic values, as has been
assumed in previous research (e.g., Martin & Wilson,
1982). In order to simplify these simulations, it has
been assumed that the value of the propensity for
nonresponse variable is constant within a twin pair.
This is likely to be a reasonable assumption for twin
studies of younger children because guardians make
choices about their joint participation, but may
become less appropriate with older twins (Lykken et
al., 1987) as the propensity for nonresponse is likely
to vary between pairs to the extent that MZ twins are
more likely to make similar choices than DZ twins
(Scarr & McCartney, 1983).

Nonresponse Patterns

To simulate differential nonresponse patterns, a step
function was defined relating the propensity variable
to a given probability of response. This step function
was defined by splitting the nonresponse propensity
variable into quintiles and then assuming a constant

probability of response within each quintile. This is 
a simplifying assumption which allowed the use of 
a discrete-response function rather than applying 
a more complex continuous function. At the limit,
this approach can be made to approximate a continu-
ouslymapped function such as that used in Neale et
al. (1989), provided the shape of the function is cor-
rectly specified. Two functions were applied in these
simulations, which are summarized in Table 2 and
illustrated in Figure 2. We have labeled these as the
high nonresponse and standard nonresponse profiles.
The high nonresponse profile, in which twin pairs
with high values of the propensity variable are the
least likely to respond, is the more extreme. The
overall response rate for this profile is 50%. Response
rates of this order are common in mail surveys. For
example, Asch, Jedrziewski, and Christakis (1997),
reporting on mail survey response rates published in
medical journals, give the mean response rate of 236
surveys as 62% ± 21%. The standard nonresponse
profile is less extreme, in which only twins with
values in the highest quintile of the propensity vari-
able have a marked likelihood of nonresponse. The
overall response rate is 70%. This pattern is termed
the standard nonresponse profile as response rates of
70% are typically found in large surveys carried out
by telephone or face-to-face interviews. For example,
the General Social Survey, a large, annual, omnibus
personal interview survey in the United States,
achieved response rates of approximately 70–80%
over a period from 1975 to 1996 (Davis & Smith,
1992; General Social Survey, 2001). Similarly, the
British Crime Survey, a large biannual government
survey of criminal victimization in England and
Wales, achieved response rates of 80% over a 10-year
period from 1988 to 1998 (Mirrlees-Black et al.,
1998). These two patterns allowed us to specify a
realistic approximate lower and upper bound for the
effect of differential nonresponse, and therefore gave
a context from which to extrapolate to patterns
between those two profiles.

Sample Size and Number of Simulations

The sample size for these simulations was 1000 twins
of each zygosity for the high nonresponse pattern,
resulting in a final sample size of 500 MZ and 500
DZ twin pairs. Compared to the size of existing twin
studies this would be considered a relatively large
study (e.g., Rhee & Waldman, 2002). For compara-

Table 2

Differential Response Profiles: Probability of Response for Each
Quintile of the Response Propensity Variable  

Quintile Response rate

Profile 1 2 3 4 5
1 — High nonresponse .9 .7 .5 .3 .1 50%
2 — Standard nonresponse .8 .8 .8 .7 .4 70%

Table 1

Simulated Correlation Profiles

Correlation Expected ACE components of variance

MZ DZ Genetic (A2) Shared Unique 
environment (C2) environment (E2)

.5 .3 .4 .1 .5

.5 .35 .3 .2 .5

.6 .4 .4 .2 .4

.7 .45 .5 .2 .3

.7 .5 .4 .3 .3

.8 .5 .6 .2 .2
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bility of model results, the standard nonresponse
pattern results were specified so that the final sample
size of MZ and DZ pairs would be approximately
equivalent to that of the high nonresponse profile.
This required 716 pairs for each zygosity to be simu-
lated before the application of the nonresponse
profile. For each combination of nonresponse pattern
and twin-pair correlation, 500 simulations were
carried out. The results are presented as mean values
over all simulations.

In summary, each simulation consisted of the fol-
lowing steps: first, for each zygosity, standard normal
variables were simulated for each twin in a pair to
give a sample of the required size. Variables for the
phenotype of each twin and a variable for the nonre-
sponse propensity were simulated. These simulations
were designed so that the expected values of the cor-
relation matrix for each zygosity would be those
defined for a given simulation. For example, where
the nonresponse propensity variable was correlated
at .8 with the phenotypic variable and the MZ corre-
lation was .5, three variables were simulated for
1000 pairs (under the high nonresponse pattern) to
give the expected correlation matrix of .5 between
the phenotypic variables and of .8 between these
variables and the nonresponse propensity variable.
Second, this simulated sample was then reduced in
size using the parameters of the specific differential

nonresponse model being applied. Third, the result-
ing matrices by zygosity were output to Mx and a
standard ACE model fitted. These three steps were
then repeated 500 times for each simulation and the
results loaded into a S-Plus data set to calculate
summary statistics.

Results

Table 3 shows the results of the simulations. To aid
the reader this table is also given graphically in Figures
3 and 4. The table gives the results of applying the
high and standard nonresponse profiles respectively.
The table is divided into 6 sections, where each
section corresponds to the correlation profiles 
outlined in Table 1 (i.e., .5 and .3, .5 and .35, .6 and
.4, .7 and .45, .7 and .5, .8 and .5). The base correla-
tions are indicated in bold. Each section of the table
gives mean results calculated over all 500 simulations
using correlations with the nonresponse propensity
variable ranging from .0 to .8. The row where the
phenotypic variables have a zero correlation with the
nonresponse propensity variable gives a useful base-
line for comparison as it shows the results when there
is no differential nonresponse. Columns 2–3 show the
MZ and DZ correlations after nonresponse; columns
4–6 show mean values for the proportion of pheno-
typic variance attributable to additive genetic, shared-
environment and nonshared-environment effects 

Figure 2
Probability of response by nonresponse propensity variable for high and standard nonresponse profiles.
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Table 3

Effect of Differential Nonresponse Probabilities on Behavioral-genetic Parameters 

Response pattern applied

High nonresponse profile Standard nonresponse profile

Correlation to Mean twin Mean ACE estimates % C2 Mean twin Mean ACE estimates % C2
nonresponse correlations (standardized) estimated correlations (standardized) estimated

propensity as zero as zero

MZ DZ A2 C2 E2 MZ DZ A2 C2 E2

.0 .50 .30 40 10 50 10.0 .50 .30 40 10 50 9.8

.1 .50 .30 40 10 50 10.8 .50 .30 39 11 50 10.0

.2 .50 .29 40 9 50 14.2 .50 .30 39 11 51 9.0

.3 .49 .28 41 8 51 18.2 .49 .29 40 10 51 16.4

.4 .48 .27 41 7 52 23.6 .49 .30 39 9 52 15.4

.5 .46 .25 41 5 54 37.8 .48 .28 40 8 52 19.2

.6 .44 .22 41 3 56 51.4 .47 .26 41 7 53 25.2

.7 .42 .19 39 2 59 70.6 .46 .25 40 6 54 33.4

.8 .39 .15 37 1 62 86.8 .45 .23 41 4 55 44.0

.0 .50 .35 31 20 50 0.0 .50 .35 29 21 50 0.6

.1 .50 .35 29 21 50 0.4 .50 .35 29 21 50 1.2

.2 .50 .34 31 19 50 1.0 .50 .35 29 20 50 1.6

.3 .49 .33 31 18 51 0.2 .49 .35 29 20 51 0.0

.4 .48 .32 32 16 52 5.6 .49 .34 30 19 51 2.6

.5 .46 .30 33 14 54 4.4 .48 .33 31 17 52 1.4

.6 .44 .28 33 11 56 8.4 .47 .32 31 16 53 2.8

.7 .42 .25 34 8 58 23.4 .46 .30 32 14 54 5.2

.8 .39 .20 35 4 61 41.8 .45 .28 32 12 55 8.4

.0 .60 .40 40 20 40 0.0 .60 .40 39 21 40 0.2

.1 .60 .40 40 20 40 0.0 .60 .40 39 21 40 0.4

.2 .60 .40 40 20 40 0.6 .60 .40 39 20 40 0.8

.3 .59 .39 41 18 41 1.4 .59 .40 40 20 41 0.6

.4 .58 .37 42 17 42 1.4 .59 .39 40 18 41 0.4

.5 .57 .36 43 14 43 3.4 .58 .38 41 18 42 0.6

.6 .56 .33 45 11 44 8.8 .58 .37 41 16 42 1.2

.7 .54 .30 46 8 46 23.4 .57 .36 43 14 43 3.6

.8 .51 .26 46 4 49 44.2 .56 .34 43 13 44 5.8

.0 .70 .45 50 20 30 0.0 .70 .45 49 21 30 0.2

.1 .70 .45 49 21 30 0.0 .70 .45 50 20 30 0.2

.2 .70 .45 50 19 30 0.0 .70 .45 50 20 30 0.4

.3 .69 .44 51 19 31 0.2 .70 .44 50 19 30 0.8

.4 .69 .42 53 16 31 1.4 .69 .44 51 18 31 0.2

.5 .68 .41 54 14 32 4.4 .69 .43 51 18 31 1.0

.6 .67 .38 56 11 33 9.4 .68 .42 52 16 32 1.4

.7 .65 .36 58 8 35 18.6 .68 .41 54 14 32 1.2

.8 .63 .33 59 4 37 40.8 .67 .40 55 12 33 4.2

.0 .70 .50 40 30 30 0.0 .70 .50 39 30 30 0.0

.1 .70 .50 40 30 30 0.0 .70 .50 39 30 30 0.0

.2 .70 .50 40 29 30 0.0 .70 .50 40 30 30 0.0

.3 .69 .49 41 28 31 0.0 .70 0.5 40 30 30 0.0

.4 .69 .48 42 27 31 0.0 .69 .49 40 29 31 0.0

.5 .68 .46 43 25 32 0.0 .69 .48 41 28 31 0.0

.6 .67 .44 45 22 33 0.0 .68 .47 42 26 32 0.0

.7 .65 .42 46 19 35 0.6 .68 .46 43 25 32 0.0

.8 .63 .39 49 14 37 3.6 .67 .45 44 23 33 0.0

.0 .80 .50 60 20 20 0.0 .80 .50 59 21 20 0.2

.1 .80 .50 60 20 20 0.0 .80 .50 59 21 20 0.0

.2 .80 .50 60 19 20 0.6 .80 .50 60 20 20 0.2

.3 .80 .49 62 18 20 0.0 .80 .50 60 19 20 0.0

.4 .79 .48 63 17 21 1.0 .80 .49 61 19 21 0.6

.5 .79 .46 65 14 21 1.6 .79 .48 62 17 21 0.6

.6 .78 .44 67 11 22 3.4 .79 .47 63 16 21 1.0

.7 .77 .42 69 8 23 15.4 .79 .46 64 14 21 1.6

.8 .76 .39 71 4 24 41.8 .78 .45 66 12 22 2.8
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estimated by Mx. Column 7 shows the percentage of
the 500 simulations where the value of the shared-
environmental variance was estimated as zero. This
pattern of results is repeated for the standard nonre-
sponse profile in the left-hand panel of the table.

If zygosity is ignored and one looks at the overall
pattern of attenuation for the 8 different correlations
(.3, .35, .4, .45, .5, .6, .7 & .8) combined with 
the propensity for nonresponse (.0 to .8), Table 3
shows that:

• the lower the true correlation, the greater the
attenuation (e.g., at a correlation of .8 with the
nonresponse propensity variable a correlation of
.5 reduces to .39 [see first left-hand panel], com-
pared to a correlation of .8 which only reduces to
.76 [see last left-hand panel])

• the higher the correlation of the phenotypic vari-
ables with the nonresponse propensity variable
(ranging from .0 to .8), the greater the attenuation

• the less severe the selectivity of the response prob-
abilities, the smaller the attenuation. (Compare the
high nonresponse profile to the standard nonre-
sponse profile.)

If zygosity is taken into account and the influence of
nonresponse on genetic and environmental effects
examined, Table 3 reveals two findings. First, under
the simulated nonresponse profiles, estimates of the
additive effects of genes tended to increase. This is
more apparent the higher the correlation between the
phenotype and the nonresponse-propensity variable,
and for higher MZ correlations. For example, at the
highest correlation of .8 with the propensity variable,
and with MZ/DZ correlations of .7 and .45, the 
heritability was overestimated by 18% for the high-
nonresponse profile (59% vs. 50%), and by 10% for
the standard-nonresponse profile (55% vs. 50%).
Similarly, estimates of the nonshared environment
effect (which also includes measurement error)
increased with higher correlations between the
propensity variable and the phenotype and with more
severe nonresponse profiles. This is to be expected as
the magnitude of the MZ correlation decreases under
these conditions and it is this which sets the value of
the nonshared environment effect.

Second, Table 3 shows that under the simulated-
nonresponse profiles, estimates of shared-environment
effects tended to decrease. For example, for the high-
nonresponse profile the estimated mean shared-
environment effect was reduced by approximately one
half of its true value when the phenotypic variables
were correlated .6 with the propensity for nonre-
sponse variable. For the standard nonresponse profile,
this attenuation was reduced to approximately one-
fifth of the true value. The magnitude of this effect
was reduced the larger the size of the true shared-
environment effect: compare the results for the
simulation with the 30% shared-environment effect
to that with a 10% effect. Thus, depending on the
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true value of the shared-environment effect, nonre-
sponse attenuation resulted in a marked reduction in
the ability to detect true shared-environment effects.
This effect would be exaggerated in studies with
sample sizes smaller than those simulated here, as the
power to detect the shared-environment effect would
decrease, making it more likely that the best-fitting
model would not contain this effect. One implication
of these findings is that for phenotypes where the true
value of shared-environment variation is approxi-
mately 20%, studies may fail to detect this effect due
to the influence of differential nonresponse alone.

The column indicating the percentage of simula-
tions where the shared environment was estimated as
zero provides some useful results on the variability to
be expected in behavioral-genetic parameters over a
number of replications of a study. For example, for
simulated correlations of .5 and .3 for MZ and DZ
twins where nonresponse was simulated using the
high-nonresponse profile and the correlation to the
response propensity was .1, over 10% of the simula-
tions estimated the shared environment as zero. This
indicates that even under negligible nonresponse with
a true shared-environment effect of 10%, over 10%
of studies will fail to establish the significance of this
effect. This result holds even when the nonresponse
pattern applied is much less severe, as can be seen
from the equivalent results under the standard-nonre-
sponse profile. This effect was accentuated as the
correlation between the phenotype and the propensity
variable increased. Even under the less-severe nonre-
sponse profile, when the correlation between the
phenotype and the response propensity was .8, 
just under half of the simulations estimated the
shared-environment effect as zero. Under the high-
nonresponse profile, this effect was maintained for
DZ correlations up to .45 (which implies a shared-
environment effect of 20% in these simulations) 
but disappeared when correlations implied a shared-
environment effect of 30%. Under the less-severe
nonresponse profile this effect was not marked for
DZ correlations above .3, and by implication, for
shared-environment effects of 20% or above. These
findings underscore the earlier observation that vari-
ability in study results about shared-environment
effects may be due to the consequences of moderate
to severe nonresponse.

Study 1B: The Consequences of
Nonparticipation on Genetic and
Environmental Effects in Twin Studies
Study 1B investigated the effects on study estimates of
population parameters when sections of a population,
such as individuals or twin pairs, do not participate in
a study at all. This is equivalent to portions of the
population having a zero probability of responding to
the study. We were therefore interested in the case
where whole segments of the propensity-to-respond
distribution do not appear in the final achieved sample
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due to this truncation effect. For example, in a study
of antisocial behavior in adults the sample would be
truncated if all individuals whose phenotypic values
were above a given threshold either refused to
respond or were not included in the sampling frame.
This could possibly occur by not including impris-
oned individuals in the sampling frame. This type of
nonresponse bias is the most severe as it excludes a
whole segment of the population.

Method

Correlation Patterns

Differing patterns of MZ and DZ correlations were
simulated so that the effect of truncation could be
investigated over varying patterns of twin-pair corre-
lations given in Table 1. S-Plus (S-Plus 2000 user’s
guide, 1999) was used to simulate standard normal
variables for each twin in a pair so that the expected
correlations were of the required form.

Propensity for Nonresponse

As in Study 1, in order to simulate the effects of non-
response, a third variable was generated which can be
viewed as indexing the propensity for nonresponse for
a given twin pair. This variable was simulated to cor-
relate at different levels with the simulated phenotypic
variables, and was specified at values of .0 to .8 in
increments of .1.

Nonresponse Patterns

To simulate truncation effects, 40th, 60th and 80th
percentile values were used to truncate the propen-
sity-variable distribution. This gave a response-rate
equal to the percentile of the truncation. Martin and
Wilson (1982) term this hard selection. Although
their simulations were based on nonresponse being
directly related to the phenotypic values rather than
having an intervening nonresponse propensity vari-
able, the addition of this step in the present analysis
means that the effect of applying truncation to the
simulations is to truncate the response-propensity dis-
tribution. The level of truncation of the phenotypic
variables will therefore depend on the correlation
between the nonresponse propensity and the pheno-
type. A situation equivalent to that investigated by
Martin and Wilson (1982) would occur when the
nonresponse propensity is exactly correlated with the
phenotypic variables. Our model gives a more realis-
tic model of the effect of truncation on population
estimates as exclusion from the sample is unlikely to
only be determined by phenotypic values.

Sample Size and Number of Simulations

A final sample size of 500 of each type of twin pair
was also specified for the truncation simulations,
which required the simulated number of pairs to be
varied as a function of the truncation percentile. 
The actual values used were as follows: (1) with 
truncation at the 80th percentile, 625 twin-pairs of
each type were simulated, (2) with truncation at the
60th percentile, 834 pairs of each type, and (3) with

truncation at the 40th percentile, 1250 pairs of each
type. For each combination of truncation level and
twin-pair correlation, 500 simulations were carried
out. The results are presented as mean values over 
all simulations.

In summary, each simulation consisted of the fol-
lowing steps: First, for each zygosity, standard
normal variables were simulated for each twin in a
pair to give a sample of the required size with vari-
ables for the phenotype of each twin and a variable
for the nonresponse propensity. Over the whole
sample, these three variables would then have an
expected correlation matrix as required for each 
simulation. For example, where the nonresponse-
propensity variable was correlated at .8 with the
phenotypic variable and the MZ correlation was .5,
three variables would be simulated for 1250 pairs
(for truncation at the 40th percentile) to give an
expected correlation matrix of .5 between the pheno-
typic variables and of .8 between these variables and
the nonresponse-propensity variable. Second, this
simulated sample was then reduced in size based on
the level of truncation being applied. Third, the
resulting matrices by zygosity were then output to
Mx and a standard ACE model fitted. These three
steps were then repeated 500 times for each simula-
tion and the results loaded into an S-Plus data set to
allow for the calculation of summary statistics.

Results

Table 4 gives the results for the truncation simula-
tions. As per Table 3, these tables give the results in
mean values over 500 simulations for the simulated
twin-correlation patterns. For each specific pattern of
correlations, the results are given for truncation
values using the 40th, 60th and 80th percentiles of
the nonresponse-propensity distribution. The row
where the phenotypic variables have a zero correla-
tion with the nonresponse-propensity variable gives a
useful baseline for comparison as it shows the simula-
tion results where the nonresponse-propensity
variable in uncorrelated with the phenotypes. As in
Table 3, the first column gives the correlation between
the nonresponse-propensity variable and the pheno-
types. For each segment of the table, the first two
columns show the MZ and DZ correlations after non-
response; columns 3–5 show mean values for the
proportion of phenotypic variance attributable to
additive genetic, shared-environment and nonshared-
environment effects estimated by Mx, and column 6
shows the percentage of the 500 simulations where
the value of the shared-environmental variance was
estimated as zero.

Ignoring zygosity, and focusing on the 8 individual
correlations values (.3, .35, .4, .45, .5, .6, .7 & .8),
the table shows that first, the attenuating effect of
truncation on twin correlations was larger the lower
the true correlation. For example, for truncation at
the 80th percentile and a correlation between the
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propensity for nonresponse and the phenotype of .6, a
correlation of .5 falls by 20% (to .41) while a correla-
tion of .35 falls by 30% (to .24). Second, the impact
of truncation increased with the severity of trunca-
tion. Third, the magnitude of these effects depended
on the correlation between the phenotype and the
nonresponse propensity variable, such that the higher
the correlations with the propensity for nonresponse
the larger the attenuating effect of truncation.

If zygosity is taken into account and the influence
of truncation nonresponse on genetic and environ-
mental effects examined, Table 4 reveals two findings.
First, when the nonresponse variable is highly corre-
lated with the phenotype, shared-environment effects
disappear and genetic effects are overestimated. This
situation is problematic when the true MZ/DZ corre-
lations are high. For example, for truncation at the
80th percentile with an MZ/DZ correlation of .8 and
.5, the true shared environment variance component
of 20% was estimated as 1% when the phenotype
was correlated .8 with the propensity for nonre-
sponse. Second, when the true MZ/DZ correlations
are low and the nonresponse propensity is highly cor-
related with the phenotype, the twin-correlation
structure degraded. This degradation produced two
interesting effects. First, in some instances, a true pos-
itive DZ correlation became negative. Second, a true
MZ/DZ-correlation structure that pointed to additive
genetic effects yielded genetic dominance, as the DZ
correlation was less than half the MZ correlation
(Plomin et al., 2001). For example, for truncation at
the 40th percentile and MZ/DZ-correlation of .5 and
.3, the correlations became .11 and –.25 when the
phenotype was correlated at .8 with the nonresponse
propensity variable. Negative DZ correlations and
DZ correlations of less than half the MZ correlation
have been noted in numerous behavioral-genetic
studies of personality development (Plomin & Caspi,
1999). They are usually ascribed a substantive expla-
nation (e.g., epistatic interaction) or attributed to
measurement problems (e.g., contrast effects in com-
paring twins). The present results suggest that some
of the peculiarities of behavioral-genetic findings,
such as negative DZ correlations, may, in fact, be the
result of the effect of nonresponse.

Study 2: The Effect of Nonresponse on
Genetic and Environmental Effects in Twin
Studies: Results from a ‘Natural’ Experiment
Study 2 investigated whether the effects of nonre-
sponse found in the simulations of Study 1 are found
in real data. For a nationally representative twin
sample visited at home, a pilot mail survey was also
carried out for which there was only a limited
response. Descriptive statistics could then be com-
pared and results modeled for the full sample and 
for those who only responded to the mail survey 
in a ‘natural’ experiment. As all families had com-
pleted a face-to-face interview when the twins were 
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5 years of age, we had a wide range of measures on
which to compare the full sample with the subsample
who also returned the mail survey (i.e., excluding
nonresponders). It was expected that mean levels
would be attenuated for variables correlated with 
the liability to respond to the mail survey, such as
socioeconomic deprivation (Thornberry et al., 1993).
Based on the simulations, estimates of the shared
environment were expected to be attenuated, and
where the size of the shared environment effect was
negligible, nonresponse was expected to induce arti-
factual nonadditive genetic effects. Investigation of
model-fitting results was made using the ‘Aggression’
and ‘Delinquency’ scales from the Child Behavior
Checklist (CBCL; Achenbach, 1991a;1991b). These
measures were chosen as twin and adoption studies of
these scales report higher heritability for aggression
(around 60%) than delinquency (around 30–40%),
while the shared environment effect is significant only
for the delinquency scale (also around 30–40%; e.g.,
Deater-Deckard & Plomin, 1999; Edelbrock et al.,
1995; Eley et al., 1999). This differential pattern of
expected behavioral-genetic estimates allowed the
investigation of the two types of nonresponse effect
found in the simulations.

Method

The E-Risk Study Sample

Participants are members of the Environmental Risk
(E-Risk) Longitudinal Twin Study, which investigates
how genetic and environmental factors shape chil-
dren’s development. The E-Risk sampling frame was
two consecutive birth cohorts (1994 & 1995) in a
birth register of twins born in England and Wales
(Trouton et al., 2002). Of the 15,906 twin pairs born
in these two years, 71% joined the register.

The E-Risk Study probability sample was drawn
using a high-risk stratification sampling frame. High-
risk families were those in which the mother had her
first birth when she was 20 years of age or younger.
We used this sampling (1) to replace high-risk families
who were selectively lost to the register via nonre-
sponse and (2) to ensure sufficient base-rates of
problem behavior given the low base-rates expected
for 5-year-old children. Age at first childbearing was
used as the risk-stratification variable because it was
present for virtually all families in the register, it is 
relatively free of measurement error, and early child-
bearing is a known risk factor for children’s problem
behaviors (Maynard, 1997; Moffitt & The E-Risk
Study Team, 2002). The high-risk sampling strategy
resulted in a final sample in which one-third of study
mothers constitute a 160% oversample of mothers
who were at high risk based on their young age at
first birth (15–20 years), while the other two-thirds 
of study mothers accurately represent all mothers 
in the general population (aged 15–48) in England
and Wales in 1994–95 (estimates derived from the
General Household Survey; Bennett, et al., 1996). To
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provide unbiased statistical estimates from the whole
sample that can be generalized to the population of
British families with children born in the 1990s, the
data reported in this article were corrected with
weighting to represent the proportion of maternal
ages in that population.

The study sought a sample size of 1100 families to
allow for attrition in future years of the longitudinal
study while retaining statistical power. An initial list
of families who had same-sex twins was drawn from
the register to target for home visits, with a 10%
oversample to allow for nonparticipation. Of the
1203 families from the initial list who were eligible
for inclusion, 1116 (93%) participated in home-visit
assessments when the twins were 5 years old (forming
the base sample for the study), 4% of families
refused, and 3% were lost to tracing or could not be
reached after many attempts. With parents’ permis-
sion, questionnaires were posted to the children’s
teachers, and teachers returned questionnaires for
94% of cohort children. Written informed consent
was obtained from mothers. The E-Risk Study has
received ethical approval from the Maudsley Hospital
Ethics Committee.

Zygosity was determined using a standard 
zygosity questionnaire, which has been shown to have
95% accuracy (Price et al., 2000). Ambiguous cases
were zygosity-typed using DNA. The sample includes
56% monozygotic (MZ) and 44% dizygotic (DZ)
twin pairs. Sex is evenly distributed within zygosity
(49% male).

Postal Questionnaire Study

A short questionnaire was mailed to all study families
before the start of the main age-5 interview in order
to introduce the study, and to establish the efficacy 
of this low-cost mode of data collection for a high-
risk sample. The response rate was very poor (43%,
477/1116), although acceptable compared to other
mail surveys (Asch et al., 1997), and led to the aban-
donment of data-collection using this method from
the E-Risk study families.

Childhood Measures

Children’s antisocial behavior. Children’s antisocial
behavior at the age of 5 was assessed using the
Achenbach family of instruments (Achenbach,
1991a; 1991b). The Aggressive (e.g., physically
attacks people, has temper tantrums or hot temper)
and Delinquent (e.g., lying or cheating, swearing or
bad language) Antisocial Behavior Scales were
derived by summing items from mother and teacher
reports of the Child Behavior Checklist and the
Teacher Report Form. Mother and teacher reports of
aggression and delinquency correlated .28 (p < .001)
and .20 (p < .001) respectively, which is typical of
inter-rater agreement about behavioral problems
(Achenbach et al., 1987). Scores for the Aggressive
Scale ranged from 0 to 81 (M = 14.24, SD = 10.84)
and for the Delinquent Scale scores ranged from 

0 to 22 (M = 2.60, SD = 2.66). The internal consis-
tency was .95 for the Aggressive Scale and .94 for the
Delinquent Scale.

Family Characteristics

Maternal antisocial behavior. Mothers reported their
own histories of antisocial behavior using the Young
Adult Self Report (YASR; Achenbach, 1997), modi-
fied to obtain lifetime data. We report scores on the
externalizing syndrome. Mothers rated each behavior
as being (0) ‘not true’, (1) ‘somewhat true’, or (2) ‘very
often true’. Scores ranged from 0 to 60 (M = 11.25,
SD = 9.71) and the internal consistency was .90.

Biological father’s antisocial behavior. Mothers also
reported the biological father’s lifetime history of
antisocial behavior, using the Young Adult Behavior
Checklist (YABCL; Achenbach, 1997), modified to
obtain lifetime data. We report scores on the external-
izing syndrome as for mothers. Scores ranged from 
0 to 88 (M = 14.76, SD = 16.29) and the internal 
consistency was .95. A methodological study of
mother–father agreement attests to the reliability of
these women’s reports about men’s problem behav-
iors; mothers’ reports account for more than 75% of
the variance in men’s self-reports on these scales
(Caspi et al., 2001).

Family SES disadvantage. An index was created
summing binary indicators of seven aspects of SES
disadvantage: 1) head of household has no educa-
tional qualifications; 2) head of household is
employed in an unskilled occupation or is not in the
labor force; 3) total household gross annual income 
is less than £10,000; 4) family receives at least one
government benefit, excluding disability benefit; 
5) family housing is government-subsidized; 6) family
has no access to a vehicle, and 7) family lives in 
the poorest of six neighborhood categories (CACI
Information Services, 1993) in an area dominated by
government-subsidized housing, low incomes, high
unemployment, and single-parent families. These 
7 measures showed strong intercorrelations with a
coefficient alpha of .79. Forty-five per cent of study
families experienced at least one SES disadvantage.

Partnership violence. Adult domestic violence was
assessed by inquiring about 12 acts of physical vio-
lence (pushed/grabbed/shoved; slapped; shook; threw
an object; kicked/bit/hit with fist; hit with something;
twisted arm; threw bodily; beat up; choked/strangled;
threatened with knife/gun; used knife/gun). Mothers
were asked about their own violence toward any
partner and about any partners’ violence toward
them. Responses were not true (coded 0) or true
(coded 2). Another response option (coded 1) was
available for women who felt uncertain about their
responses, but this was virtually unused. The measure
represents the variety of acts of violence mothers
experienced as both victims and perpetrators. Scores
were summed (range 0–40; M = 2.75, SD = 5.67). The
internal consistency reliability of the physical-abuse
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scale was .89. Interpartner-agreement reliability for
this measure is very high (latent correlation .77;
Moffitt et al., 1997). Moreover, this scale is a strong
predictor of which couples in the general population
experience clinically significant violence, involving
injury and intervention by official agencies (Moffitt et
al., 2001), and high-scorers on this scale experience
domestic violence that is more chronic (lasts for more
months with more incidents per month) than low-
scorers (Ehrensaft et al., in press).

Statistical Methods

Analysis of means was carried out using multiple
regression. Regression results are based on the sand-
wich or Huber/White variance estimator (Rogers,
1993; Williams, 2000), a method available in STATA
8.0 (StataCorp, 2003) which adjusts estimated stan-
dard errors to account for the dependence in the data
due to analyzing sets of twins and provides results that
are robust to model assumptions (Lumley et al., 2002).

As with the simulations, the statistical package
Mx (Neale et al., 1999) was used to conduct the
quantitative genetic analyses. The ACE, ADE and AE
models were fitted to the data. Because E includes
measurement error, it is not usually dropped in uni-
variate analyses. The AE model is nested within the
full ACE and ADE model (i.e., AE models are identi-
cal to the ACE or ADE model with the exception of
constraints placed on the submodel; for detailed
explanations of the statistical methods that are
applied to operationalize the logic behind behavior-
genetic designs, see Plomin et al., 2001 & Carey,
2003). In comparing the fit of different models, four
model-selection statistics were used. The first was the
χ2 goodness-of-fit statistic. Large values compared to
model degrees of freedom indicate poor model-fit to
the observed covariance structure. When two models
are nested (i.e., identical with the exception of con-
straints placed on the submodel), the difference in fit
between them can be evaluated with the χ2 difference,
using as its degrees of freedom the df-difference from

the two models. When the χ2 difference is not statisti-
cally significant the more parsimonious model is
selected, as the test indicates that additional con-
straints do not decrease the model fit. The second
model-selection statistic was Akaike’s Information
Criterion (AIC; Burnham & Anderson, 1998). When
comparing two models, the model with the lowest
AIC value is selected as the best-fitting model. The
third model-selection statistic was the Bayesian
Information Criterion (BIC), where increasingly nega-
tive values correspond to increasingly better-fitting
models. In comparing two models, differences of BIC
between 6 and 10 give strong evidence in favor of the
model with the smaller value (Raftery, 1995). The
fourth model-selection statistic was the Root Mean
Square Error of Approximation (RMSEA), which is
an index of the model discrepancy per degree of
freedom, from the observed covariance structure
(MacCallum et al., 1996). A RMSEA of less than or
equal to .06 indicates a good-fitting model (Hu &
Bentler, 1999). To ensure that any differences between
the full E-Risk sample and the subsample responding
to a mail survey were not due to differing samples
sizes, the models were estimated with the sample sizes
set in Mx to be identical to the full E-Risk sample
(i.e., N = 1116).

Results

Effects of Nonresponse on Study Variables

The effects of nonresponse on mean levels of crucial
study variables are given in Table 5. Three broad con-
clusions can be drawn from these results: first,
nonresponse to the mail survey was significantly
related to the mean level of variables indexing both
parental and child antisocial behavior. Children and
parents in nonresponding families were significantly
more antisocial. Second, nonresponse to the mail
survey was also significantly related to the mean level
of variables indexing social deprivation and environ-
mental stressors. Nonresponding families were more
disadvantaged and their children were exposed to

Table 5

Mean Scores on Study Variables as a Function of Nonresponse to a Mailed Questionnaire

Response to mailed questionnaire

Measure Yes (N = 477) No (N = 639) t(df),p Effect size1

Mean (SD) Mean (SD)

Child’s aggressive behaviour 13.1 10.0 15.3 11.4 3.81 (1115), p < .001 0.21
Child’s delinquent behaviour 2.3 2.4 2.9 2.9 3.82 (1115), p < .001 0.20
Biological mother’s antisocial behaviour 9.8 8.2 12.6 10.7 4.93 (1112), p < .001 0.30
Biological father’s antisocial behaviour 11.4 13.3 17.8 18.1 6.68 (1108), p < .001 0.40
Social disadvantage 0.9 1.4 1.5 1.9 6.38 (1115), p < .001 0.37
Partnership violence 2.0 4.6 3.5 6.4 4.70 (1094), p < .001 0.27

Note: 1Effect size of the group differences were derived using the following formula:

d = (Mr – Mnr) / sd

where Mr is the mean for the group responding to the mail survey and Mnr is the mean for the nonrespondents and sd is the standard deviation taken over the whole sample.
Following from Cohen (1992), d = .2 is a small effect size, d = .5 is a medium effect size and d = .8 is a large effect size.
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more domestic violence. Third, the effect of non-
response was most marked for measures proximal 
to the adults responsible for responding to the mail
survey, and less so — albeit still significantly — for
measures of child-behavior problems. For example,
nonresponse had a moderate effect on the mean level
of father’s antisocial behavior (effect size = .4) but a
small effect on the mean level of children’s aggressive
behavior (effect size = .2).

Effects of Nonresponse on Behavioural-genetic Parameters

Tables 6 and 7 give the model-fitting results for ACE
models of children’s aggression and delinquency,
respectively. The top panel in each table contains the
model-fitting results obtained when data were used
from the full E-Risk sample. The bottom panel in
each table contains the model-fitting results obtained
when using only data from families that also
responded to the mail survey. The best-fitting model
in each panel is indicated by bold text.

In the full E-Risk sample the MZ-twin correlation
for aggressive behavior was .73 and the DZ-twin cor-
relation was .24. The ADE and the AE models fit the
data well, with the BIC favoring the more parsimo-
nious AE model, indicating that aggressive behavior
was influenced by additive genetic factors and non-
shared environmental factors. In the subsample with a
mail survey response, the MZ twin correlation was
.74, but the DZ twin correlation was .12. The ADE
model was unequivocally the best fit to these data,
indicating that aggressive behavior was influenced 
by nonshared environmental factors and also by non-
additive genetic factors.

In the full E-Risk sample, the MZ-twin correlation
for delinquent behavior was .72 and the DZ twin cor-
relation was .43. The ACE-model fit the data well,
indicating that delinquent behavior was influenced by
additive genetic factors and shared and nonshared
environmental factors. In the subsample with a mail-
survey response, the MZ-twin correlation was .76,
but the DZ-twin correlation was .31. The AE model
fit these data best, indicating that delinquent behavior
was influenced by additive genetic factors and non-
shared environmental factors only. In the subsample
the ‘true’ estimate of the shared environment effect of
22% was no longer detectable.

These results are in line with both the simulations
from Study 1 and prior research. They show that non-
response can attenuate means and correlations and
affect the conclusions of behavioral-genetic models by
eliminating the effects of the shared environment and
inducing artificial nonadditive genetic effects.

Discussion
This article has shown that nonresponse can have
three effects on the results of behavioral-genetic
studies of twins. First, nonresponse can result in
failure to detect significant shared-environment
effects. This finding is consistent with other research

which shows that shared-environment effects are
reduced when censored variables are analysed (van
den Oord & Rowe, 1997). Second, nonresponse can
lead to the spurious identification of nonadditive
genetic effects which researchers may erroneously
interpret as evidence of contrast effects, biased mea-
surement or genetic dominance. Third, nonresponse
can also inflate estimates of additive genetic and non-
shared environment effects. These findings were
found using data simulations and a ‘natural’ experi-
ment from a large representative twin study.
Additionally, data simulations indicate, as expected,
that these errors are most marked in the most severe
type of nonresponse due to nonparticipation (or trun-
cation), but they are also found in milder cases of
differential nonresponse.

An important implication of these findings is that
nonresponse may contribute to the emergence of con-
tradictory findings in etiological research. Researchers
should therefore be aware of these dangers when
designing, analysing and evaluating behavioral-
genetic studies. It is also important to be able to
evaluate a study for all three types of nonresponse.
The rates of unit and item nonresponse in a study
should be explicitly noted in research reports, so that
the potential impact of these is easy to evaluate. It is
much more difficult to evaluate the extent of noncov-
erage, although study designs that do not attempt to
sample from all units in a defined population (e.g.,
volunteer samples) are common and are prone to this
type of nonresponse.

Given the impact of nonresponse bias, studies
should be designed to maximize participant response
and to minimize the effects of differential non-
response (e.g., Stouthamer-Loeber & Van Kammen,
1995). Where this is not possible, and differential
nonresponse is unavoidable, it may be necessary to
consider alternative research strategies. For example,
one design that can obviate the effects of nonresponse
is the use of a high-risk, stratified sample design
which attempts to capture the full range of pheno-
types and risk factors by oversampling subjects who
are least likely to respond to a normal survey.

Methods that make adjustments for the effects of
nonresponse should also be considered. One simple
approach is to define weights that adjust the sample
distribution of key variables to that of the population.
The resulting weights can then be used to obtain
appropriately adjusted model estimates (Heath et al.,
1998; Kaplan & Ferguson, 1999), although this
method is not applicable for adjusting for the effects
of truncation. Mplus (Muthén & Muthén, 1998) now
provides capabilities for appropriately analysing data
obtained from complex samples, including the use of
weights, although correct inference in the presence of
weights has still to be implemented in most structural
equation–modelling software. Imputation methods
should also be considered, particularly for item non-
response. These methods provide well-validated
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strategies to ‘fill in’ missing values on specific vari-
ables (Brick & Kalton, 1996; Little, 1988). In recent
years there have been many new developments to aid
the applied researcher in dealing with missing-data
issues such as multiple-imputation and full-informa-
tion maximum-likelihood methods (Schafer &
Graham, 2002), which are now becoming more easily
available in statistical-analysis software. A further
approach for detecting and adjusting for volunteer
bias from twin pairs discordant for participation has
also been developed by Neale and Eaves (1993).

A primary assumption in this paper should be
noted here: if the phenotype of interest is not corre-
lated with the propensity of an individual to respond
to a study, there will be no effect of nonresponse on
study estimates. This will be the case even at excessive
levels of nonresponse. This also implies that a low
level of study response is not necessarily indicative of
the presence of nonresponse bias. For example, Gerrits
et al. (2001) found no consistent evidence of nonre-
sponse bias in their studies even though some of their
nonresponse rates were of the order of 50%. It is
therefore important to determine whether nonresponse
is likely to be correlated with the variables of interest.
Previous work on nonresponse (e.g., Groves, 1989)
has indicated that characteristics such as low income
and low education are related to lower response rates.
Of particular note to behavioral-genetic studies is that
these characteristics are highly correlated with certain
phenotypes, such as intelligence, personality traits and
psychiatric disorder. It is likely that many behavioral-
genetic studies are susceptible to the effects of
differential nonresponse, although more research is
needed to determine the actual correlation between the
propensity for nonresponse and the phenotypes of
interest in behavioral-genetic research (Heath et al.,
2001). In addition, the present article has examined
the effects of nonresponse in relation to standard uni-
variate twin models. Although these findings raise
serious concerns, their generality needs to be evaluated
in relation to more complex behavioral-genetic analy-
ses (e.g., to multivariate analyses) and to extended
twin designs (e.g., to twin-family and to ‘twins-on-top’
designs [Jacob et al., 2001]).

The purpose of this paper is to provide a clarion
call to greater attention to sampling considerations in
the behavioral sciences. More research resources need
to be directed to improve sample recruitment and
retention, and funding agencies should be alerted to
this need. It must be emphasized that the effects of
nonresponse are not specific to behavioral-genetic
studies, but as the tools of quantitative genetics
research are increasingly more widely used in etiologi-
cal studies, greater attention to sampling will prove
indispensable to generating accurate findings.
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