
J. Appl. Prob. 47, 350–366 (2010)
Printed in England

© Applied Probability Trust 2010

PREDICTION IN A POISSON CLUSTER MODEL
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Abstract

We consider a Poisson cluster model, motivated by insurance applications. At each claim
arrival time, modeled by the point of a homogeneous Poisson process, we start a cluster
process which represents the number or amount of payments triggered by the arrival of
a claim in a portfolio. The cluster process is a Lévy or truncated compound Poisson
process. Given the observations of the process over a finite interval, we consider the
expected value of the number and amount of payments in a future time interval. We also
give bounds for the error encountered in this prediction procedure.
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1. Introduction

In this paper we consider the model

M(t) =
∞∑

k=1

1{Tk≤1} Lk(t − Tk), t ≥ 1, (1.1)

where 0 < T1 < T2 < · · · are the points of a homogeneous Poisson process with intensity
λ > 0 and (Lk) is a sequence of independent and identically distributed (i.i.d.) stochastic
processes independent of (Tk) and such that Lk(t) = 0, t ≤ 0, almost surely (a.s.). Writing N

for the counting process generated by the points Tk, k = 1, 2, . . . , M takes the form

M(t) =
N(1)∑
k=1

Lk(t − Tk), t ≥ 1. (1.2)

Processes of this type are related to Poisson shot noise processes, which have many applications
in rather different areas. For example, in an insurance context, Tk may describe the arrival of
a claim in an insurance portfolio and (Lk(t − Tk))t≥Tk

is the corresponding payment process
from the insurer to the insured starting at time Tk . Alternatively, (Lk(t − Tk))t≥Tk

can be the
counting process for these payments. The main focus of this paper is on applications in an
insurance context.
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Early on, shot noise processes were used for modeling purposes in many fields of applied
probability such as bunching in traffic (see [1]), computer failure times (see [17]), and earthquake
aftershocks (see [28]). More recently, shot noise processes have been used for modeling large
computer networks such as the Internet; see, for example, [12] and [13] for some early work. In
the context of the workload of large computer networks, shot noise processes arise as aggregated
versions of the ON/OFF or infinite-source Poisson models, also known as M/G/∞ models; see,
for example, [16], [23], and [24], and, for further extensions, [2] and [22]. Other applications
include finance (see [8] and [25]) and physics (see [3]). Most of the papers mentioned above
aim at an asymptotic theory for the shot noise process, deriving Gaussian or Lévy process limits,
or at the asymptotics of the extremes of such processes; see also [4], [5], [9], [10], [11], [14],
[15], [20], and [27].

The focus of this paper is not on the asymptotic properties of the process M defined in (1.1),
but on precise results about the prediction of the increments

M(t, t + s] = M(t + s) − M(t), t ≥ 1, s > 0,

i.e. we will calculate E[M(t, t + s] | Ft ] for some suitable σ -fields Ft , where we do not
necessarily assume that M(t, t + s] has finite variance. Results of this kind are surprisingly
explicit due to the Poisson structure underlying the process M .

The particular structure of the process M and the prediction problem are motivated by
reserving problems in insurance. Here the points Tk ≤ 1 describe the arrival of claims in a
portfolio in a given period, one year say, and M(t) is the number or amount of payments for
the claims arriving in [0, 1] and being paid off in [0, t], t ≥ 1. Correspondingly, M(t, t + s] is
the number or amount of payments executed in the interval (t, t + s], s > 0.

Problems of this kind are related to claims reserving. Traditionally, claims reserving uses a
statistical model in which conditions of the type E[M(t + s) | M(t)] = ft,sM(t) for suitable
constants ft,s are assumed to hold. These constants are then estimated based on several years
of data available (the so-called chain ladder). We refer the reader to Chapter 11 of [21] for
an introduction to the topic. Jessen et al. [6] considered a stochastic process based model
with Poisson components which allows one to derive explicit expressions for the prediction of
payment numbers and amounts, and the corresponding prediction errors. This model requires
that time series of annual observations on payment numbers and amounts are available; the
structure of this model is significantly simpler than (1.1).

In the present paper we follow a different path that has already been mentioned in Sec-
tion 11.3.3 of [21]. There model (1.1) was considered for i.i.d. homogeneous Poisson processes
Lk, k = 1, 2, . . . , and explicit expressions for the prediction E[M(t, t + s] | M(t)] were
obtained. First, in Section 2, we show that this approach can be extended to general Lévy
processes Lk . The homogeneous Poisson case is again a benchmark (Section 2.3). In this case
we can also give a recursive algorithm for determining the prediction. In Section 3 we consider
modifications to model (1.2). Instead of a Lévy process Lk we allow for Lévy processes which
are truncated at a random level or which take into account a delay in the reporting of a claim.
In Section 3 we also consider different σ -fields Ft , and calculate the corresponding predictions
E[M(t, t + s] | Ft ] and their conditional or unconditional prediction errors. Depending on Ft ,
the prediction of M(t, t + s] and the prediction error often have a structure which is simpler
than those for E[M(t, t + s] | M(t)].

https://doi.org/10.1239/jap/1276784896 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1276784896


352 M. MATSUI AND T. MIKOSCH

2. Prediction in a Poisson cluster process with Lévy clusters

In this section we consider model (1.1) and we assume that an activity process Lk starts
at the Poisson point Tk ∈ [0, 1]. In this context, (Lk) is a sequence of i.i.d. Lévy processes
with generic element L; we refer the reader to [26] for the definition and properties of Lévy
processes. Then M(t, t + s], t ≥ 1, s > 0, can be interpreted as the measurement of activities
initiated in [0, 1] which are still alive in (t, t + s]. In the insurance context mentioned in the
introduction, M(t, t + s] is interpreted as the number or amount of payments for claims that
occurred in one year say. Other interpretations are possible as well. For example, M(t, t + s]
may describe the workload to be managed by a large computer network for sources that started
an activity (such as sending packets to other sources) in the interval [0, 1]. The Lévy process
condition on Lk is assumed for convenience; in this case we obtain explicit expressions for the
prediction of M(t, t + s] given M(t), t ≥ 1 (see Section 2.2).

We start with an analysis of the moment structure of M .

2.1. The first and second moments of M

The following result is elementary.

Lemma 2.1. Consider model (1.2) with i.i.d. Lévy processes Lk, k = 1, 2, . . . , and a homo-
geneous Poisson process N with intensity λ > 0.

(i) Assume that µ = E[L(1)] exists and is finite. Then E[M(t)] = λµ(t − 0.5), t ≥ 1.

(ii) Assume that σ 2 = var(L(1)) is finite. Then, for 1 ≤ t1 ≤ t2,

cov(M(t1), M(t2)) = λσ 2(t1 − 0.5) + λµ2
∫ 1

0
(t1 − s)(t2 − s) ds.

In particular, var(M(t)) = λσ 2(t − 0.5) + λµ2(t2 − t + 1
3 ), t ≥ 1.

We see that process M is overdispersed in the sense that limt→∞ var(M(t))/ E[M(t)] = ∞.

2.2. Prediction of future increments

In this section we derive explicit expressions for the quantities E[M(t, t + s] | M(t)] for
t ≥ 1 and s > 0. We assume that the general conditions of Lemma 2.1 hold and also that
µ = E[L(1)] is finite.

We start with a simple observation. By the definition of M(t), t ≥ 1, in (1.2), the σ -field
generated by M(t) is contained in the σ -field generated by (Li(t − Ti)) and (Ti). Therefore,
writing Li(t, t + s] = Li(t + s) − Li(t) for the increments of Li , for t ≥ 1 and s > 0,

E[M(t, t + s] | M(t)]

=
∞∑

k=1

E[E[1{Tk≤1} Lk(t − Tk, t + s − Tk] | (Li(t − Ti)), (Ti)] | M(t)]

=
∞∑

k=1

E[1{Tk≤1} E[Lk(t − Tk, t + s − Tk] | Lk(t − Tk), Tk] | M(t)]

= µs

∞∑
k=1

E[1{Tk≤1} | M(t)]

= µs E[N(1) | M(t)]. (2.1)
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In the first step we used dominated convergence and in the last step we used the stationary
independent increments of the Lévy process Lk . Thus, we are left to calculate E[N(1) | M(t)]
for t ≥ 1. We mention at this point that in an insurance context the number N(1) of claims
arriving in the interval [0, 1] is in general not observable at time t ≥ 1. It usually takes a much
longer time period than just one year before the claim number for the first year [0, 1] is known
(the so-called incurred but not reported effect). Therefore, the quantity E[N(1) | M(t)], t ≥ 1,
has the intuitive meaning that one gathers information about the payments in the period [0, t],
represented by the quantity M(t), in order to gather information about the (generally unknown)
claim number N(1).

It is our aim to express the prediction of M(t, t + s] given M(t) as explicitly as possible.
Motivated by the previous calculations, we will determine

M̂A(t, t + s] = E[M(t, t + s] | M(t) ∈ A], t ≥ 1, s > 0,

for any Borel set A. Later, in Section 2.3, we will specify the set A. The quantity M̂A(t, t +s] is
the conditional first moment of M(t, t + s]. In order to get an idea of the conditional prediction
error, we are also interested in the conditional second moment of M(t, t + s]. Both moments
can easily be derived from the characteristic function of M(t, t + s] given M(t).

Lemma 2.2. Consider model (1.2) with i.i.d. Lévy processes Lk, k = 1, 2, . . . , and a homoge-
neous Poisson process N with intensity λ > 0. For any Borel set A, the characteristic function
of M(t, t + s] given {M(t) ∈ A} has the form

f̂A(x) = E[eixM(t,t+s] | M(t) ∈ A]

= E[(E[eixL(s)])N(1) P(L(RN(1)(t)) ∈ A | N(1))]
P(L(RN(1)(t)) ∈ A)

, x ∈ R, t ≥ 1, s > 0.

Here we assume that the denominator does not vanish and that

Rr(t) =
r∑

i=1

(t − Ui), t ≥ 1, r = 0, 1, . . . , (2.2)

for an i.i.d. U(0, 1) sequence (Ui) such that L, N , and (Ui) are independent.

Remark 2.1. The condition P(L(RN(1)(t)) ∈ A) > 0 is needed for a proper definition of the
conditional characteristic function f̂A(x). From the proof below, it follows that this condition
is equivalent to P(M(t) ∈ A) > 0.

Proof of Lemma 2.2. The same argument leading to (2.1) yields, for x ∈ R, t ≥ 1, and
s > 0,

E[eixM(t,t+s] | M(t)]
= E[E[eixM(t,t+s] | (Lk(t − Tk)), (Tk)] | M(t)]

= E

[
E

[ ∞∏
k=1

exp{ix 1{Tk≤1} Lk(t − Tk, t + s − Tk]}
∣∣∣∣ (Lk(t − Tk)), (Tk)

] ∣∣∣∣ M(t)

]

= E

[
E

[ ∞∏
k=1

(1{Tk>1} + 1{Tk≤1} E[eixL(s)])
∣∣∣∣ (Tk)

] ∣∣∣∣ M(t)

]

= E[(E[eixL(s)])N(1) | M(t)]. (2.3)
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Therefore, we will calculate the following quantities for any Borel set A (assuming that the
denominator does not vanish):

P(N(1) = r | M(t) ∈ A) = P(N(1) = r,
∑N(1)

k=1 Lk(t − Tk) ∈ A)

P(
∑N(1)

k=1 Lk(t − Tk) ∈ A)

= P(N(1) = r, L(
∑N(1)

k=1 (t − Tk)) ∈ A)

P(L(
∑N(1)

k=1 (t − Tk)) ∈ A)
, r = 0, 1, . . . .

In the last step we used the independent stationary increments of the i.i.d. Lévy processes
Li, i = 1, 2, . . . , conditional on (Tk). Conditioning on N(1) and using the order statistics
property of a homogeneous Poisson process, we obtain

P

(N(1)∑
k=1

(t − Tk) ∈ ·
∣∣∣∣ N(1) = r

)
= P(Rr(t) ∈ ·), r = 0, 1, . . . ,

where Rr is defined in (2.2). We conclude that

P(N(1) = r | M(t) ∈ A) = P(N(1) = r) P(L(Rr(t)) ∈ A)

P(L(RN(1)(t)) ∈ A)
. (2.4)

Now substitute (2.4) into (2.3) to obtain the desired expression for f̂A(x).

Since we know the characteristic function f̂A(x), x ∈ R, of M(t, t + s] given {M(t) ∈ A},
we can derive the moments of the prediction M̂A(t, t + s] by differentiating f̂A(x) at x = 0
sufficiently often. The following result summarizes the analysis of the first and second condi-
tional moments.

Theorem 2.1. Consider model (1.2) with i.i.d. Lévy processes Lk, k = 1, 2, . . . , and a homo-
geneous Poisson process N with intensity λ > 0.

(i) Assume that µ = E[L(1)] exists and is finite. Then the prediction M̂A(t, t + s] of
M(t, t + s] given {M(t) ∈ A} has the following form for any Borel set A:

M̂A(t, t + s] = µs
E[N(1) P(L(RN(1)(t)) ∈ A | N(1))]

P(L(RN(1)(t)) ∈ A)
, t ≥ 1, s > 0. (2.5)

(ii) Assume that σ 2 = var(L(1)) is finite. Then the conditional variance of M(t, t + s] given
{M(t) ∈ A} has the following form for any Borel set A:

var(M(t, t + s] | M(t) ∈ A)

= σ 2

µ
M̂A(t, t + s] + (µs)2 E[(N(1))2 P(L(RN(1)(t)) ∈ A | N(1))]

P(L(RN(1)(t)) ∈ A)

− (M̂A(t, t + s])2, t ≥ 1, s > 0. (2.6)

Here we have assumed that the probability P(L(RN(1)(t)) ∈ A) does not vanish.

Remark 2.2. The variance of M(t, t + s] conditional on M(t) gives us a certain measure for
the uncertainty of the prediction M̂A(t, t + s]. In general, this conditional variance is difficult
to obtain. However, if L is a homogeneous Poisson process, we can derive recursive algorithms
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for determining this quantity; see Section 2.3. It would be desirable to obtain an expression for
the unconditional mean square error

E[(M(t, t + s] − E[M(t, t + s] | M(t)])2]
= E[var(M(t, t + s] | M(t))]
= E[(M(t, t + s])2] − E[(E[M(t, t + s] | M(t)])2].

The second moment E[(M(t, t + s])2] provides an upper bound for the mean square error. It
can be derived from Lemma 2.1. The quantity E[(E[M(t, t + s] | M(t)])2] seems intractable.

2.3. Poisson clusters

In this section we assume that L is a homogeneous Poisson process with intensity γ > 0.
In this case we can give explicit expressions for the prediction

M̂m(t, t + s] = E[M(t, t + s] | M(t) = m], t ≥ 1, s > 0, m = 0, 1, . . . ,

and the conditional prediction error. In what follows, it will be convenient to use the Laplace–
Stieltjes transform of any nonnegative random variable Y :

φY (z) = E[e−zY ], z ≥ 0,

and its mth derivatives φ
(m)
Y (z) = (−1)m E[Yme−zY ], m = 0, 1, 2, . . . .

Theorem 2.2. Assume that L is a homogeneous Poisson process with intensity γ > 0. Then
the prediction of M(t, t + s] given {M(t) = m} has the form

M̂m(t, t + s] = λγ s
φ

(m)
RN(1)+1(t)

(γ )

φ
(m)
RN(1)(t)

(γ )
, t ≥ 1, s > 0, m = 0, 1, . . . ,

and the conditional mean square error is given by

var(M(t, t + s] | M(t) = m) = (λγ s)2
φ

(m)
RN(1)+2

(γ )

φ
(m)
RN(1)

(γ )
+ (1 + γ s)M̂m(t, t + s]

− (M̂m(t, t + s])2, t ≥ 1, s > 0, m = 0, 1, . . . ,

where Rr is defined in (2.2).

Proof. According to (2.5) and (2.6), we need to evaluate

E[(N(1))i P(L(RN(1)(t)) = m | N(1))], i = 0, 1, 2.

We have

E[N(1) P(L(RN(1)(t)) = m | N(1))] =
∞∑

r=1

r P(N(1) = r) P(L(Rr(t)) = m)

= λ

∞∑
r=0

e−λ λr

r!
E[(γRr+1(t))

me−γRr+1(t)]
m!

= λ E

[
(γRN(1)+1(t))

me−γRN(1)+1(t)

m!
]

= λ(−γ )m

m! φ
(m)
RN(1)+1(t)

(γ ).
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In a similar way, we calculate

P(L(RN(1)(t)) = m) = (−γ )m

m! φ
(m)
RN(1)(t)

(γ ),

E[(N(1))2 P(L(RN(1)(t)) = m | N(1))] = λ(−γ )m

m! φ
(m)
RN(1)+1(t)

(γ )

+ λ2(−γ )m

m! φ
(m)
RN(1)+2(t)

(γ ).

This concludes the proof.

In view of Theorem 2.2 it is crucial to be able to evaluate the derivatives of φRN(1)(t). Although
we have the representations

φRN(1)
(γ ) = e−λ(1−φt−U (γ )) and φt−U(γ ) = γ −1e−γ t (eγ − 1),

their derivatives are complicated and not necessarily useful. Fortunately, the following propo-
sition yields a recursive scheme for determining these derivatives.

Proposition 2.1. Let � = 1, 2, . . . , and let φ
(�)
t−U(γ ) and φ

(�)
RN(1)+r (t)

(γ ), r = 0, 1, 2, be the �th
derivatives of φt−U and φRN(1)+r (t), r = 0, 1, 2. Then the following recursive relations are
valid:

φ
(�)
t−U(γ ) = (−1)�γ −�−1[�(� + 1, γ (t − 1)) − �(� + 1, γ t)]

φ
(�)
RN(1)(t)

(γ ) = λ

�∑
k=1

(
� − 1
k − 1

)
φ

(k)
t−U(γ )φ

(�−k)
RN(1)(t)

(γ ),

φ
(�)
RN(1)+1(t)

(γ ) = λ

�∑
k=0

(
�

k

)
φ

(k)
t−U(γ )φ

(�−k)
RN(1)(t)

(γ ),

φ
(�)
RN(1)+2(t)

(γ ) = λ

�∑
k=0

(
�

k

)
φ

(k)
t−U(γ )φ

(�−k)
RN(1)+1(t)

(γ ),

where �(α, x) = ∫ ∞
x

e−yyα−1 dy, x > 0, is the incomplete gamma function.

Proof. Observe that, for t ≥ 1,

φt−U(γ ) =
∫ ∞

t

e−γ u(eγ − 1) du. (2.7)

Then Leibniz’s rule yields, for u > 0 and � = 0, 1, . . . ,

[e−γ u(eγ − 1)](�) =
�∑

k=0

(
�

k

)
(e−γ u)(k)(eγ − 1)(�−k)

= e−γ (u−1)(1 − u)� − (−u)�e−γ u.

Now, interchanging the integral and the derivative in (2.7), we have, for t ≥ 1,

φ
(�)
t−U(γ ) =

∫ ∞

t

[e−γ (u−1)(1 − u)� − (−u)�e−γ u] du

= (−1)�
∫ t

t−1
e−γ uu� du

= (−1)�γ −�−1[�(� + 1, γ (t − 1)) − �(� + 1, γ t)].
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This is the desired formula for the derivatives of φt−U . By the definition of φRN(1)(t), observe
that

φ′
RN(1)(t)

= λφ′
t−UφRN(1)(t),

where the prime notation denotes the first derivative. Another application of Leibniz’s rule
yields the desired formula for the derivatives of φRN(1)(t). We also observe that

φRN(1)(t)+1 = φRN(1)(t)φt−U and φRN(1)(t)+2 = φRN(1)(t)+1φt−U .

Applications of the Leibniz rule yield the desired expressions for the derivatives.

Remark 2.3. Assume that the homogeneous Poisson process Lk has the arrivals 0 < �k1 <

�k2 < · · · , k = 1, 2, . . . . Let (Xki)k,i=1,2,... be an i.i.d. sequence of random variables such
that ν = E X11 exists and is finite. Moreover, we assume that (Tk), (Xki), and (�ki)k,i=1,2,...

are mutually independent. Then it is possible to define the reward process

S(t) =
N(1)∑
k=1

∞∑
i=1

Xki 1{Tk+�ki≤t}, t ≥ 1.

The reward S(t) can be interpreted as the total amount of payments executed at the times
Tk + �ki ≤ t, t ≥ 1, i = 1, 2, . . . , for claims arriving in an insurance portfolio at times
Tk ≤ 1. A conditioning argument shows that

E[S(t, t + s] | M(t)] = ν E[M(t, t + s] | M(t)], t ≥ 1, s > 0.

The i.i.d.-ness condition of the Xkis can be further relaxed. For example, if we look at
the conditional expectations E[S(�, � + 1] | M(�)], � = 1, 2, . . . , then we may allow the
distribution of the i.i.d. payments Xki executed in the interval (�, � + 1] to depend on �.
The conditional variance var(S(t, t + s] | M(t)) can be calculated as well. Some of these
calculations are provided in Section 11.3.3 of [21]. We omit details.

3. Prediction with different information sets and non-Lévy clusters

3.1. Prediction with compound Poisson clusters

In this section we consider model (1.2) with a sequence (Lk) of i.i.d. compound Poisson
processes. We assume the representation

Lk(t) =
∞∑
i=1

Xki 1{�ki≤t}, t ≥ 1, (3.1)

where (Xki) is a double array of i.i.d. random variables, independent of the double array (�ki)

and the Poisson points (Tk). The points 0 < �k1 < �k2 < · · · constitute the homogeneous
Poisson process Nk with intensity γ > 0 underlying the compound Poisson process Lk .
Throughout, we assume that µ = E[L(1)] = E X11γ exists and is finite.

In Section 2.3 we mentioned that in an insurance context it is natural to assume that the
number of claims N(1) is unobservable at time t ≥ 1. It is common for claims to be reported
long after they were incurred. In this section we replace the condition M(t) in the prediction of
M(t, t +s] for t ≥ 1 and s > 0 by the number of claims that were incurred in [0, 1] and reported
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by time t ≥ 1. We say that the kth claim is reported if Tk +�k1 ≤ t , i.e. if the first payment has
been executed by time t . For the corresponding counting process of reported claims, we write

N̄0(t) =
N(1)∑
k=1

1{Tk+�k1≤t} =
N(1)∑
k=1

1{Nk(t−Tk)≥1}, t ≥ 1. (3.2)

We focus on the calculations of the conditional expectation

M̂�(t, t + s] = E[M(t, t + s] | N̄0(t) = �], � = 0, 1, . . . ,

and the corresponding prediction error.
In view of (3.2) the σ -field generated by N̄0(t) is contained in the σ -field Ft generated by

(�ki)k,i≥1, Tk+�ki≤t and (Tk). Therefore, for t ≥ 1 and s > 0,

M̂�(t, t + s] = E

[ ∞∑
k=1

1{Tk≤1} E[Lk(t − Tk, t + s − Tk] | Ft ]
∣∣∣∣ N̄0(t) = �

]

= µs E[N(1) | N̄0(t) = �].
The latter conditional expectation will be evaluated below. Since we are also interested in
other conditional moments of M(t, t + s], we calculate the conditional characteristic function
E[eixM(t,t+s] | N̄0(t) = �], x ∈ R. We use some properties of the Poisson random measure
and refer the reader to [7].

Lemma 3.1. The conditional characteristic function of M(t, t + s] given {N̄0(t) = �} has the
form

E[eixM(t,t+s] | N̄0(t) = �] = (E[eixL(s)])� exp{−λ0(t)(1 − E[eixL(s)])}, x ∈ R, (3.3)

where

λ0(t) = λ
e−γ t

γ
(eγ − 1). (3.4)

Proof. We proceed similarly to the proof of Lemma 2.2:

E[eixM(t,t+s] | N̄0(t)] = E[E[eixM(t,t+s] | Ft ] | N̄0(t)]
= E[(E[eixL(s)])N(1) | N̄0(t)]
= (E[eixL(s)])N̄0(t) E[(E[eixL(s)])N(1)−N̄0(t) | N̄0(t)]. (3.5)

Let Q be a Poisson random measure on the state space E = [0, 1]×[0, ∞) with mean measure
ν = λLeb×F , where F denotes the distribution of �k1. Then N(1) and N̄0(t) have the Poisson
integral representations

N(1) =
∫

E

Q(ds, dy)

=
∫ 1

s=0

∫ t−s

y=0
Q(ds, dy) +

∫ 1

s=0

∫ ∞

y=t−s

Q(ds, dy)

= N̄0(t) + [N(1) − N̄0(t)].
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Due to the splitting property of the Poisson process and since the integrals above are defined on
disjoint subsets of the state space, the random variables N̄0(t) and N(1)−N̄0(t) are independent
and Poisson distributed with parameters

E[N(1) − N̄0(t)] = λ

∫ 1

0

∫ ∞

t−s

F (dy) ds = λ
e−γ t

γ
(eγ − 1) = λ0(t)

and E[N̄0(t)] = λ − λ0(t).

Therefore, we conclude from (3.5) that

E[eixM(t,t+s] | N̄0(t)] = (E[eixL(s)])N̄0(t) E[(E[eixL(s)])N(1)−N̄0(t)].

The latter relation yields the desired conditional characteristic function.

The following result can now be obtained by differentiating the characteristic function (3.3)
sufficiently often and then considering the derivatives at 0.

Theorem 3.1. Assume that L is a compound Poisson process with underlying Poisson inten-
sity γ .

(i) If µ = E X11γ exists and is finite, then the prediction of M(t, t + s] given {N̄0(t) = �}
has the form

M̂�(t, t + s] = µs[λ0(t) + �], t ≥ 1, s > 0, � = 0, 1, . . . , (3.6)

where λ0(t) is given in (3.4).

(ii) If, in addition, σ 2 = var(L(1)) = E[X2
11]γ < ∞ then

var(M(t, t + s] | N̄0(t) = �)

= σ 2s(� + λ0(t)) + (µs)2λ0(t), t ≥ 1, s > 0, � = 0, 1, . . . . (3.7)

Remark 3.1. Note that the unconditional prediction error of M(t, t + s] given N̄0(t) has the
form

E[var(M(t, t + s] | N̄0(t))] = (σ 2s + (µs)2)λ0(t) + σ 2s E[N̄0(t)]
= σ 2sλ + (µs)2λ0(t).

Remark 3.2. In a next step we include more information on the condition of the expected
value of M(t, t + s], i.e. we focus on E[M(t, t + s] | M(t), N̄0(t)]. Both processes M(t)

and N̄0(t) are assumed to be observable at time t . Then the σ -field Gt generated by (Tk) and
((�ki, Xki))k,i≥1, Tk+�ki≤t is larger than the σ -field generated by M(t) and N̄0(t). Therefore,

E[M(t, t + s] | M(t), N̄0(t)] = µs E[E[N(1) | Gt ] | M(t), N̄0(t)]
= µs E[N(1) | M(t), N̄0(t)]. (3.8)

Consider the Poisson random measure Q̃ with points (Tk, (�ki)i=1,2,..., (Xki)i=1,2,...) on the
state space [0, ∞) × [0, ∞)∞ × R

∞. Then N(1), N̄0(t), and M(t) have Poisson integral
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representations with respect to Q̃:

N(1) =
∫

[0,1]×[0,∞)∞×R∞
Q̃(ds, d(γi), d(xi)),

N̄0(t) =
∫

[0,1]×[0,∞)∞×R∞
1{s+γ1≤t}((s, (γi), (xi)))Q̃(ds, d(γi), d(xi)),

M(t) =
∫

[0,1]×[0,∞)∞×R∞

∞∑
i=1

xi 1{s+(γ1+···+γi )≤t}((s, (γi), (xi)))Q̃(ds, d(γi), d(xi)).

Note that

N(1) − N̄0(t) =
∫

[0,1]×[0,∞)∞×R∞
1{s+γ1>t}((s, (γi), (xi)))Q̃(ds, d(γi), d(xi)).

The support of the integrand in N(1) − N̄0(t) is disjoint from the supports of the integrands in
N̄0(t) and M(t), and, therefore, N(1)− N̄0(t) is independent of N̄0(t) and M(t). We conclude
from (3.8) that

E[M(t, t + s] | M(t), N̄0(t)] = µs[E[N(1) − N̄0(t) | M(t), N̄0(t)]
+ E[N̄0(t) | M(t), N̄0(t)]]

= µs[E[N(1) − N̄0(t)] + N̄0(t)]
= µs[λ0(t) + N̄0(t)]. (3.9)

Surprisingly, this is the same as (3.6), the formula for E[M(t, t + s] | N̄0(t)]. Hence, taking
into account information additional to N̄0(t) does not change the prediction of M(t, t + s].
A similar calculation shows that the prediction error remains the same. Also, note that we may
conclude from (3.9) that

E[M(t, t + s] | M(t)] = µs[λ0(t) + E[N̄0(t) | M(t)]].
The latter relation sheds some light on the prediction formula (2.5).

3.2. Prediction with delay in reporting

In this section we assume that the cluster process starting at Tk has the form Lk(t − Tk) =
Rk(t − Tk − Dk), where Rk is a Lévy process on [0, ∞) with the convention that Rk(s) = 0
a.s. for s ≤ 0 and Dk is a positive random variable with distribution FD . We write R = R0
for a generic element of the sequence (Rk). We also assume that the i.i.d. sequence (Dk), the
sequence of the claim arrivals (Tk), and the i.i.d. sequence (Rk)k=0,1,... of Lévy processes are
independent. We interpret Dk as the time that elapses between the arrival time Tk of the kth
claim and its reporting time Tk + Dk . Thus, the inhomogeneous Poisson process

N̄1(t) = 	{k ≥ 1 : Tk + Dk ≤ t, Tk ∈ [0, 1]}, t ≥ 1,

is observable at time t ≥ 1, whereas the claim number N(1) is not necessarily observable. In
what follows, we will give expressions for the prediction of M(t, t + s] given N̄1(t):

M̃�(t, t + s] = E[M(t, t + s] | N̄1(t) = �], � = 0, 1, . . . , t ≥ 1, s > 0.

The key to the derivation of the prediction and the prediction error is again an expression for
the characteristic function of M(t, t + s] given N̄1(t).
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Lemma 3.2. The conditional characteristic function of M(t, t + s] given {N̄1(t) = �} has the
form

E[eixM(t,t+s] | N̄1(t) = �]

= (E[eixR(s)])� exp

{
−λ

∫ 1

v=0

∫ t+s−v

r=t−v

(1 − E[eixR(t+s−v−r)]) dvFD(dr)

}
(3.10)

for � = 0, 1, . . . , t ≥ 1, and s > 0.

Proof. We start by calculating the characteristic function of M(t, t + s] conditional on (Tj )

and (Dj ):

E[eixM(t,t+s] | (Tj ), (Dj )]

= E

[ ∞∏
k=1

exp{ixRk(t − Tk − Dk, t + s − Tk − Dk]1{Tk≤1}}
∣∣∣∣ (Tj ), (Dj )

]

=
N(1)∏
k=1

E[eixR(t−Tk−Dk,t+s−Tk−Dk] | Tk, Dk]

= (E[eixR(s)])N̄1(t)
∏

{k:Tk≤1, Tk+Dk>t}
E[eixR(t+s−Tk−Dk) | Tk, Dk]. (3.11)

In the last step we used the fact that R(t − Tk − Dk) = 0 a.s. for k such that Tk + Dk ≥ t a.s.
Write Q̃ for the Poisson process of the points (Tk, Dk) on the state space [0, 1] × (0, ∞) with
mean measure λLeb × FD . Then the Poisson process N̄1 has representation

N̄1(t) =
∫ 1

v=0

∫ t−v

r=0
Q̃(dv, dr), t ≥ 1. (3.12)

Since the σ -field generated by N̄1(t) is contained in the σ -field generated by (Tk) and (Dk),
we have, in view of (3.11),

E[eixM(t,t+s] | N̄1(t)]
= (E[eixR(s)])N̄1(t) E

[ ∏
{k : Tk≤1, Tk+Dk>t}

E[eixR(t+s−Tk−Dk) | Tk, Dk]
∣∣∣∣ N̄1(t)

]

= (E[eixR(s)])N̄1(t)

× E

[
exp

{ ∑
{k : t<Tk+Dk≤t+s}

log E[eixR(t+s−Tk−Dk) | Tk, Dk]
} ∣∣∣∣ N̄1(t)

]

= (E[eixR(s)])N̄1(t)

× E

[
exp

{∫ 1

v=0

∫ t+s−v

r=t−v

log E[eixR(t+s−v−r)]Q̃(dv, dr)

} ∣∣∣∣ N̄1(t)

]
.

We observe that the Poisson integrals in the last expression and in (3.12) have disjoint supports;
hence, they are independent and

E[eixM(t,t+s] | N̄1(t)]

= (E[eixR(s)])N̄1(t) E

[
exp

{∫ 1

v=0

∫ t+s−v

r=t−v

log E[eixR(t+s−v−r)]Q̃(dv, dr)

}]
.

Direct calculation for t ≥ 1 and s > 0 yields (3.10).
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Remark 3.3. Note that, for t ≥ 1 and s > 0,
∫ 1

v=0

∫ t+s−v

r=t−v

(1 − E[eixR(t+s−v−r)]) dvFD(dr) =
∫ t+s

t

(1 − E[eixR(t+s−z)])G(dz),

where G = FU ∗ FD . Therefore,

exp

{
−λ

∫ 1

v=0

∫ t+s−v

r=t−v

(1 − E[eixR(t+s−v−r)]) dvFD(dr)

}

= exp

{
− E[N̄1(t, t + s]]

∫ t+s

t

1 − E[eixR(t+s−z)]
E[N̄1(t, t + s]] G(dz)

}

= E[(E[eixR(t+s−Z)])N̄1(t,t+s]],
where Z is independent of R and has distribution G(dz)/ E[N̄1(t, t + s]] on (t, t + s]. This
expression is an alternative formula for the second term in (3.10).

Differentiation of the conditional characteristic function at x = 0 sufficiently often yields
the following result.

Theorem 3.2. Consider model (1.2) with the delayed Lévy processes Lk(t) = Rk(t−Dk), k =
1, 2, . . . , as cluster processes, where, by convention, Rk(s) = 0 a.s. for s ≤ 0, (Dk) constitutes
an i.i.d. sequence of positive random variables with distribution FD , and the sequences (Tk),
(Dk), and (Rk) are independent.

(i) Assume that µ = E[R(1)] exists and is finite. Then the prediction M̃�(t, t + s] of
M(t, t + s] given {N̄1(t) = �} has the following form for � = 0, 1, . . . :

M̃�(t, t + s] = µs� + µJ1, t ≥ 1, s > 0, (3.13)

where

Ji = Ji(t, s) = λ

∫ 1

v=0

∫ t+s−v

r=t−v

(t + s − r − v)iFD(dr) dv, i = 1, 2.

(ii) If, in addition, σ 2 = var(R(1)) < ∞ then

var(M(t, t + s] | N̄1(t) = �) = �sσ 2 + σ 2J1 + µ2J2. (3.14)

Remark 3.4. The prediction formulae (3.13) and (3.6) are rather similar. Both are linear
functions of N̄1(t) = � or N̄0(t) = �, respectively. This is in agreement with the assumptions
of the chain ladder, which is a standard technique for claims reserving; see [18] and [19].
A particularly interesting case occurs when the delay in reporting variable D is U(0, a)

distributed for some a > 0. Then

M̃�(t, t + s] = µs� + µλa−1
∫ 1

0

∫ (t+s−v)∧a

r=(t−v)∧a

(t + s − r − v) dr dv.

A comparison of the conditional prediction errors (3.7) and (3.14) shows that both are linear
functions of � as well. Since N̄1(t) is Poisson distributed with parameter

E[N̄1(t)] = λ

∫ 1

v=0

∫ t−v

r=0
dvFD(dr) = λ

∫ t

t−1
FD(v) dv, t ≥ 1,
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a straightforward calculation yields the unconditional prediction error

E[var(M(t, t + s] | N̄1(t))] = λσ 2s

∫ t

t−1
FD(v) dv + σ 2J1 + µ2J2.

3.3. Truncated compound Poisson clusters

In this section we consider another modification of the Poisson cluster process. We again
consider model (1.2), but here the cluster processes Lk are not Lévy processes. We assume that
the i.i.d. processes Li, i = 1, 2, . . . , have the following structure:

Li(t) = Ki ∧ Ri(t), t ≥ 1, (3.15)

where Ki is a nonnegative random variable and Ri is a nonnegative compound Poisson process
with representation given on the right-hand side of (3.1). Moreover, we assume that (Ki)i=0,1,...

is an i.i.d. sequence independent of the i.i.d. sequence (Ri)i=0,1,.... We also write Ni for the
homogeneous Poisson process with intensity γ > 0 which underlies the compound Poisson
process Ri . If Ni = Ri and Ki is a nonnegative integer-valued random variable, Ki is interpreted
as the total number of payments for the ith claim. In particular, if Ki = k0 is a constant integer,
there are exactly k0 payments for each claim.

As explained before, in practice we are often not informed at time t = 1 whether a claim
has happened, i.e. the arrival times Tk are often unknown until some future instant of time.
Therefore, in Section 3.1 we only consider those claims for which Tk + �k1 ≤ t , and in
Section 3.2 we only consider those claims for which Tk + Dk ≤ t . Here we will consider the
prediction of M(t, t + s] given N̄0(t) defined in (3.2) and (Rk(t − Tk)){k:Tk≤1, Tk+�k1≤t}. We
write Ht for the σ -field generated by these quantities which are observable at time t . Here and
in what follows, we use the notation of Section 3.1.

Theorem 3.3. Assume that the i.i.d. sequence (Li) has the structure described in (3.15).

(i) If E[K1] < ∞ then the prediction of M(t, t + s], t ≥ 1, s > 0, given Ht has the form

E[M(t, t + s] | Ht ]
= λ0(t) E[K0 ∧ R0(s)]

+
∑

{k : Tk≤1, Tk+�k1≤t}
E[K0 ∧ (R0(s) + Rk(t − Tk))

− K0 ∧ Rk(t − Tk) | Rk(t − Tk)],
where λ0(t) is defined in (3.4). Here (Rk)k=0,1,..., (Tk), and (Kk)k=0,1,... are independent.

(ii) If, in addition, var(K1) < ∞ then, for t ≥ 1 and s > 0,

var(M(t, t + s] | Ht )

= λ0(t) E[(K0 ∧ R0(s))
2]

+
∑

{k : Tk≤1, Tk+�k1≤t}
var(K0 ∧ (R0(s) + Rk(t − Tk))

− K0 ∧ Rk(t − Tk) | Rk(t − Tk)).

This result again follows by differentiation at 0 of the characteristic function of M(t, t + s]
given Ht .
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Lemma 3.3. The conditional characteristic function of M(t, t + s] given Ht has the form

E[eixM(t,t+s] | Ht ] (3.16)

=
∏

{k : Tk≤1,Tk+�k1≤t}
E[eix[K0∧(R0(s)+Rk(t−Tk))−K0∧Rk(t−Tk)] | Rk(t − Tk)]

× exp{−λ0(t)(1 − E eixK0∧R0(s))}. (3.17)

Proof. We start by observing that

M(t, t + s] =
∑

{k : Tk≤1, Tk+�k1≤t}
[Kk ∧ Rk(t + s − Tk) − Kk ∧ Rk(t − Tk)]

+
∑

{k : Tk≤1, Tk+�k1>t}
Kk ∧ Rk(t + s − Tk)

=
∑

{k : Tk≤1, Tk+�k1≤t}
[Kk ∧ Rk(t + s − Tk) − Kk ∧ Rk(t − Tk)]

+
∑

{k : Tk≤1, Tk+�k1>t}
Kk ∧ Rk(t − Tk, t + s − Tk].

The σ -field Ht is contained in the σ -field Gt generated by (Tk) and ((�ki, Xki))k,i≥1, Tk+�ki≤t .
Therefore,

E[eixM(t,t+s] | Gt ]
=

∏
{k : Tk≤1, Tk+�k1≤t}

E[eix[K0∧(R0(s)+Rk(t−Tk))−K0∧Rk(t−Tk)] | Rk(t − Tk)]

×
∏

{k : Tk≤1, Tk+�k1>t}
E[eixK0∧Rk(t−Tk,t+s−Tk] | Tk, Rk(t − Tk)]

=
∏

{k : Tk≤1, Tk+�k1≤t}
E[eix[K0∧(R0(s)+Rk(t−Tk))−K0∧Rk(t−Tk)] | Rk(t − Tk)]

× (E[eixK0∧R0(s)])N(1)−N̄0(t).

The first factor is measurable with respect to Ht , and Ht is independent of N(1) − N̄0(t).
Therefore, we have

E[eixM(t,t+s] | Ht ]
=

∏
{k : Tk≤1, Tk+�k1≤t}

E[eix[K0∧(R0(s)+Rk(t−Tk))−K0∧Rk(t−Tk)] | Rk(t − Tk)]

× E[(E[eixK0∧R0(s)])N(1)−N̄0(t)].

The latter relation implies the desired result (3.16).
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Remark 3.5. The unconditional prediction error is given by

E[var(M(t, t + s] | Ht )]
= λ0(t) E[(K0 ∧ R0(s))

2]

+ E

[N(1)∑
k=1

1{Nk(t−Tk)≥1} var(K0 ∧ (R0(s) + Rk(t − Tk))

− K0 ∧ Rk(t − Tk) | Rk(t − Tk))

]
.

Using the order statistics property of the homogeneous Poisson process N , we obtain

E[var(M(t, t + s] | Ht )] − λ0(t) E[(K0 ∧ R0(s))
2]

= λ

∫ 1

0
E[1{N1(t−y)≥1} var(K0 ∧ (R0(s) + R1(t − y))

− K0 ∧ R1(t − y) | R1(t − y))] dy.
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