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Abstract

For k ≥ 2 and r ≥ 1, we prove that the number of odd k-perfect numbers with r distinct prime factors is at
most 4r2

(k − 1)2r2+3.
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For a positive integer n, let σ(n) denote the sum of all divisors of n. We say that
n is a perfect number if σ(n) = 2n. One of the most famous conjectures in number
theory is that there exists no odd perfect number. However, no significant progress
has been made toward this problem up to now. In 1913, Dickson [4] showed that
for each r ≥ 1, there are only finitely many odd perfect numbers n with ω(n) ≤ r,
where ω(n) denotes the number of distinct prime factors of n. The first explicit upper
bound for the number of odd perfect numbers with at most r distinct prime factors

was given by Pomerance [9], who showed that any such n satisfies n ≤ (4r)(4r)2r2

.
Later, the bound was improved by Cook [3], Heath-Brown [5] and Nielsen [7].
Recently, with the help of an elementary discussion, Pollack [8] obtained the current
best bound and showed that there exist at most 4r2

odd perfect numbers n with
ω(n) ≤ r.

Subsequently, Chen and Luo [1] extended Pollack’s method to multiperfect
numbers: a positive integer n is called α-perfect for rational α if σ(n) = αn, and
multiperfect or k-perfect when α is an integer k. They proved that the number of odd
k-perfect numbers with at most r distinct prime factors is not greater than (k − 1) · 4r3

.
Unfortunately, Chen and Luo’s result does not reduce to Pollack’s when k = 2. The
main purpose of this very short note is to fix this flaw.
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T 1. Suppose that k ≥ 2 and r ≥ 1. Then the number of odd k-perfect numbers
n with ω(n) ≤ r is bounded by 4r2

(k − 1)2r2+3.

Notice that McCarthy [6] has shown that if n is k-perfect then ω(n) ≥ k2 − 1. So
our bound 4r2

(k − 1)2r2+3 = (k − 1) · 4r2+(r2+1) log2(k−1) is surely better than (k − 1) · 4r3

for any k ≥ 2 and r ≥ k2 − 1.

P  T 1. Below we may assume that k ≥ 3. For a positive integer n, we
say that n is primitive if d - σ(d) for each proper divisor d > 1 of n with (d, n/d) = 1.
Let

Iα,r(x) = {n ≤ x : n is an odd primitive α-perfect number and ω(n) ≤ r}.

In [1, Lemma 3], Chen and Luo proved that

|Iα,r(x)| ≤
2.62
α2 − 1

(log x)r.

Furthermore, if α is an integer they showed that |Iα,r(x)| ≤ 0.02(log x)r.
Now suppose that σ(n) = kn. If n is not primitive, then let 1 < d1 < n be the least

divisor of n satisfying (d1, n/d1) = 1 and d1 | σ(d1). Let k1 = σ(d1)/d1. Clearly d1

is an odd primitive k1-perfect number. Suppose that n/d1 is still not primitive. Let
d2 > 1 be the least proper divisor of n/d1 such that (d2, n/(d1d2)) = 1 and d2 | σ(d2),
and let k2 = σ(d2)/d2. Continue this process until n/(d1d2 · · · dl) is primitive, where
ki ≥ 2 is an integer and di is an odd primitive ki-perfect number for every 1 ≤ i ≤ l. Let
dl+1 = n/(d1 · · · dl). Then dl+1 is an odd primitive k/(k1 · · · kl)-perfect number. Note
that dl+1 ≥ 2 and those di are co-prime. So

kn = σ(n) = σ(d1) · · · σ(dl)σ(dl+1) = k1d1 · · · kldl · σ(dl+1)

> (k1 · · · kl) · (d1 · · · dl) · dl+1 = (k1 · · · kl) · n,

that is, k1 · · · kl < k. Since ki ≥ 2, we must have l ≤ log2(k − 1).
For any term (k1, . . . , kl), by the auxiliary lemma of Chen and Luo, the number of

odd primitive k/(k1 · · · kl)-perfect dl+1 ≤ x is at most

Ik/(k1···kl),r(x) ≤
2.62(log x)r

(k/(k1 · · · kl))2 − 1
≤

2.62(log x)r

(k/(k − 1))2 − 1
=

2.62(k − 1)2

2k − 1
(log x)r.

And for each 1 ≤ i ≤ l, the number of odd primitive ki-perfect di ≤ x is at most
0.02(log x)r. Hence the number of all odd nonprimitive k-perfect n ≤ x is
bounded by

2.62(k − 1)2

2k − 1
(log x)r · (0.02(log x)r)log2(k−1)

∑
2≤k1≤···≤kl

k1···kl<k

1.

On the other hand, for an integer m ≥ 2, let the multiplicative partition function f(m)
denote the number of ways of factorising m into a product of integers greater than 1,
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where the order of those factors is ignored. In [2], Chen proved that f(m) ≤ m/4 + 1
for all m. Thus, for k ≥ 3, using a simple induction,

∑
2≤k1≤···≤kl

k1···kl<k

1 =
∑

2≤m≤k−1

( ∑
2≤k1≤···≤kl

k1···kl=m

1
)

=
∑

2≤m≤k−1

f(m) ≤
(k − 1)2 − 1

2
.

So the number of odd k-perfect numbers in [1, x] is not greater than

2.62(k − 1)2

2k − 1
(log x)r · (0.02(log x)r)log2(k−1) ·

(
1 +

∑
2≤m≤k−1

f(m)
)

≤
(k − 1)2 + 1

2
·

2.62(k − 1)2

2k − 1
· (log x)r(1+log2(k−1))

≤ (k − 1)3 · (log x)r(1+log2(k−1)). (1)

Finally, Nielsen [7, Theorem 1] has proved that any odd k-perfect number n with
ω(n) = r does not exceed 24r

. Substituting x = 24r
in (1), we get that the number of odd

k-perfect numbers with r distinct prime factors is bounded by

(k − 1)3 · (log 24r
)r(1+log2(k−1)) ≤ 4r2

(k − 1)2r2+3.

The proof is complete.
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