# POLYNOMIAL INVARIANTS OF FINITE LINEAR GROUPS OF DEGREE TWO 

W. CARY HUFFMAN

1. Introduction and notation. Recently invariant theory of linear groups has been used to determine the structure of several weight enumerators of codes. Under certain conditions on the code, the weight enumerator is invariant under a finite group of matrices. Once all the polynomial invariants of this group are known, the form of the weight enumerator is restricted and often useful results about the existence and structure of codes can be found. (See [5], [8], [14], and [15].) Many of the groups in these applications are of degree 2; in this paper all the invariants of finite $2 \times 2$ matrix groups over $\mathbf{C}$ are determined.

We begin with some definitions and theorems. Let $x_{1}, \ldots, x_{n}$ be independent variables and $\mathbf{C}\left[x_{1}, \ldots, x_{n}\right]$ the ring of complex polynomials in $x_{1}, \ldots, x_{n}$. Let $A=\left(\alpha_{i j}\right)$ be an $n \times n$ complex matrix. If $f \in \mathbf{C}\left[x_{1}, \ldots, x_{n}\right]$, define

$$
A \circ f=f\left(\sum_{j=1}^{n} \alpha_{1 j} x_{j}, \ldots, \sum_{j=1}^{n} \alpha_{n j} x_{j}\right) .
$$

If $B$ is another $n \times n$ matrix, then $B \circ(A \circ f)=(A B) \circ f$. Let $G$ be a finite group of $n \times n$ matrices over $\mathbf{C}$ and $\chi: \mathscr{G} \rightarrow \mathbf{C}$ a homomorphism. Then $f$ is a relative invariant of $\mathscr{G}$ with respect to $\chi$ if $A \circ f=\chi(A) f$ for all $A \in \mathscr{G}$; if $\chi \equiv 1, f$ is an absolute invariant of $\mathscr{G}$. We denote by $\mathfrak{M}(\mathscr{G}, \chi)$ the set of all relative invariants of $\mathscr{F}$ with respect to $\chi$. So $\mathfrak{M}(\mathscr{G}, 1)$ is a C-algebra and $\mathfrak{M}(\mathscr{G}, \chi)$ is an $\mathfrak{M}(G, 1)$-module and a graded $Z$-module. The object of this paper is to obtain a simple description of $\mathfrak{M}(\mathscr{G}, \chi)$ when $n=2$. We remark that Burnside |2], Blichfeldt [1], DuVal [4], Klein [7], and possibly others completed a simpler version of this problem by describing invariants without regard to the characters $\chi$ and examining the groups projectively. Such a separation was necessary in the coding theory applications mentioned previously. Also invariants of groups generated by reflections were studied by Shephard-Todd [13] and Stanley [16]; recently results were obtained by Riemenschneider [12] which deal with absolute invariants of groups of degree 2 containing no reflections. We remark that in this paper any finite group of degree 2 and any linear character $\chi$ is covered.

We can write $\mathfrak{M}(\mathscr{G}, \chi)=\bigoplus_{i=0}^{\infty} \mathfrak{M}(\mathscr{G}, \chi)_{i}$ where

$$
\mathfrak{M}(\mathscr{G}, \chi)_{i}=\{f \in \mathfrak{M}(\mathscr{G}, \chi) \mid f \text { is homogeneous of degree } i\} .
$$

Let $\varphi(\mathscr{G}, \chi)(\lambda)=\sum_{i=0}^{\infty} \operatorname{dim}_{\mathbf{C}}\left(\mathfrak{M}(\mathscr{G}, \chi)_{i}\right) \lambda^{i}$ be the Molien series of $\mathscr{G}$ with respect to $\chi$. Then

Theorem 1.1. (Molien [11]; see [2, p. 300] and [15])

$$
\varphi(\mathscr{G}, \chi)(\lambda)=-\frac{1}{|\mathscr{G}|} \sum_{A \in \mathscr{G}} \frac{\bar{\chi}(A)}{\operatorname{det}(I-\lambda A)}
$$

where bar denotes complex conjugation.
In our situation we will be able to write $\varphi(\mathscr{G}, \chi)$ in the form

$$
\varphi(\mathscr{G}, \chi)(\lambda)=\frac{\sum_{k=1}^{l} \lambda^{b_{k}}}{\left(1-\lambda^{d_{1}}\right)\left(1-\lambda^{u_{2}}\right)} \text { for some } l
$$

and correspondingly write $\mathfrak{M}(\mathscr{G}, \chi)=\bigoplus_{k=1}^{l} \gamma_{k} \mathbf{C}\left[f_{1}, f_{2}\right]$ where $f_{1}, f_{2}$ are algebraically independent and elements of $\mathfrak{M l}(\mathscr{G}, 1)_{d_{1}}, \mathfrak{M}(\mathscr{G}, 1)_{d_{2}}$ and $\gamma_{k} \in \mathscr{M}(\mathscr{G}, \chi)_{b_{k}}$. (Sec [6], $[\mathbf{9}],[\mathbf{1 4 ]},[\mathbf{1 5 ]}$ for discussion and conjectures regarding the forms of the Molien series and their relationship to the form of $\mathfrak{M}(\mathscr{G}, \chi)$.)

In Section 2, we give generators and characters of the finite groups of degree 2. In Section 3 the invariants for the monomial groups are determined, and in Section 4 the invariants for the primitive groups are given.
2. Groups of degree 2. Let $\mathscr{G}$ be a finite linear group of degree 2 over $\mathbf{C}$. If $\mathscr{H}=N^{-1} \mathscr{G} N$ then $\mathfrak{M}(\mathscr{H}, \chi)=N \circ \mathfrak{M}\left(\mathscr{G}, \chi^{N}\right)$; so we consider $\mathscr{G}$ up to change of basis. As is well known we may assume $\mathscr{G}$ is unitary. Such groups have been enumerated by DuVal [4] and Coxeter [3] using quaternions. We now give generators for the groups in the form we will need them later as well as the linear characters. It is straightforward to convert, say, Coxeter's list [3, Chapter 10] to those listed here. With each lemma we give the groups as in Coxeter's list [3] as well as the corresponding projective group in Blichfeldt 11]. $Z_{k}$ is the cyclic group of order $k, Z$ the integers, and $Z(\mathscr{G})$ the center of $\mathscr{G}$.

Lemma 2.1. (Type 1 of [3]; Type $A$ of [1]) Let $G=$ We belian of exponent $e=p_{1}^{a_{1}} \ldots p_{t}^{a_{t}}$ with $p_{1}, \ldots, p_{t}$ distinct primes. Let $\epsilon$ be a primitive eth root of 1 . Then $\mathfrak{I} \simeq Z_{e} \times Z_{f}$ where $g=e / f \in Z$. Also
i) $\mathfrak{I l}=\left\langle B_{1}, B_{2}\right\rangle \simeq\left\langle B_{1}\right\rangle \times\left\langle B_{2}\right\rangle$ where

$$
B_{1}=\left(\begin{array}{cc}
\epsilon^{v_{1}} & 0 \\
0 & \epsilon^{v_{2}}
\end{array}\right) \text { and } B_{2}=\left(\begin{array}{cc}
\epsilon^{g} & 0 \\
0 & \epsilon^{g l}
\end{array}\right)
$$

with

$$
\begin{array}{r}
v_{1}=p_{1}^{\alpha_{1}} \ldots p_{q}^{\alpha_{q}}, v_{2}=j p_{s}^{\alpha_{s}} \ldots p_{t}^{\alpha_{t}}, q<s, \operatorname{gcd}(j, e)=1, d=p_{q+1} \ldots \\
\times p_{s-1} .
\end{array}
$$

ii) If $g=p_{1}{ }^{r_{1}} \ldots p_{t}^{\tau_{t}}$, we may assume $0<\alpha_{i} \leqq r_{i}$ for $i=1, \ldots, q$ and $i=s, \ldots, t$.
iii) A character $\chi$ on $\mathfrak{H}$ must have values $\chi\left(B_{1}\right)=\epsilon^{n_{1}}$ and $\chi\left(B_{2}\right)=\epsilon^{g_{2}}$ for some $n_{1}, n_{2}$. We may assume $0 \leqq n_{2}<f$ (which we do in Section 3).

Lemma 2.2. (Type $2,3,3^{\prime}, 4$ of [3]; Type B of [1]) Let $\mathscr{G}$ be monomial and nonabelian with diagonal subgroup $\mathfrak{N} \simeq Z_{e} \times Z_{j}$ of index 2 and exponent $e=p_{1}{ }^{a_{1}} \ldots p_{i}{ }^{a}$ where $g=e / f=p_{1}{ }^{r_{1}} \ldots p_{i}{ }^{{ }^{t}}$. Let $\in$ be a primitive eth root of 1 . We may assume $\mathscr{G}=\langle\mathfrak{R}, F\rangle$ where $\mathfrak{H}=\left\langle A_{1}, A_{2}\right\rangle \simeq\left\langle A_{1}\right\rangle \times\left\langle A_{2}\right\rangle$ and

$$
A_{1}=\left(\begin{array}{cc}
\epsilon & 0 \\
0 & \epsilon^{j}
\end{array}\right), \quad A_{2}=\left(\begin{array}{cc}
1 & 0 \\
0 & \epsilon^{g}
\end{array}\right), \quad F=\left(\begin{array}{cc}
0 & 1 \\
\alpha^{2} & 0
\end{array}\right)
$$

with $|F|=2^{b+1}$ and $\alpha$ a primitive $2^{b+1}$ root of 1 . If $2 \mid e$, let $p_{1}=2$. We also obtain
i) if $p_{1}=2, b \leqq a_{1}$ and if $2 \nprec e, b=0$;
ii) if $p_{1}=2$ and $r_{1}>a_{1}-b$ then $j \equiv 1 \bmod 2^{r_{1}-\left(a_{1}-b\right)}$;
iii) $\operatorname{gcd}(j, e)=1$;
iv) $j^{2} \equiv 1 \bmod g$.
v) Let $c_{1}=\operatorname{gcd}(j-1, d)$. A character $\chi$ on $\mathscr{G}$ must have values $\chi\left(A_{1}\right)=$ $\epsilon^{n_{1}}, \chi\left(A_{2}\right)=\epsilon^{g n_{2}}, \chi(F)=\alpha^{n_{3}}$ where

$$
n_{1} \equiv(j+1) n_{2} \bmod \left(e / c_{1}\right) \text { and } n_{3} \equiv n_{1}+n_{2}(1-j) \bmod 2^{b} .
$$

We remark that the first condition on $n_{1}$ and $n_{2}$ in $v$ ) comes from the two facts that $F^{-1} A_{1} F, F^{-1} A_{2} F \in \mathbb{M}$ plus some straightforward calculations involving $c_{1}$. The second condition on $n_{1}, n_{2}, n_{3}$ comes from $F^{2} \in \mathfrak{M}$, as does ii).

Lemma 2.3. (Types 5,6 of $[\mathbf{3}]$; Type C of [1]) Let $\mathscr{G}$ be primitive and $\mathscr{G} / Z(\mathscr{G})$ $\simeq A_{4}$. Then $\mathscr{G}$ is either

$$
\mathscr{G}_{1}=\left\langle Q, A,\left(\begin{array}{ll}
\mu & 0 \\
0 & \mu
\end{array}\right)\right\rangle_{o r} \mathscr{G}_{2}=\left\langle Q, \alpha A,\left(\begin{array}{ll}
\mu & 0 \\
0 & \mu
\end{array}\right)\right\rangle
$$

where $A=\frac{1}{2}\left(\begin{array}{rr}-1+i & 1-i \\ -1-i & -1-i\end{array}\right), Q=\left\langle\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right),\left(\begin{array}{rr}i & 0 \\ 0 & -i\end{array}\right)\right\rangle$ is the quaternion group of order $8, \mu$ is a primitive dth root of 1 , and in $\mathscr{G}_{2}, \alpha$ is a primitive $3^{r}$ root of $1(r \geqq 1)$ and $3 \nmid d$. A character $\chi$ of $\mathscr{G}$ must satisfy $\chi(\tau)=1$ for $\tau \in Q, \chi\left(\begin{array}{ll}\mu & 0 \\ 0 & \mu\end{array}\right)=\mu^{n}$ where $2 \mid n$ if $2 \mid d, \chi(A)=1$, $\omega$, or $\bar{\omega}$ where $\omega$ is a primitive cube root of 1 if $\mathscr{G}=\mathscr{G}_{1}$, and $\chi(\alpha A)=\alpha^{m}$ if $\mathscr{G}=\mathscr{G}_{2}^{\prime}$.

Lemma 2.4. (Types 7,8 of [3]; Type D of [1]) Let $\mathscr{G}$ be primitive and $\mathscr{G} / Z(\mathscr{G})$ $\simeq S_{4}$. Then $\mathscr{G}$ is either

$$
\left.\mathscr{G}_{1}=\left\langle Q, A, B,\left(\begin{array}{ll}
\nu & 0 \\
0 & \nu
\end{array}\right)\right\rangle\right\rangle_{\text {or }} \mathscr{G}_{2}=\left\langle Q, A, \beta B,\left(\begin{array}{ll}
\nu & 0 \\
0 & \nu
\end{array}\right)\right\rangle
$$

where $Q, A$ are as in Lemma $2.3, B=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}1 & -i \\ i & -1\end{array}\right)$, $\nu$ is a primitive $d$ th root of 1 , and in $\mathscr{G}_{2}, \beta$ is a primitive $2^{r}$ root of $1(r \geqq 2)$ and $2 \nmid d . A$ character $\chi$ of $\mathscr{G}$
must satisfy $\chi(\tau)=1$ for all $\tau \in\langle Q, A\rangle, \chi\left(\begin{array}{ll}\nu & 0 \\ 0 & \nu\end{array}\right)=\nu^{n}$ where $2 \mid n$ if $2 \mid d, \chi(B)=$ $\pm 1$ if $\mathscr{G}=\mathscr{G}_{1}$, and $\chi(\beta B)=\beta^{m}$ where $2 \mid m$ if $\mathscr{G}=\mathscr{F}_{2}$.

Lemma 2.5. (Type 9 of [3]; Type E of $[\mathbf{1}]$ ) Let $\mathscr{G}$ be primitive and $\mathscr{G} / Z(\mathscr{G})$ $\simeq A_{5}$. Then $\mathscr{G}=\mathscr{G}_{j}$ for $j=1$ or 2 where

$$
\begin{aligned}
& \mathscr{G}_{j}=\left\langle Q, A, C_{j},\left(\begin{array}{ll}
\mu & 0 \\
0 & \mu
\end{array}\right)\right\rangle, \quad C_{j}=\left(\begin{array}{cc}
\gamma_{j} & \frac{1}{2}+\delta_{i} \\
-\frac{1}{2}+\delta_{j} & -\gamma_{j}
\end{array}\right), \\
& \gamma_{1}=\delta_{2}=i\left(\frac{-1+\sqrt{\tilde{b}}}{4}\right), \gamma_{2}=\delta_{1}=i\left(\frac{-1-\sqrt{5}}{4}\right),
\end{aligned}
$$

and $\mu$ is a primitive $d$ th root of 1 , using the notation of Lemma 2.3. A character $\chi$ of $\mathscr{G}$ must satisfy $\chi(\tau)=1$ for all $\tau \in\left\langle Q, A, C_{j}\right\rangle$ and $\chi\left(\begin{array}{cc}\mu & 0 \\ 0 & \mu\end{array}\right)=\mu^{n}$ where $2 \mid n$ if $2 \mid d$.
3. Relative invariants of the monomial groups. Theorems 3.1 and 3.10 give the invariants of the abelian and nonabelian monomial groups.

Theorem 3.1. Using the notation of Lemma 2.1 let $m=e / v_{1}, n=e j / v_{2}$, $f_{1}=x^{m}$, and $f_{2}=y^{n}$. Then there exists an integer $w$ such that $\left(v_{2}-d v_{1}\right) w \equiv 1$ $\bmod f v_{1}$. Let

$$
\Omega=\left\{l \mid l \equiv\left(n_{1}-n_{2} v_{1}\right) w \bmod f v_{1} \text { and } 0 \leqq l<n\right\} .
$$

If $l \in R$, , there exists a unique integer $k(l)$ such that $k(l) v_{1} \equiv n_{1}-l v_{2} \bmod e$ where $0 \leqq k(l)<m$. Let $\gamma_{l}=x^{k(l)} y^{\prime}$. Then

$$
\begin{aligned}
& \mathfrak{M}(\mathfrak{M}, \chi)=\bigoplus_{l \in!} \gamma_{l} \mathbf{C}\left[f_{1}, f_{2}\right] \text { and } \\
& \varphi(\mathfrak{I}, \chi)(\lambda)=\frac{\sum_{l \in \mathbb{E}} \lambda^{k(l)+l}}{\left(1-\lambda^{n}\right)\left(1-\lambda^{m}\right)} .
\end{aligned}
$$

Proof. First, $w$ exists because Lemma 2.1 ii) implies $f v_{1} \mid e$ and primes dividing $e$ divide precisely one of $v_{2}$ and $d v_{1}$ giving $\operatorname{gcd}\left(f v_{1}, v_{2}-d v_{1}\right)=1$. If $l \in \mathbb{Z}$, then $l\left(v_{2}-d v_{1}\right) \equiv n_{1}-n_{2} v_{1} \bmod f v_{1}$ which implies $n_{1}-l v_{2} \equiv 0 \bmod v_{1}$ and so $k(l)$ exists as $m=e / v_{1} ; k(l)$ is unique as $k^{\prime} v_{1} \equiv k(l) v_{1} \bmod e$ implies $k^{\prime} \equiv k(l)$ $\bmod m$.

As $\mathfrak{N}$ is diagonal, every element of $\mathfrak{M}(\mathfrak{U}, \chi)$ is a sum of monomials $x^{k} y^{l} \in$ $\mathfrak{M}(\mathfrak{H}, \chi)$. Examining $B_{i} \circ x^{k} y^{l}, x^{k} y^{l} \in \mathfrak{M}(\mathfrak{A}, \chi)$, if and only if,
(*) $k v_{1}+l v_{2} \equiv n_{1} \bmod e \quad$ and $\quad k+l d \equiv n_{2} \bmod f$.
Letting $n_{1}=n_{2}=0, f_{1}, f_{2} \in \mathfrak{M}(\mathscr{A}, 1)$ using Lemma 2.1 ii). We are finished if we show that
a) if $l \in \Omega, \gamma_{l} \in \mathfrak{M}(\mathfrak{M}, \chi)$;
b) if $x^{k} y^{l} \in \mathfrak{M}(\mathfrak{N}, \chi)$, then $x^{k} y^{\prime} \in \sum_{l \in \Omega} \gamma_{l} \mathbf{C}\left[f_{1}, f_{2}\right]$;
c) $\sum_{l \in \Omega} \gamma_{l} \mathbf{C}\left[f_{1}, f_{2}\right]$ is a direct sum.

For a) by definition of $k(l), k(l) v_{1}+l v_{2} \equiv n_{1} \bmod c$. As $f v_{1} \mid e$,

$$
k(l) v_{1}+l v_{2} \equiv n_{1} \bmod f v_{1}
$$

For $l \in Z, l\left(v_{2}-d v_{1}\right) \equiv n_{1}-n_{2} v_{1} \bmod d v_{1}$ whence

$$
n_{2} v_{1}-l d v_{1} \equiv n_{1}-l v_{2} \equiv k(l) v_{1} \bmod f v_{1}
$$

implying (*). For 1) let $l=l_{1}+i n$ and $k=k_{1}+j m$ where $0 \leqq l_{1}<n$ and $0 \leqq k_{1}<m$. Then

$$
x^{k} y^{l}=\gamma_{l_{1}} f_{1}^{j} f_{2}{ }^{i} \text { if } l_{1} \in \mathbb{x} \text { and } k_{1}=k\left(l_{1}\right) .
$$

As $f v_{1} \mid e$, using $\left(^{*}\right)$ we obtain $n_{1}-l v_{2}+l d v_{1} \equiv n_{2} v_{1} \bmod f v_{1}$ which implies

$$
l \equiv\left(n_{1}-n_{2} v_{1}\right) w \bmod f v_{1} .
$$

By Lemma 2.1 ii ), $f v_{1} n$ implies $l \equiv l_{1} \bmod f v_{1}$ giving $l_{1} \in ?$. Clearly $k v_{1} \equiv$ $k_{1} v_{1} \bmod e$ and $l v_{2} \equiv l_{1} v_{2} \bmod e$ giving $k_{1} v_{1} \equiv k v_{1} \equiv n_{1}-l_{v_{2}} \equiv n_{1}-l_{1} v_{2} \bmod e$ and so $k_{1}=k\left(l_{1}\right)$. Finally, for c$)$, as powers of $y$ in $\gamma_{l} \mathbf{C}\left[f_{1}, f_{2}\right]$ are congruent to $l \bmod n$, the sum is direct.

For the remainder of this section let $\mathscr{G}$ be as in Lemma 2.2 . Clearly polynomials in $\mathfrak{M}(\mathscr{G}, \chi)$ are linear combinations of $x^{\prime} y^{\prime}$ and $x^{k} y^{\prime}+\beta x^{l} y^{k}$ when $k \neq l$.

Lemma 3.2. We have in the notation of Lemma 2.2.
i) $\alpha^{2 c}=1$ ( nnd $\operatorname{gcd}(j, e)=1$;
ii) $x^{k} y^{\prime}$ © $M(\mathbb{M}, \chi)$ if and only if $k \equiv n_{1}-j l \bmod e$ and $l \equiv n_{2} \bmod f$;
iii) $x^{k} y^{\prime} \in \mathfrak{M}\left(: l(, \chi)\right.$ if and only if $x^{\prime} y^{k} \in \mathscr{P l}(\mathcal{I}, \chi)$;
iv) if $x^{k} y^{l} \in \mathfrak{M}(\mathfrak{Y}, \chi)$, then $n_{3} \equiv k+l \bmod 2^{b}$;
v) $x^{l} y^{l} \in \mathbb{M}^{\prime}(\mathscr{F}, \chi)$ if and only if $x^{l} y^{l} \in \mathscr{M}(\mathfrak{N}, \chi)$ and $n_{3} \equiv 2 l \bmod 2^{2+1}$;
vi) if $k \neq l$, then $x^{k} y^{\prime}+\beta x^{\prime} y^{k} \in \mathfrak{M}(\mathscr{G}, \chi)$ if and only if $x^{k} y^{l} \in \mathfrak{M i}^{(\mathfrak{R}, \chi)}$ and $\beta=\alpha^{2 l-n_{3}}$.

Proof. i), ii), v), and vi) follow directly from Lemma 2.2. As it is also generated by $\left(\begin{array}{ll}\epsilon^{j} & 0 \\ 0 & \epsilon\end{array}\right)$ and $\left(\begin{array}{ll}\epsilon^{g} & 0 \\ 0 & 1\end{array}\right)$, iii) is clear. For iv) we are done if $2 \nmid e$ by Lemma 2.2 ; so we assume $b \leqq t_{1}$. By ii) we obtain $k+l \equiv n_{1}+(1-j) l$ $\bmod 2^{b}$ and $l \equiv n_{2} \bmod 2^{a_{1}-r_{1}}$ giving iv) if $b \leqq a_{1}-r_{1}$ by Lemma 2.2 v ). If $b>a_{1}-r_{1}$, by Lemma 2.2 ii ),

$$
1-j \equiv 0 \bmod 2^{r_{1}-\left(a_{1}-b\right)}
$$

which implies $(1-j)\left(l-n_{2}\right) \equiv 0 \bmod 2^{b}$ and so

$$
k+l \equiv n_{1}+(1-j) n_{2} \equiv n_{3} \bmod 2^{b}
$$

by Lemma 2.2 v ).
Lemma 3.3. Let $m$ be the minimal positive integer such that $(1+j) f m \equiv 0$ $\bmod e$ and $2^{b} \mid f m$. Then
i) mexists and fm|e (i.e. $m \mid g)$;
ii) if $(1+j) f m^{\prime} \equiv 0 \bmod e$ and $2^{b} \mid f m^{\prime}$, then $m \mid m^{\prime}$;
iii) $f_{1}=x^{e}+y^{e}$ and $f_{2}=(x y)^{\text {sm }}$ are algebraically independent elements of $\mathfrak{M}(\mathscr{G}, 1)$.

Proof. The homomorphism $\psi: Z \rightarrow Z_{e}$ given by $x \psi=(1+j) f x \bmod e$ has kernel $\left\langle m_{1}\right\rangle$ with $e / f \in\left\langle m_{1}\right\rangle$. The homomorphism $\theta:\left\langle m_{1}\right\rangle \rightarrow Z_{2^{b}}$ given by $x \theta=f x \bmod 2^{b}$ has kernel $\langle m\rangle$ containing $e / f$ also by Lemma 2.2 i) giving i) and ii). Letting $n_{1}=n_{2}=n_{3}=0, f_{1}, f_{2} \in \mathbb{M}(\mathscr{G}, 1)$ and iii) follows easily.

From now on we may assume $0 \leqq n_{2}<f$; let $d=e / f m$. Let $l(n)=f n+n_{2}$ and let $k(n)$ be such that $0 \leqq k(n)<e$ where $k(n) \equiv n_{1}-j l(n) \bmod e$. Let $\mathscr{I}_{1}=\{n \mid 0 \leqq n<m$ and $k(n)>l(n)\}$ and $\mathscr{I}_{2}=\left\{n \in \mathscr{I}_{1} \mid k(n)<f m\right\}$.

Lemma 3.4. Let $0 \leqq n, n^{*}<m$ with $n \in \mathscr{I}_{1}$. Assume $k(n) \equiv l\left(n^{*}\right) \bmod f m$, i.e., $k(n)=f m q+l\left(n^{*}\right)$ with $0 \leqq q<d\left(a s 0 \leqq l\left(n^{*}\right)<f m\right)$. Then we have
i) if $n^{*} \in \mathscr{I}_{1}$, then $q>0$;
ii) if $q>0$, then $k\left(n^{*}\right)=f m(d-q)+l(n)$.

Proof. By Lemma 3.2 ii) and iii), $l(n) \equiv n_{1}-j k(n) \equiv n_{1}-j f m q-j l\left(n^{*}\right)$ $\bmod e . \operatorname{As} k\left(n^{*}\right) \equiv n_{1}-j l\left(n^{*}\right) \bmod e$ and $(1+j) f m \equiv 0 \bmod e$,

$$
l(n) \equiv k\left(n^{*}\right)+f m q \bmod e
$$

If $q=0$ as $0 \leqq l(n), k\left(n^{*}\right)<e, l(n)=k\left(n^{*}\right)$ and $k(n)=l\left(n^{*}\right)$. As $l\left(n^{*}\right)=$ $k(n)>l(n), n^{*}>n$. If $n^{*} \in \mathscr{I}_{1}, l(n)=k\left(n^{*}\right)>l\left(n^{*}\right)$ which implies $n>n^{*}$, a contradiction giving i). If $q>0$, then

$$
0 \leqq l(n)<f m \leqq f m q+k\left(n^{*}\right)<\varrho e ;
$$

as $l(n) \equiv k\left(n^{*}\right)+f m q \bmod e, l(n)=f m q+k\left(n^{*}\right)-e$, giving ii $)$.
Lemma 3.5. If $0 \leqq n, n^{\prime}<m$ with $k(n) \equiv k\left(n^{\prime}\right) \bmod f m$, then $n=n^{\prime}$. For each $n \in \mathscr{I}_{1}$ with $f m \leqq k(n)$ there is a unique $n^{*} \in \mathscr{I}_{1}$ such that $k(n) \equiv l\left(n^{*}\right)$ $\bmod f m$. Also $k\left(n^{*}\right) \equiv l(n) \bmod f m$. If $k(n)<f m$ and $n \in \mathscr{I}_{1}$, then there is no $n^{*} \in \mathscr{I}_{1}$ with $k(n) \equiv l\left(n^{*}\right) \bmod f m$.

Proof. If $k(n) \equiv k\left(n^{\prime}\right) \bmod f m$, as $f m \mid e, j l(n) \equiv j l\left(n^{\prime}\right) \bmod f m$ whence $l(n) \equiv l\left(n^{\prime}\right) \bmod f m$ by Lemma 3.2 i). So $n \equiv n^{\prime} \bmod m$ and $n=n^{\prime}$.

If $n \in \mathscr{I}_{1}$ with $f m \leqq k(n)$ then as $k(n) \equiv n_{2} \bmod f$ by Lemma 3.2,

$$
k(n)=f m q+f n^{*}+n_{2} \text { with } 0 \leqq n^{*}<m \text { and } 0<q<d
$$

By Lemma 3.4 ii $), k\left(n^{*}\right)=f m(d-q)+l(n) \geqq f m$ and thus $n^{*} \in \mathscr{I}_{1}$. If also for some $0 \leqq n^{\prime}<m, k(n) \equiv l\left(n^{\prime}\right) \bmod f m$, then $l\left(n^{\prime}\right) \equiv l\left(n^{*}\right) \bmod f m$ and so $n^{\prime} \equiv n^{*} \bmod m$ and $n^{\prime}=n^{*}$. The last statement follows from Lemma 3.4 i).

Now let

$$
\begin{aligned}
& A_{n}(x, y)=x^{k(n)} y^{l(n)}+\alpha^{2 l(n)-n_{3}} x^{l(n)} y^{k(n)} \text { for } n \in \mathscr{I}_{1} \text { and } \\
& B_{n}(x, y)=x^{k(n)} y^{l(n)+e}+\alpha^{2 l(n)-n_{3}} x^{l(n)+e} y^{k(n)} \text { for } n \in \mathscr{I}_{2}
\end{aligned}
$$

By Lemma 3.2 and 3.3 i), $A_{n}, B_{n} \in \mathfrak{M}(\mathscr{G}, \chi)$. From now on let $g_{k, l}=x^{k} y^{l}+$ $\alpha^{2 l-n} x^{l} y^{k}$.

Lemma 3.6. Let $\mathfrak{N}=\sum \gamma_{n} \mathbf{C}\left[f_{1}, f_{2}\right]$ where $\left\{\gamma_{n}\right\}=\left\{A_{r} \mid r \in \mathscr{I}_{1}\right\} \cup\left\{B_{r} \mid r \in \mathscr{I}_{2}\right\}$. Let $0 \leqq l<k<e$ and assume $g_{k, l} \in \mathfrak{M}(\mathscr{G}, \chi)$. Then $l=f m p+l(n)$ where $0 \leqq n<m$ and either i) $k=f m p+k(n)$ or ii) $k=f m p+k(n)-e$. Also $g_{k, l} \in \mathfrak{N}$ and in case i) $g_{k, l+e} \in \mathfrak{N}$ and in case ii) $g_{k+e, l} \in \mathfrak{N}$.

Proof. By Lemma 3.2 ii) $l=f m p+l(n)$ where $0 \leqq n<m$. Also

$$
k \equiv n_{1}-j l \equiv n_{1}-j f m p-j l(n) \equiv k(n)+f m p \bmod e
$$

as $(1+j) f m \equiv 0 \bmod e$ and $k(n) \equiv n_{1}-j l(n) \bmod e$. So as $0 \leqq f m p, k(n)<$ $e$, i) or ii) holds.

Assume i) holds. Then $k>l$ implies $k(n)>l(n)$ and $n \in \mathscr{I}_{1}$. Then

$$
g_{k, l}=f_{2}^{p} g_{k(n), l(n)} \in \mathcal{M}
$$

as $\alpha^{2 f m}=1$ since $2^{b} \mid \mathrm{fm}$. Also

$$
g_{k, l+e}=f_{2}^{p} g_{k(n), l(n)+e} \in \mathfrak{N}
$$

if $k(n)<f m$. Assume $k(n) \geqq f m$. Let $n^{*} \in \mathscr{I}_{1}$ be as in Lemma 3.5. Then by Lemma $3.4, k(n)=f m q+l\left(n^{*}\right)$ and $k\left(n^{*}\right)=f m(d-q)+l(n)$ which implies $l(n)+e=f m q+k\left(n^{*}\right)$. So

$$
g_{k, l+e}=f_{2}^{p} g_{k(n), l(n)+e}=\alpha^{2 k\left(n^{*}\right)-n_{3} f_{2}^{p+q} g_{k\left(n^{*}\right), l\left(n^{*}\right)} \in \mathfrak{N}, ., ~}
$$

the last equality requiring $2 l\left(n^{*}\right)+2 k\left(n^{*}\right) \equiv 2 n_{3} \bmod 2^{b+1}$, which holds by Lemma 3.2 iv).

Assume ii) holds. As $p \leqq d-1$ and $k \geqq 0, k(n) \geqq f m$. So $n \in \mathscr{I}_{1}$; let $n^{*} \in \mathscr{I}_{\mathrm{I}}$ be as in Lemma 3.5. Then $k(n)=f m q+l\left(n^{*}\right)$ and $k\left(n^{*}\right)=f m(d-q)$ $+l(n)$ which implies $k=f m(p+q-d)+l\left(n^{*}\right)$ and $l=f m(p+q-d)+$ $k\left(n^{*}\right)$, the former implying $p+q-d \geqq 0$ as $0 \leqq l\left(n^{*}\right)<f m$. So

$$
g_{k, l}=\alpha^{2 k\left(n^{*}\right)-n_{3}} f_{2}^{p+Q-d} g_{k\left(n^{*}\right), l\left(n^{*}\right)} \in \Upsilon
$$

again using $2 l\left(n^{*}\right)+2 k\left(n^{*}\right) \equiv 2 n_{3} \bmod 2^{b+1}$. Also

$$
g_{k+e, l}=f_{2}^{p} g_{k(n), k(n)} \in \mathfrak{N}
$$

giving the lemma.
Now let $0 \leqq w$ be the minimal integer such that

$$
(1+j) l(w) \equiv n_{1} \bmod e \text { and } n_{3} \equiv 2 l(w) \bmod 2^{b+1}
$$

Let $0 \leqq v$ be the minimal integer such that $(1+j) l(v) \equiv n_{1} \bmod e$ and $n_{3} \not \equiv$ $2 l(v) \bmod 2^{b+1}$. Note that $v$ or $w$ may not exist; define $\mathscr{I}_{3}$ to be the elements of $\{v, w\}$ which do exist.

Lemma 3.7. For $z \in \mathscr{I}_{3}, 0 \leqq z<m$. If $v_{1}$ or $w_{1}$ satisfy the equations defining $v$ or $w$ respectively, then $v \equiv v_{1} \bmod m$ and $w \equiv w_{1} \bmod m$.

Proof. Assume $z \geqq m$. Then $(1+j)(l(z-m)) \equiv(1+j)(l(z)-f m) \equiv$ $(1+j) l(z) \equiv n_{1} \bmod c$. As $2 f m \equiv 0 \bmod 2^{b+1}, 2 l(z) \equiv 2 l(z-m) \bmod 2^{b+1}$, contradicting the choice of $z$.

Now $(1+j) l\left(w_{1}\right) \equiv(1+j) l(w) \bmod e$ which implies $(1+j) f\left(w_{1}-w\right) \equiv 0$ $\bmod e$; also $2 l\left(w_{1}\right) \equiv 2 l(w) \bmod 2^{b+1}$ and so $f\left(w_{1}-w\right) \equiv 0 \bmod 2^{b}$ giving $m \mid w_{1}-w$ by Lemma 3.3 ii $)$. As above $(1+j) f\left(v_{1}-v\right) \equiv 0 \bmod e$. By Lemma 3.2 ,

$$
n_{3} \equiv 2 l\left(v_{1}\right) \equiv 2 l(v) \bmod 2^{b} .
$$

As $2 l\left(v_{1}\right)=2^{b} r+n_{3}, 2 l(v)=2^{b} s+n_{3}$ and by choice of $v, v_{1}$, both $r$ and $s$ are odd. Hence

$$
2 l\left(v_{1}\right)-2 l(v)=2 f\left(v_{1}-v\right) \equiv 0 \bmod 2^{v+1}
$$

again yielding $m \mid v_{1}-v$.
Remarks. 1. If $z \in \mathscr{F}_{3}, l(z)=k(z)$.
$\underline{2}$. If both $v, w$ exist, then $|v-w|=m / 2$ because $0<\underline{2}|v-w|<9 m$ and $\bullet|v-w|$ satisfies the conditions for $m$.

Now define $C_{w}(x, y)=(x y)^{\prime(m)}$ if $w$ exists and

$$
C_{n}(x, y)=x^{l(v)} y^{l(v)+\epsilon}+\alpha^{2 l(x)-n_{3}} x^{\prime(v)+\varepsilon} y^{l(v)}
$$

if $v$ exists. By Lemma 3.2, $C_{u}, C_{r} \in M(\mathscr{G}, \chi)$.
Lemma 3.8. Let $\left.\mathfrak{M}=\sum \gamma_{n} \mathbf{C} \mid f_{1}, f_{2}\right]$ where $\left\{\gamma_{n}\right\}=\left\{A_{\|} \mid r \in \mathscr{I}_{1}\right\} \cup\left\{B_{r} \mid r\right.$ G $\left.\mathscr{I}_{2}\right\}$ $\cup\left\{C_{r} \mid r \in \mathscr{I}_{3}\right\}$. Then the above sum is direct.

Proof. In $A, \mathbf{C}\left[f_{1}, f_{2}\right], B, \mathbf{C}\left[f_{1}, f_{2}\right]$, and $\left(, \mathbf{C} \mid f_{1}, f_{2}\right]$ the powers of $x$ are congruent to $k(r)$ and $l(r) \bmod f m$. Now $k(w)=l(w) \not \equiv k(v)=l(v) \bmod f m$. Let $n \in \mathscr{I}_{1}$ and $r \in \mathscr{I}_{3}$. If $k(n) \equiv k(r) \bmod f m, n=r$ by Lemma 3.5, a contradiction. If $l(n) \equiv k(r) \bmod f m$, then $l(n) \equiv l(r) \bmod f m$ and so $n=r$, a contradiction. So by Lemma 3.5 , we only need to prove that
i) if $k(n) \geqq f m$ and $n \neq n^{*}$, then $\left.A_{n} \mathbf{C} \mid f_{1}, f_{2}\right]+A_{n *} \mathbf{C}\left|f_{1}, f_{n}\right|$ is direct; ii) if $k(n)<f m$, then $\left.\left.A_{n} \mathbf{C} \mid f_{1}, f_{2}\right]+B_{n} \mathbf{C} \mid f_{1}, f_{2}\right]$ is direct.

Let $a(x, y)=\sum \alpha_{r, s} f_{1}{ }^{r} f_{2}{ }^{s}$ and $b(x, y)=\sum \beta_{r, s} f_{1} f_{2}{ }^{s}$. To prove i) assume (1) $\quad a(x, y) A_{n}+b(x, y) A_{n^{*}}=0$.

By Lemmas 3.4 and $3.5, k(n)+l(n)=f m(2 q-d)+l\left(n^{*}\right)+k\left(n^{*}\right)$ where $0<q<d$. Taking homogeneous components of degrce $s$ in (1), we obtain (2) $0=\sum_{Y_{1}} \alpha_{r, s} f_{1}^{T} f_{2}{ }^{s} A_{n}+\sum_{Y_{2}} \beta_{r, s} f_{1}{ }^{r} f_{2}{ }^{s} A_{n^{*}}$
where $\mathscr{S}_{1}=\left\{(r, s) \mid r d+2_{s}+(2 q-d)=s_{1}\right\}$ and $\mathscr{S}_{2}=\left\{(r, s) \mid r d+2_{s}=s_{1}\right\}$ when $z_{1}=(1 / f m)\left(z-\left(k\left(n^{*}\right)+l\left(n^{*}\right)\right)\right)$. The degrees of $x$ in the $\mathscr{S}_{1}$ sum are congruent to $k(n)$ and $l(n) \bmod f m$ and in the $\mathscr{S}_{2}$ sum are congruent to $k\left(n^{*}\right) \equiv l(n) \bmod f m$ and $l\left(n^{*}\right) \equiv k(n) \bmod f m$. Splitting into these two
degrees $\left(\operatorname{as} k(n) \neq l(n) \bmod f m\right.$ since $\left.n \neq n^{*}\right)$ and letting $y=1$, we obtain

$$
\begin{align*}
& \sum_{\mathscr{F}_{1}} \alpha_{\tau, s}\left(x^{e}+1\right)^{r} x^{f m(s+q)}+\alpha^{2 l\left(n^{*}\right)-n_{3}} \sum_{\mathscr{F}_{2}} \beta_{r, s}\left(x^{e}+1\right)^{\tau} x^{f m s}=0  \tag{3}\\
& \alpha^{2 l(n)-n_{3}} \sum_{\mathscr{F}_{1}} \alpha_{r, s}\left(x^{e}+1\right)^{r} x^{f m(s+q)}+\sum_{\mathscr{F}_{2}} \beta_{r, s}\left(x^{e}+1\right)^{r} x^{f m(s+d)}=0 . \tag{4}
\end{align*}
$$

Combining we obtain

$$
\begin{equation*}
\alpha^{2 l\left(n^{*}\right)-n_{3}} \sum_{\mathscr{F}_{2}} \beta_{r, s}\left(X^{i}+1\right)^{r} X^{s}-\alpha^{2 k(n)-n_{3}} \sum_{\mathscr{F}_{2}} \beta_{r, s}\left(X^{l}+1\right)^{r} X^{s+l}=0 \tag{5}
\end{equation*}
$$

where $x^{f m}=X$. But $\left(X^{d}+1\right)^{r} X^{s},\left(X^{d}+1\right)^{r} X^{s+d}$ have degrees $z_{1}-s$ and $z_{1}-s+d$. Clearly $\beta_{r, s}=0$ for all $(r, s) \in \mathscr{S}_{2}$. Similarly using (3), $\alpha_{r, s}=0$ for all $(r, s) \in \mathscr{S}_{2}$. We obtain ii) in an analogous manner, the crucial fact needed to obtain two equations being $k(n) \not \equiv l(n) \bmod f m$ since $0 \leqq l(n)<$ $k(n)<f m$.

A straightforward induction yields
Lemma 3.9. Let $\mathscr{S} \subseteq\{(\mu, \nu) \mid \mu$, $\nu$ are nonnegative integers $\}=\mathscr{F}$. Assume $(0,0) \in \mathscr{S}$ and either $(1,0)$ or $(0,1) \in \mathscr{S}$. Assume also
i) $(\mu, \nu),(\mu, \nu+1) \in \mathscr{S} \Rightarrow(\mu+1, \nu) \in \mathscr{S}$;
ii) $(\mu, \nu),(\mu+1, \nu) \in \mathscr{S} \Rightarrow(\mu, \nu+1) \in \mathscr{S}$;
iii) $(\mu, \nu) \in \mathscr{S} \Rightarrow(\mu+1, \nu+1) \in \mathscr{S}$.

Then $\mathscr{S}=\mathscr{T}$.
Theorem 3.10. $\mathfrak{M}(\mathscr{G}, \chi)=\oplus \gamma_{n} \mathbf{C}\left[f_{1}, f_{2}\right]$ where $\left\{\gamma_{n}\right\}=\left\{A_{n} \mid n \in \mathscr{I}_{1}\right\} \cup$ $\left\{B_{n} \mid n \in \mathscr{I}_{2}\right\} \cup\left\{C_{n} \mid n \in \mathscr{I}_{3}\right\}$.

Proof. As $A_{n}, B_{n}, C_{n} \in \mathfrak{M}(\mathscr{G}, \chi)$ we only need to show $\mathfrak{M}(\mathscr{G}, \chi) \subseteq \mathfrak{M}$ where $\mathfrak{M}=\oplus \gamma_{n} \mathbf{C}\left[f_{1}, f_{2}\right]$ by Lemma 3.8. Clearly it suffices to show by examining the action of $A_{1}, A_{2}, F$ on a polynomial in $M P(\mathscr{G}, \chi)$ the following:
i) $x^{l} y^{l} \in \mathfrak{M}(\mathscr{G}, \chi) \Rightarrow x^{l} y^{l} \in \mathfrak{M}^{2}$ and
ii) if $k \neq l, g_{k, l} \in \mathfrak{M}(\mathscr{G}, \chi) \Rightarrow g_{k, l} \in \mathfrak{P l}$.

For i), $l=f m q+l(w)$ by Lemmas 3.2 and 3.7 implying $x^{l} y^{l}=C_{w} f_{2}^{q} \in \mathfrak{M}$.
For ii) let $k=\mu^{*} e+k_{1}, l=\nu^{*} e+l_{1}$ with $0 \leqq k_{1}, l_{1}<e$. As

$$
g_{k, l}=\alpha^{2 l-n_{3}} \xi_{l, k}
$$

we may assume $l_{1} \leqq k_{1}$. Let

$$
\mathscr{S}=\left\{(\mu, \nu) \mid g_{\mu \epsilon+k_{1}, \nu \epsilon+l_{1}} \in \mathscr{M}\right\} .
$$

We are clearly finished if we satisfy the hypotheses of Lemma 3.9. We note that

$$
f_{1} g_{\mu e+k_{1}, \nu e+l_{1}}=g_{(\mu+1) e+k_{1}, \nu e+l_{1}}+g_{\mu e+k_{1},(\nu+1) e+l_{1}}
$$

using $\alpha^{2 e}=1$ implying i) and ii) of Lemma 3.9. Also

$$
f_{2}{ }^{d} g_{\mu e+k_{1}, \nu e+l_{1}}=g_{(\mu+1) e+k_{1},(\nu+1) e+l_{1}}
$$

giving iii) of Lemma 3.9.

By Lemma 3.6, if $l_{1}<k_{1},(0,0) \in \mathscr{S}$ and either $(0,1) \in \mathscr{S}$ or $(1,0) \in \mathscr{S}$. If $l_{1}=k_{1}$ and $n_{3} \equiv 2 l_{1} \bmod 2^{b+1}$, by Lemma 3.7, $k_{1}=l_{1}=f m q+l(w)$. As $g_{l_{1}, l_{1}}=2 x^{l_{1}} y^{l_{1}}=2 f_{2}{ }^{q} C_{w} \in \mathscr{M}$ using $1=\alpha^{2 l_{1}-n_{3}}$, we obtain $(0,0) \in \mathscr{S}$. Now as $g_{l_{1}+\varepsilon, l_{1}}=f_{1} x^{l_{1}} y^{l_{1}} \in \mathfrak{M}$,
$(1,0) \in \mathfrak{M}$. Finally if $l_{1}=k_{1}$ and $n_{3} \neq 2 l_{1} \bmod 2^{b+1}$, by Lemma $3.2, n_{3} \equiv 2 l_{1}$ $\bmod \mathscr{2}^{b}$, giving $\alpha^{2 l_{1}-n_{3}}=-1$. As $g_{l_{1}, l_{1}}=0 \in \mathfrak{M},(0,0) \in \mathscr{S}$. By Lemma 3.7, $k_{1}=l_{1}=f m q+l(v)$ which implies $g_{k 1, l_{1}+e}=\int_{2}^{q} C_{r} \in \mathfrak{M}$ and $(0,1) \in \mathscr{S}$.

In all cases Lemma 3.9 holds, completing the proof of the theorem.
Remark. The form for the Molien series in Theorem 3.10 is

$$
\varphi(\mathscr{G}, \chi)(\lambda)=\frac{\sum_{n \in \mathscr{F}_{1}} \lambda^{l(n)+k(n)}+\sum_{n \in \mathscr{g}_{2},} \lambda^{l(n)+k(n)+e}+\lambda^{2 l(u)}+\lambda^{2 l(k)+c}}{\left(1-\lambda^{e}\right)\left(1-\lambda^{2 / m}\right)} .
$$

4. Relative invariants of the primitive groups. In this section we describe the relative invariants of the groups of Lemmas $2.3-2.5$. Define the following polynomials:

$$
\begin{aligned}
& \varphi_{4}=x^{4}-2 \sqrt{3} i x^{2} y^{2}+y^{4} \\
& \varphi_{6}=x^{5} y-x y^{5} \\
& \varphi_{8}=x^{8}+14 x^{4} y^{4}+y^{8}=\varphi_{4} \bar{\varphi}_{4} \\
& \varphi_{12}=x^{12}-33\left(x^{8} y^{4}+x^{4} y^{8}\right)+y^{12} \\
& \left.\psi_{12}=2\right)^{5} \sqrt{5} \varphi_{6}{ }^{2}+\overline{5} \varphi_{12} \\
& \psi_{20}=3 \varphi_{8} \varphi_{12}-38 \sqrt{\overline{5}} \varphi_{6}{ }^{2} \varphi_{8} \\
& \psi_{30}=6696 \varphi_{6}{ }^{5}+225 \varphi_{6} \varphi_{8}^{3}-580 \sqrt{5} \varphi_{6}{ }^{3} \varphi_{12} .
\end{aligned}
$$

Also define $\sim$ as the involution in the Galois group of $\mathbf{Q}(i, \sqrt{5}) / \mathbf{Q}(i)$ sending $\sqrt{5} \rightarrow-\sqrt{5}$ and - is complex conjugation.

We use the notation of Lemmas 2.3, 2.4, 2.5. Let $\mathscr{H}_{j}=\left\langle Q, \omega^{j} A\right\rangle$ where $\omega=e^{2 \pi i / 3}$. The characters of $\mathscr{H}_{j}$ can be determined by $\chi_{i, j}\left(\omega^{j} A\right)=\omega^{i}$ where $i=0,1,2$. Let $\mathscr{K}=\langle Q, A, B\rangle$. The characters of $\mathscr{K}$ are determined by $\chi_{i}(B)=(-1)^{i}$ for $i=0,1$. Let $\mathscr{L}_{j}=\left\langle Q, A, C_{j}\right\rangle$ for $j=1$, 2. The characters of $\mathscr{L}_{j}$ are trivial. The groups $\mathscr{H}$, $\mathscr{K}, \mathscr{L}_{j}$ are respectively isomorphic to $\mathrm{SL}_{2}(3), \mathrm{GL}_{2}(3)$ and $\mathrm{SL}_{2}(5)$. The following lemma describes the $\mathfrak{M}(\mathscr{G}, \chi)$ for $\mathscr{G} \in\left\{\mathscr{H}_{j}, \mathscr{K}, \mathscr{L}_{j}\right\}$.

Lemma 4.1. The following table is valid:
Proof. This is a straightforward application of Theorem 1.1. The polynomials $\varphi_{4}, \varphi_{6}, \varphi_{8}, \varphi_{12}, \psi_{12}, \psi_{20}, \psi_{30}$ have also been obtained by other authors. For instance they are found in Sections 36,37 of DuVal [4] where they were denoted by $\bar{P}, S, Q, R, \sqrt{5} I, D, T$ respectively. (DuVal's study first considered the groups projectively (Sections 36,37 ) and secondly considered the absolute

| $\mathscr{G}$ | $\chi$ | $92(\mathscr{G}, \chi)$ | $\varphi(\mathscr{G}, \chi)$ |
| :---: | :---: | :---: | :---: |
| $\mathscr{H}_{0}$ | $\chi_{0,0}$ | $\mathbf{C}\left[\varphi_{6}, \varphi_{8}\right] \oplus \varphi_{12} \mathbf{C}\left[\varphi_{6}, \varphi_{8}\right]$ | $\frac{1+\lambda^{12}}{\left(1-\lambda^{6}\right)\left(1-\lambda^{8}\right)}$ |
| $\mathscr{H}_{0}$ | $\chi_{1,0}$ | $\bar{\varphi}_{4} \mathbf{C}\left[\varphi_{6}, \varphi_{8} \bar{i} \oplus \varphi_{4}{ }^{2} \mathbf{C}\left[\varphi_{6}, \varphi_{8}\right]\right.$ | \} $\lambda^{4}+\lambda^{8}$ |
| $\mathscr{H}_{0}$ | $\chi_{2,0}$ | $\varphi_{4} \mathrm{C}\left[\varphi_{6}, \varphi_{8}\right] \oplus \bar{\varphi}_{4}{ }^{2} \mathrm{C}\left[\varphi_{6}, \varphi_{8}\right]$ | $\int\left(1-\lambda^{6}\right)\left(1-\lambda^{8}\right)$ |
| $\mathscr{H}_{1}$ | $\chi_{0,1}$ | $\mathbf{C}\left[\varphi_{4}, \varphi_{6}\right]$ | 1 |
| $\mathscr{H}_{2}$ | $\chi_{0,2}$ | $\mathbf{C}\left[\bar{\varphi}_{4}, \varphi_{6}\right]$ | $\int\left(1-\lambda^{1}\right)\left(1-\lambda^{6}\right)$ |
| $\mathscr{H}_{1}$ | $\chi_{1,1}$ | $\bar{\varphi}_{4}^{2} \mathbf{C}\left[\varphi_{4}, \varphi_{6}\right]$ | $\lambda^{8}$ |
| $\mathscr{H}_{2}$ | $\chi_{2,2}$ | $\varphi_{4}^{2} \mathbf{C}\left[\bar{\varphi}_{4}, \varphi_{6}\right]$ | $\int\left(1-\lambda^{4}\right)\left(1-\lambda^{6}\right)$ |
| $\mathscr{H}_{1}$ | $\chi_{2,1}$ | $\bar{\varphi}_{4} \mathbf{C}\left[\varphi_{4}, \varphi_{6}\right]$ | $\lambda^{4}$ |
| $\mathscr{H}_{2}$ | $\chi_{1,2}$ | $\varphi_{4} \mathbf{C}\left[\bar{\varphi}_{4}, \varphi_{6}\right]$ | $\int\left(1-\lambda^{4}\right)\left(1-\lambda^{6}\right)$ |
| $\mathscr{K}$ | $\chi{ }_{0}$ | $\mathrm{C}\left[\varphi_{6}, \varphi_{8}\right]$ | $\frac{1}{\left(1-\lambda^{6}\right)\left(1-\lambda^{8}\right)}$ |
| $\mathscr{K}$ | $\chi_{1}$ | $\varphi_{12} \mathrm{C}\left[\varphi_{6}, \varphi_{8}\right]$ | $\frac{\lambda^{12}}{\left(1-\lambda^{6}\right)\left(1-\lambda^{8}\right)}$ |
| $\mathscr{L}_{1}$ | 1 | $\mathbf{C}\left[\psi_{12}, \psi_{20}\right] \oplus \psi_{30} \mathbf{C}\left[\psi_{12}, \psi_{20}\right]$ | ) $1+\lambda^{30}$ |
| $\mathscr{L}_{2}$ | 1 | $\mathbf{C}\left[\tilde{\psi}_{12}, \tilde{\psi}_{2 n}\right] \oplus \tilde{\psi}_{30} \mathbf{C}\left[\tilde{\psi}_{12}, \psi_{20}\right]$ | $\int\left(1-\lambda^{12}\right)\left(1-\lambda^{2 i}\right)$ |

invariants (Section 39). The present table is thus more extensive because it separates out the relative invariants.)

We now state a theorem giving the invariants of $\mathscr{G}_{1}$ of Lemma 2.3.
Theorem 4.2. Using the notation of Lemma 2.3, let $m_{1}=d / \operatorname{gcd}(6, d)$, $m_{2}=d / \operatorname{gcd}(8, d)$, and $\mathscr{S}=\left\{(j, k) \mid 0 \leqq j<m_{1}, 0 \leqq k<m_{2}\right\}$. Let

$$
\mathscr{I}_{t}=\{(j, k) \in \mathscr{S} \mid 6 j+8 k+4 t \equiv n \bmod d\} \text { for } t=0,1,2,3 .
$$

Define $\left\{\gamma_{i}\right\}$ according to the following

| $\chi(A)$ | $\left\{\gamma_{i}\right\}$ |
| :---: | :---: |
| 1 | $\left\{\varphi_{6}{ }^{j} \varphi_{8}{ }^{k} \mid(j, k) \in \mathscr{I}_{0}\right\} \cup\left\{\varphi_{6}{ }^{j} \varphi_{8}{ }^{k} \varphi_{10} \mid(j, k) \in \mathscr{I}_{3}\right\}$ |
| $\omega$ | $\left\{\varphi_{6}{ }^{j} \varphi_{8}{ }^{k} \bar{\varphi}_{4} \mid(j, k) \in \mathscr{I}_{1}\right\} \cup\left\{\varphi_{6}{ }^{j} \varphi_{8}{ }^{k} \varphi_{4}{ }^{2} \mid(j, k) \in \mathscr{I}_{2}\right\}$ |
| $\bar{\omega}$ | $\left\{\varphi_{6}{ }^{j} \varphi_{8}{ }^{k} \varphi_{4} \mid(j, k) \in \mathscr{I}_{1}\right\} \cup\left\{\varphi_{6}{ }^{j} \varphi_{8}{ }^{k} \bar{\varphi}_{4}{ }^{2} \mid(j, k) \in \mathscr{I}_{2}\right\}$ |

Then

$$
\begin{aligned}
& \mathfrak{M}\left(\mathscr{G}_{1}, \chi\right)=\oplus \gamma_{i} \mathbf{C}\left[\varphi_{6}^{m_{1}}, \varphi_{8}^{m_{2}}\right] \text { and } \\
& \varphi\left(\mathscr{G}_{1}, \chi\right)=\frac{1}{\left(1-\lambda^{6 m_{1}}\right)\left(1-\lambda^{8 m_{2}}\right)} \sum \lambda^{\alpha(i)}
\end{aligned}
$$

where $d(i)$ is the degree of $\gamma_{i}$.

Proof. By Lemma 4.1, $\sum \gamma_{i} \mathrm{C}\left[\varphi_{6}{ }^{m_{1}}, \varphi_{8}{ }^{m_{2}}\right]$ is direct and $\varphi_{6}{ }^{m_{1}}, \varphi_{8}{ }^{m_{2}}$ are algebraically independent. We examine $\chi(A)=1$, the others being similar. By examining $\mathfrak{M}\left(\mathscr{H}_{0}, \chi_{0.0}\right)$ of Lemma 4.1 , a homogeneous $f=f_{1}+f_{2}$ is in $\mathfrak{M}\left(\mathscr{G}_{1}, \chi\right)$ where $f_{1}=\varphi_{6}{ }^{j} \varphi_{8}{ }^{k}$ and $f_{2}=\varphi_{12} \varphi_{6}{ }^{r} \varphi_{8}{ }^{s}$ if and only if $\left(\begin{array}{ll}\mu & 0 \\ 0 & \mu\end{array}\right) \circ f_{i}=\mu^{n} f_{i}$ or equivalently $6 j+8 k \equiv n \bmod d$ and $6 r+8 s+12 \equiv n \bmod d$. Clearly the result holds.

We now examine $\mathscr{G}_{2}$ of Lemma 2.3.
Theorem 4.3. Using the notation of Lemma 2.3 , let $b=3^{r}$ if $r>1$ and $b=1$ if $r=1$. Let $c=3^{r-1}$. Define $m_{1}=d b / \operatorname{gcd}(4, d b), m_{2}=d b / \operatorname{gcd}(6, d b)$, and $\mathscr{S}=\left\{(j, k) \mid 0 \leqq j<m_{1}, 0 \leqq k<m_{2}\right\}$. For $t=0,1,2$ define

$$
\mathscr{I}_{t}=\left\{(j, k) \in \mathscr{S} \mid m-(2 c+1)(4 j+6 k+4 t) \equiv 2 l c \bmod 3^{r}, n \equiv 4 j\right.
$$

$$
+6 k+4 t \bmod d\}
$$

## Define

$$
\left\{\gamma_{i}\right\}=\left\{\varphi_{t}^{j} \varphi_{6}^{k} \mid(j, k) \in \mathscr{I}_{0}\right\} \cup\left\{\varphi_{1}^{j} \varphi_{6}^{k} \bar{\varphi}_{k} \mid(j, k) \in \mathscr{\mathscr { I }}_{1}\right\}
$$

$$
\cup\left\{\varphi_{4}^{j} \varphi_{6}{ }^{k} \bar{\varphi}_{4}^{2} \mid(j, k) \in \mathscr{I}_{2}\right\} .
$$

If $\alpha^{c}=\omega$,

$$
\mathfrak{M}\left(\mathscr{G}_{2}, \chi\right)=\oplus \gamma_{i} \mathbf{C}\left[\varphi_{1}^{m_{1}}, \varphi_{6}^{m_{2}}\right]
$$

and if $\alpha^{c}=\bar{\omega}$,

$$
\mathfrak{M}\left(\mathscr{G}_{2}, \chi\right)=\oplus \bar{\gamma}_{i} \mathbf{C}\left[\bar{\varphi}_{\cdot} .^{m 1}, \varphi_{6}{ }^{m 2}\right] .
$$

In either case

$$
\varphi\left(\mathscr{G}_{2}, \chi\right)=\frac{1}{\left(1-\lambda^{4 m_{1}}\right)\left(1-\lambda^{6 m_{2}}\right)} \sum \lambda^{d(i)}
$$

where $d(i)$ is the degree of $\gamma_{i}$.
Proof. We do the case $\alpha^{c}=\omega$. The sum for $\mathfrak{M l}\left(\mathscr{G}_{2}, \chi\right)$ is direct if we show $\mathbf{C}\left[\varphi_{4}, \varphi_{6}\right]+\bar{\varphi}_{4} \mathbf{C}\left[\varphi_{4}, \varphi_{6}\right]+\bar{\varphi}_{4}^{2} \mathbf{C}\left[\varphi_{4}, \varphi_{6}\right]$ is direct. Let $p_{i} \in \bar{\varphi}_{1}^{i} \mathbf{C}\left[\varphi_{1}, \varphi_{6}\right]$ where $p_{0}+p_{1}+p_{2}=0$. Applying $\omega A$ and $(\omega A)^{2}$ we obtain $p_{0}+\omega^{2} p_{1}+\omega p_{2}=0$ and $p_{0}+\omega p_{1}+\omega^{2} p_{2}=0$ by Lemma 4.1 , yielding $p_{i}=0$ for $i=0,1,2$.

By Lemma 4.1, $\varphi_{4}{ }^{m_{1}}, \varphi_{6}{ }^{m_{2}}$ are algebraically independent absolute invariants of $\mathscr{G}_{2}$. If $p$ is a homogeneous polynomial of degree $z,(\alpha A) \circ p=\alpha^{m} p$ if and only if $(\omega A) \circ p=\alpha^{m-(2 c+1) z} p$ and $\left(\begin{array}{cc}\mu & 0 \\ 0 & \mu\end{array}\right) \circ p=\mu^{n} p$ if and only if $z \equiv n$ $\bmod d$. So $p \in \mathfrak{M}\left(\mathscr{G}_{2}, \chi\right)$ if and only if $p \in \mathbf{C}\left[\varphi_{4}, \varphi_{6}\right], \bar{\varphi}_{4} \mathbf{C}\left[\varphi_{4}, \varphi_{6}\right]$, or $\bar{\varphi}_{4}{ }^{2} \mathbf{C}_{-}$ $\left[\varphi_{4}, \varphi_{6}\right]$ where $z=4 j+6 k+4 t$ with $t=0,1,2$ respectively and $m-(2 c+1) z$ $\equiv 0,2 c, 4 c \bmod 3^{r}$ respectively and $z \equiv n \bmod d$. The result is now clear.

The next theorem gives corresponding results for the groups of Lemma 2.4; its proof is similar to the previous ones.

Theorem 4.4. Using the notation of Lemma 2.4, if $\mathscr{G}=\mathscr{G}_{1}$ let $b=1$ and $m=1$, and if $\mathscr{G}=\mathscr{G}_{2}$, let $b=2^{r}$. Define

$$
\begin{array}{r}
m_{1}=d b / \operatorname{gcd}(6, d b), m_{2}=d b / \operatorname{gcd}(8, d b), a n d \mathscr{S}=\left\{(j, k) \mid 0 \leqq j<m_{1}\right. \\
\left.0 \leqq k<m_{2}\right\}
\end{array}
$$

Let

$$
\begin{aligned}
& \mathscr{I}_{1}=\{(j, k) \in \mathscr{S} \mid m-(6 j+8 k+12 t) \equiv 0 \bmod b \text { and } \\
&n \equiv 6 j+8 k+12 t \bmod d\} \text { for } t=0,1 .
\end{aligned}
$$

Define $\left\{\gamma_{i}\right\}$ according to the following:

| $\mathscr{G}$ | $\gamma_{i}$ |
| :---: | :--- |
| $\mathscr{G}_{1}$ | if $\chi(B)=1 \quad\left\{\varphi_{6}{ }^{j} \varphi_{8}{ }^{k} \mid(j, k) \in \mathscr{I}_{0}\right\}$ |
| $\mathscr{G}_{1}$ | if $\chi(B)=-1 \quad\left\{\varphi_{6}{ }^{j} \varphi_{8}{ }^{k} \varphi_{12} \mid(j, k) \in \mathscr{I}_{1}\right\}$ |
| $\mathscr{G}_{2}$ | $\left\{\varphi_{6}{ }^{j} \varphi_{8}{ }^{k} \mid(j, k) \in \mathscr{I}_{0}\right\} \cup\left\{\varphi_{6}{ }^{j} \varphi_{8}{ }^{k} \varphi_{12} \mid(j, k) \in \mathscr{I}_{1}\right\}$ |

Then

$$
\begin{array}{r}
\mathfrak{M}(\mathscr{G}, \chi)=\oplus \gamma_{i} \mathbf{C}\left[\varphi_{6}{ }^{m_{1}}, \varphi_{8}^{m_{2}}\right] \quad \text { and } \quad \varphi(\mathscr{G}, \chi)=\frac{1}{\left(1-\lambda^{6 m_{1}}\right)\left(1-\lambda^{8 m_{2}}\right)} \\
\times \sum \lambda^{d(i)}
\end{array}
$$

where $d(i)$ is the degree of $\gamma_{i}$.
The final result is for the groups of Lemma 2.5.
Theorem 4.5. Using the notation of Lemma 2.5, let

$$
\begin{array}{r}
m_{1}=d / \operatorname{gcd}(12, d), m_{2}=d / \operatorname{gcd}(20, d), \text { and } \mathscr{S}=\left\{(j, k) \mid 0 \leqq j<m_{1}\right. \\
\left.0 \leqq k<m_{2}\right\}
\end{array}
$$

Define

$$
\mathscr{I}_{t}=\{(j, k) \in \mathscr{S} \mid 12 j+20 k+30 t \equiv n \bmod d\} \text { for } t=0,1
$$

Let

$$
\left\{\gamma_{i}\right\}=\left\{\psi_{12}{ }^{j} \psi_{20}{ }^{k} \mid(j, k) \in \mathscr{I}_{0}\right\} \cup\left\{\psi_{12}{ }^{j} \psi_{20}{ }^{k} \psi_{30} \mid(j, k) \in \mathscr{I}_{1}\right\} .
$$

Then

$$
\mathfrak{M}\left(\mathscr{G}_{1}, \chi\right)=\oplus \gamma_{i} \mathbf{C}\left[\psi_{12} 2^{m_{1}}, \psi_{20}{ }^{m_{2}}\right] \text { and } \mathfrak{M}\left(\mathscr{G}_{2}, \chi\right)=\oplus \tilde{\gamma}_{i} \mathbf{C}\left[\tilde{\psi}_{12}^{m_{1}}, \tilde{\psi}_{20}^{m_{2}}\right] .
$$

Also

$$
\varphi\left(\mathscr{G}_{j}, \chi\right)=\frac{1}{\left(1-\lambda^{12 m_{1}}\right)\left(1-\lambda^{20 m_{2}}\right)} \sum \lambda^{d(i)}
$$

where $d(i)$ is the degree of $\gamma_{i}$.

We remark that $\mathfrak{M}(\mathscr{G}, 1)$ is a ring and hence $\gamma_{i} \gamma_{j} \in \mathfrak{M}(\mathscr{G}, 1)$ when the $\gamma_{i}$ 's are as in the last four theorems when $\chi \equiv 1$. Expressing $\gamma_{i} \gamma_{j}$ in the natural way in $\mathfrak{M}(\mathscr{G}, 1)$ gives a syzygy. All syzygies in this section can be obtained from the following:

$$
\begin{aligned}
& \bar{\varphi}_{4}^{2} \bar{\varphi}_{4}=\varphi_{4}^{3}+12 \sqrt{3} i \varphi_{6}{ }^{2} \\
& \left.\left(\bar{\varphi}_{4}\right)^{2}\right)^{2}=\varphi_{4}^{3} \bar{\varphi}_{4}+12 \sqrt{3} i \varphi_{6}{ }^{2} \bar{\varphi}_{1} \\
& \varphi_{12}{ }^{2}=\varphi_{8}^{3}-108 \varphi_{6}^{4} \\
& 500 \psi_{30^{2}}=27 \sqrt{5} \psi_{12}{ }^{5}-3125 \sqrt{5} \psi_{20^{3}}{ }^{3} .
\end{aligned}
$$

These syzygies can also be found in [4, Sections 36, 37]. The present author has taken great care to validate the results of this section by hand and with computer.

## References

1. H. F. Blichfeldt, Finite collineation groups (University of Chicago Press, Chicago, 1917).
2. W. Burnside, Theory of groups of finite order (Dover, New York, 1955).
3. H. S. M. Coxeter, Regular complex polytopes (Cambridge Eniversity Press, 1974).
4. P. Du\al, Homographies, quaternions and rotations (Oxford: Oxford Vniversity Press, 1964).
5. A. M. Gleason, Height polynomials of self-dual codes and the Macll illiams identities, in: Actes Congrès Internat. Math. 1970, V"ol. 3, Gauthiers-Villars, Paris (1971), 211-215.
6. II. C. Huffman and N.J. A. Sloane, Most primitĩe groups hace messy ineariants, to appear in Adv. in Math.
7. F. Klein, Lectures on the icosahedron and the soluilon of equations of the fifth degree (I)over, New York, 1956).
8. F. J. Mac\Villiams, C. I. Mallows, and N. J. A. Sloane, Generalizations of Gleason's theorem on weight enumerators of self-dual codes, IEEE Trans. Information Theory, IT-18 (1972), 794-805.
9. C. L. Mallows and N. J. A. Sloane, On the intariants of a linear group of order 336, Proc. Camb. Phil. Soc. $7 / 4$ (1973), 435-440.
10. G. A. Miller, H. F. Blichfeldt, and L. E. Dickson, Theory and applications of finite groups (Dover, New York, 1961).
11. T. Molien, Über dic Iñarianten der lineare Substitutionsgruppe, Sitzungsber. König. Preuss. Akad. Wiss. (1897), 1152-1156.
12. O. Riemenschneider, Die Incarianten der endlichen Untergruppen ion GI, (2, C), Math Zeit. 153 (1977), 37-50.
13. G. C. Shephard, and J. A. Todk, Finite unitary reflection groups, Can. J. Math. (; (1954), 274-304.
14. ㄷ. J. A. Sloane, Error-correcting codes and invariant theory: new applications of a nineteenthcentury technique, Amer. Math. Monthly 84 (1977), 82-107.
15. II - ight enumerators of codes, in Combinatorics (Proceedings of the NTO Advanced Study Institute, July, 1974), 115-142.
16. R. Stanley, Relative incariants of finite groups generated by pseudoreflections, J. Algebra 49 (1977), 134-148.

Loyola University,
Chicago, Illinois

