Article: 1698

Moro", Bari, Italy

Topic: EPV31 - e-Poster 31: Schizophrenia

A Role for D-aspartate Oxidase in Schizophrenia and in Schizophrenia-related Symptoms Induced by Phencyclidine in Mice.

M. Squillace¹, F. Errico¹, V. D'Argenio², F. Sforazzini³, F. lasevoli⁴, G. Guerri², F. Napolitano¹, T.

Angrisano⁵, A. Di Maio¹, D. Vitucci¹, A. Bifone³, L. Chiariotti⁶, A. Bertolino⁷, A. De Bartolomeis⁴, F.

Salvatore², A. Gozzi³, A. Usiello¹

¹Laboratory of Behavioural Neuroscience, Ceinge Biotecnologie Avanzate, Naples, Italy; ²Laboratory of Next Generation Sequencing, Ceinge Biotecnologie Avanzate, Naples, Italy; ³Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy; ⁴Laboratory of Molecular and Translational Psychiatry Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy; ⁵Department of Biology, University of Naples "Federico II", Naples, Italy; ⁶Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy; ⁷Group of Psychiatric Neuroscience Department of Neuroscience Basic Sciences and Sense Organs, University of Bari "Aldo

Introduction: D-aspartate (D-Asp) is an atypical amino acid that binds to and activates NMDARs. D-Asp occurs abundantly in the embryonic brain of mammals and rapidly decreases after birth, due to the activity of the enzyme D-Aspartate Oxidase (DDO). The agonistic activity of D-Asp on NMDARs and its neurodevelopmental occurrence make this D-amino acid a potential mediator for NMDAR-related alterations observed in schizophrenia. Consistently, substantial reduction of D-Asp was observed in *post-mortem* schizophrenia brains.

Aims: We evaluated the potential contribution of D-Asp as neurodevelopmental modulator of brain circuits and behaviors relevant to schizophrenia.

Objectives: We analyzed *DDO* mRNA expression in the *post-mortem* prefrontal cortex of schizophrenic patients. Moreover, we treated knockout mice for *Ddo* gene (*Ddo*-/-) with the NMDAR antagonist phencyclidine to evaluate their schizophrenia-relevant behaviors and circuits. Finally, we assessed cortico-hippocampal connectivity of these mice.

Methods: *DDO* mRNA detection was performed by quantitative PCR. Phencyclidine-induced schizophrenia-like behaviours were assessed through motor activity and prepulse inhibition paradigms. Resting-state and pharmacological fMRI were used to evaluate functional circuits and connectivity.

Results: *DDO* mRNA expression is increased in frontal samples of schizophrenic patients. In mice, the absence of *Ddo* gene produces a significant reduction in phencyclidine-induced motor hyper-activity and prepulse inhibition deficit. Furthermore, increased levels of D-Asp in *Ddo*-/- animals significantly inhibit functional circuits activated by phencyclidine, and affect the development of cortico-hippocampal connectivity networks potentially involved in schizophrenia.

Conclusions: Our data suggest that D-Asp, through the regulation exerted by DDO, may have a role in the pathophysiology of schizophrenia.