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We consider some recent regularity results for the Monge–Ampère equation arising in
the optimal transportation problem. The Monge–Ampère equation under consideration
has the following type

det{D2u(x)− A(x, Du)} = f (x) in �, (1)

where �⊂ Rn is a bounded domain and A = {Ai j } is an n × n symmetric matrix
defined in �× Rn .

In optimal transportation, u is the potential function, and the matrix A and the right-
hand side f are given by

A(x, Du)= D2
x c(x, Tu(x)), (2)

f = |det{D2
xyc}|

ρ

ρ∗ ◦ Tu
, (3)

where c(·, ·) is the cost function, Tu : x→ y is the optimal mapping determined by
Du(x)= Dx c(x, y), and ρ and ρ∗ are mass distributions in the initial domain � and
the target domain �∗, respectively.

We assume that the cost function c ∈ C∞(Rn
× Rn) and satisfies the following

conditions.
(A1) For any x, p ∈ Rn , there is a unique y ∈ Rn such that Dx c(x, y)= p; and for

any y, q ∈ Rn , there is a unique x ∈ Rn such that Dyc(x, y)= q .
(A2) For any (x, y) ∈ Rn

× Rn , det{D2
xyc(x, y)} 6= 0.

(A3) For any x, p ∈ Rn , and any ξ, η ∈ Rn with ξ ⊥ η,

Ai j,kl(x, p)ξiξ jηkηl ≥ c0|ξ |
2
|η|2, (4)

for some constant c0 > 0, where Ai j,kl = D2
pk pl

Ai j and A is given by (2).
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Under the above conditions on the cost function, the optimal mapping Tu is uniquely
determined by the corresponding potential function u. Therefore, in order to study the
regularity of optimal mapping it suffices to study the regularity of potential functions,
that is, regularity of elliptic solutions of (1).

In the special case when the cost function is the Euclidean distance squared,
equation (1) becomes the standard Monge–Ampère equation, and the various
regularity results have been obtained by Caffarelli [1, 2], Delanoë [5], Urbas [12]
and many other mathematicians. In particular, the interior C1,α, C2,α, W 2,p estimates
are due to Caffarelli [3]. The regularity of optimal transportation with general
costs is an important open problem in the area, as pointed out by Caffarelli [4] and
Villani [13]. Our goal is to establish the corresponding regularity results for general
cost functions satisfying conditions (A1)–(A3), assuming the mass distributions are
merely measurable or Hölder continuous, [7–9]. When the mass distributions are
smooth, the C3 smooth regularity has been obtained in [11].

The first result is the C1,α regularity for potentials, [7]. A similar estimate was
previously obtained by Loeper [10]. We give a completely different proof and our
exponent is optimal when the inhomogeneous term f ∈ L∞.

THEOREM 1. Let u be a potential function in the optimal transportation problem.
Assume that the cost function c satisfies conditions (A1)–(A3), �∗ is c-convex with
respect to �, and f ≥ 0, f ∈ L p(�) for some p ∈ ( 1

2 (n + 1),+∞]. Then u ∈
C1,α(�), where α = β(n + 1)/(2n2

+ β(n − 1)) and β = 1− (n + 1)/2p.
In particular, when p =∞, our Hölder exponent α = 1/(2n − 1) is optimal.

Here and below, we say that the target domain �∗ is c-convex with respect to � if
Dx c(x, �∗) is convex for any x ∈�.

The second result gives the Hölder and more general continuity estimates for
second derivatives of solutions u, when the inhomogeneous term f is Hölder or Dini
continuous, together with corresponding regularity results for potentials, [9].

THEOREM 2. Assume that the cost function c satisfies (A1)–(A3) and f satisfies
C1 ≤ f ≤ C2 for some positive constants C1, C2 > 0. Let u ∈ C2(�) be the potential
function satisfying (1). Then for all x, y ∈�δ , we have the estimate

|D2u(x)− D2u(y)| ≤ C

[
d +

∫ d

0

ω f (r)

r
+ d

∫ 1

d

ω f (r)

r2

]
, (5)

where d = |x − y|, �δ = {x ∈� : dist(x, ∂�) > δ}, ω f (r)= sup{| f (x)− f (y)| :
|x − y|< r} is the oscillation of f , and the constant C > 0 depends only on
n, δ, C1, C2, A, sup |Du|, and the modulus of continuity of Du.

It follows that:

(i) if f is Dini continuous, that is,
∫ 1

0 (ω f (r)/r) dr <∞, then the modulus of
continuity of D2u can be estimated by (5) above;

https://doi.org/10.1017/S0004972710001930 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972710001930


[3] Regularity of Monge–Ampère equations in optimal transportation 175

(ii) if f ∈ Cα(�) for some α ∈ (0, 1), then

‖u‖C2,α(�δ)
≤ C

[
1+
‖ f ‖Cα(�)
α(1− α)

]
; (6)

(iii) if f ∈ C0,1(�), then

|D2u(x)− D2u(y)| ≤ Cd[1+ ‖ f ‖C0,1 |log d|] ∀x, y ∈�δ. (7)

We remark that for standard Monge–Ampère equations, these estimates were
obtained by Caffarelli for Hölder continuous f [1] and by Wang for Dini continuous
f [14]. In particular, the estimate (5) for standard Monge–Ampère equations
was obtained by Jian and Wang [6], and previously by Wang for uniform elliptic
equations [15].

The third result is the following W 2,p estimate, which is obtained by making a more
detailed study of local geometry of potential and cost functions [8].

THEOREM 3. Assume that the cost function c satisfies (A1)–(A3), f is continuous,
0< C1 ≤ f ≤ C2, and�∗ is c-convex with respect to�. Let u be the potential function
satisfying (1). Then D2u ∈ L p(�′) for any p ≥ 1, �′ b�, and we have the estimate

‖u‖W 2,p(�′) ≤ C,

where C depends on n, p, C1, C2, �, �
′, �∗, and the modulus of continuity of f .

In the proof of Theorem 3, we show that in a proper normalization process, the cost
function is uniformly smooth and converges locally smoothly to the linear function
x · y, and the potential function converges to a quadratic function. As an application,
we also obtain the following sharp C1,α estimate for the potentials.

COROLLARY 4. Let u be the potential function satisfying (1). Suppose that the cost
function c satisfies (A1)–(A3) and �∗ is c-convex with respect to �. Then if

| f − 1| ≤ ε, (8)

we have u ∈ C1+α
loc (�) for some α ∈ (1− C1ε, 1], and for all �′ b�,

‖u‖C1+α(�′) ≤ C,

where the constants C, C1 > 0 depend only on ε, n, and C depends also on
dist(�′, ∂�).

Note that in Corollary 4 we do not assume the continuity of f and we have the
linear relation

α ≥ 1− C1ε.

Moreover, our proof of Theorem 3 and Corollary 4 also implies a related result. That
is, for all p <∞, there exists ε = ε(p) such that if f satisfies (8), then u ∈W 2,p

loc (�).
See [8] for more details.
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