
J. Appl. Prob. 48, 911–924 (2011)
Printed in England

© Applied Probability Trust 2011

SUMMARY STATISTICS FOR ENDPOINT-CONDITIONED
CONTINUOUS-TIME MARKOV CHAINS

ASGER HOBOLTH ∗ and

JENS LEDET JENSEN,∗∗ Aarhus University

Abstract

Continuous-time Markov chains are a widely used modelling tool. Applications include
DNA sequence evolution, ion channel gating behaviour, and mathematical finance. We
consider the problem of calculating properties of summary statistics (e.g. mean time
spent in a state, mean number of jumps between two states, and the distribution of the
total number of jumps) for discretely observed continuous-time Markov chains. Three
alternative methods for calculating properties of summary statistics are described and the
pros and cons of the methods are discussed. The methods are based on (i) an eigenvalue
decomposition of the rate matrix, (ii) the uniformization method, and (iii) integrals of
matrix exponentials. In particular, we develop a framework that allows for analyses of
rather general summary statistics using the uniformization method.
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1. Motivation and background

We review and extend three ways of calculating conditional properties of summary statistics
of a continuous-time Markov chain (CTMC). The conditioning is with respect to the starting
point x(0) and the ending point x(T ) of a process x(t) considered in the interval 0 ≤ t ≤ T .
Typical summary statistics are either the timeDα spent in a state α or the number of transitions
Nαβ from state α to state β. Since, generally, for a statistic H , we have

E[H | x(0) = a, x(T ) = b] = E[H1(x(T ) = b) | x(0) = a]
P(x(T ) = b | x(0) = a)

,

we formulate our results through terms of the form E[H1(x(T ) = b) | x(0) = a]. The first
approach to calculating the conditional properties is through an eigenvalue decomposition of
the rate matrix of the process, and will only be mentioned briefly (Section 2). The second
approach (Section 3), based on the uniformization method, will be treated in more detail, and in
particular we derive new formulae for various covariance terms. The uniformization method is
the most general of the three methods as it allows for calculation of moments and distributions
of rather general summary statistics. The third approach (Section 4) seems to be less known and
is based on Van Loan’s (1978) method of calculating integrals involving the matrix exponential.
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912 A. HOBOLTH AND J. L. JENSEN

In this introductory section we describe a few applications where conditional properties of
summary statistics are needed. First, we review the very important problem of estimating the
transition rates of a CTMC from observations at a finite set of time points using the expectation-
maximization (EM) algorithm (Subsection 1.1). We identify five endpoint-conditioned mean
values needed in the EM algorithm. Second, we consider summary statistics arising from the
use of CTMCs in molecular biology (Subsection 1.2).

1.1. Summary statistics needed in the EM algorithm

We consider a CTMC x(t) with states {1, 2, . . . , m} defined by a rate matrix Q = (qij ),
where qii = − ∑

j �=i qij . When the process is observed at discrete time points 0 = s0 <

s1 < s2 < · · · < sk = τ only, maximization of the likelihood function is often done via the
EM algorithm. Let y = (x(s0), x(s1), . . . , x(sk)) be the actual observations. As we describe
below, the expectation step of the algorithm gives rise to endpoint-conditioned mean values.
Furthermore, for finding the asymptotic variance of the maximum likelihood estimates, we
need endpoint-conditioned second-order moments.

The full log-likelihood function �(Q) based on continuous observations in the interval 0 ≤
t ≤ τ is given by (see, e.g. Guttorp (1995, Chapter 3.7))

�(Q; {x(t) : 0 ≤ t ≤ τ }) = −
m∑
α=1

Dα(0, τ )qαα +
∑
α �=β

Nαβ(0, τ ) log qαβ, (1)

whereDα(0, τ ) is the time spent in state α andNαβ(0, τ ) is the number of jumps from state α to
state β. The EM algorithm (see Dempster et al. (1977)) is an iterative procedure consisting of
an expectation step (E-step) and a maximization step (M-step). In the E-step of the algorithm
we calculate G(Q;Q0) = EQ0 [�(Q) | y], and in the M-step a new parameter value Q1 is
obtained as the value that maximizesG(Q;Q0). The algorithm converges to a local maximum
of the data likelihood �(Q; y). The simple structure of the full log likelihood (1) implies that
the M-step is easy.

LetA(0, τ ) be eitherDα(0, τ ) orNαβ(0, τ ). In the E-step we must calculate E[A(0, τ ) | y].
Since A is an additive statistic, A(0, τ ) = ∑k

i=1A(si−1, si), and because of the Markov prop-
erty, we have

E[A(0, τ ) | y] =
k∑
i=1

E[A(si−1, si) | x(si−1), x(si)].

Thus, the EM algorithm requires the calculation of endpoint-conditioned mean values.
For calculating the asymptotic variance of the maximum likelihood estimates, we also need

second-order moments of the form E[A(0, τ )Ã(0, τ ) | y], where again A(0, τ ) and Ã(0, τ )
are additive statistics of the formDα(0, τ ) or Nαβ(0, τ ) (see, e.g. Hobolth and Jensen (2005)).
Once more, because of the additive structure and the Markov property, we end up with endpoint-
conditioned, second-order moments of the form E[A(si−1, si)Ã(si−1, si) | x(si−1), x(si)].

Summarizing, inference in a CTMC via the EM algorithm requires the calculation of the
following endpoint-conditioned mean values:

E[Dα1(x(T ) = b) | x(0) = a], (2a)

E[Nαβ1(x(T ) = b) | x(0) = a], (2b)

E[DαDβ1(x(T ) = b) | x(0) = a], (2c)
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Summary statistics for endpoint-conditioned continuous-time Markov chains 913

E[NαβNγδ1(x(T ) = b) | x(0) = a], (2d)

E[NαβDγ 1(x(T ) = b) | x(0) = a], (2e)

where Dα = Dα(0, T ) and Nαβ = Nαβ(0, T ). All the abovementioned mean values have
integral representations which are linear combinations of the following terms (see, e.g. Hobolth
and Jensen (2005)):

I (a, b, α, β) =
∫ T

0
Paα(t)Pβb(T − t) dt, (3)

I (a, b, α, β, γ, δ) =
∫ T

0

∫ t

0
Paα(u)Pβγ (t − u)Pδb(T − t) du dt, (4)

where Pαβ(t) = (exp(Qt))αβ is the transition probability. In particular, we note that the mean
value (2a) of the time spent in state α is given by I (a, b, α, α) and the mean value (2b) of the
number of jumps from state α to state β is given by qαβI (a, b, α, β).

Further discussion of transition rate estimation based on incomplete observations can be
found in Metzner et al. (2007) and the references therein. Bladt and Sørensen (2009) described
an application in mathematical finance. They considered the problem of estimating transition
rates between credit ratings from observations at discrete points (e.g. weekly observations).
Holmes and Rubin (2002), Hobolth and Jensen (2005), and Kosiol et al. (2007) used the EM
algorithm for analysis of DNA sequence data. The DNA sequences were observed at present
day and related by a phylogenetic tree. CTMCs are not exclusively an important modelling tool
in mathematical finance and molecular evolution; for example, Ball and Milne (2005) described
how insights into the gating mechanism of a single ion channel can be obtained by modelling
the system using a CTMC on a finite state space.

1.2. Further summary statistics used in applications of CTMCs

Let R denote a set of transitions of interest, and let NR = ∑
(α,β)∈R Nαβ be the number of

such transitions. Minin and Suchard (2008) described how the distribution of NR is of interest
in evolutionary developmental biology. They considered in particular a CTMC along a small
evolutionary tree with observations at the tips of the tree. For the case of a two-state Markov
chain, they derived closed-form expressions for P(NR = k, x(T ) = b) | x(0) = a). For
the general case, they considered moments of NR . As an example, they considered the mean
number of transitions and transversions within a small multiple alignment of DNA sequences.
Note that the moments ofNR can be found through the moments ofNαβ, (α, β) ∈ R. As a step
in their analysis, Minin and Suchard (2008) expressed the moment generating function of NR
as a matrix exponential. More generally, the joint Laplace transform and moment generating
function of all the Dαs and Nαβs are given as a matrix exponential in Bladt et al. (2002).

In an evolutionary setting Siepel et al. (2006) also considered the distribution P(NR = k,

x(T ) = b) | x(0) = a) for the case where R is the set of all transitions. These authors used
the statistic NR to identify lineages in a phylogenetic tree that are under selection in a specific
genomic region.

2. The eigenvalue decomposition method

The transition matrix P(t) is given by the matrix exponential P(t) = exp(Qt). If Q
is diagonalizable with real eigenvalues λ1, . . . , λm, we have Q = U�U−1, where � =
diag(λ1, . . . , λm) is a diagonal matrix with the eigenvalues on the diagonal. In this case the
integrals in (3) and (4) can be evaluated easily. In particular, P(t) = U exp(�t)U−1 and we
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914 A. HOBOLTH AND J. L. JENSEN

obtain

I (a, b, α, β) =
∫ T

0
Paα(t)Pβb(T − t) dt

=
∫ T

0
(U exp(�t)U−1)aα(U exp(�(T − t))U−1)βb dt

=
∑
i

UaiU
−1
iα

∑
j

UβjU
−1
jb

∫ T

0
etλi+(T−t)λj dt.

The last integral is easy to evaluate in the case of real eigenvalues.

These formulae were given in Holmes and Rubin (2002) for (3) and Hobolth and
Jensen (2005) for (4), and correspond to the formulae in Minin and Suchard (2008) for the
statistic NR using the fact that NR = ∑

(α,β)∈R Nαβ . A reversible process always admits an
eigenvalue decomposition with real eigenvalues.

Hobolth and Jensen (2005) also considered the case where some of the eigenvalues are
complex numbers and illustrated the results for the case of four states, corresponding to the four
possible nucleotides {A,G,C,T}. Klosterman et al. (2006) in their supplementary material
gave a general description of the eigenvalue decomposition method in the case of complex
eigenvalues. When the rate matrix Q is no longer diagonalizable, it is possible to use a Jordan
decomposition. However, in this case the calculations for evaluating the integrals in (3) and (4)
become more involved.

3. The uniformization method

The uniformization method was originally introduced as a way of calculating P(t) =
exp(Qt) (see Jensen (1953)). Let µ = maxi (−qii), and define the discrete-time Markov
chain (DTMC) transition matrix R = Q/µ+ I . Then

exp(Qt) = exp(µ(R − I )t) =
∞∑
n=0

Rn
(µt)n

n! e−µt =
∞∑
n=0

Rn Pois(n;µt),

where Pois(n; λ) is the probability from a Poisson distribution with mean λ. More fundamen-
tally, the uniformization method gives rise to an alternative description of the process itself.
Let z0, z1, . . . be a Markov chain with transition matrix R. Independent of the chain, let
0 = T0 < T1 < T2 < · · · be the times of a Poisson process with rate µ. Next, we define
{x(t), t ≥ 0}, by setting x(t) = zk in the time interval Tk ≤ t < Tk+1. It is clear that the
construction is equivalent to a CTMC with rates µRij = qij , j �= i. For more details on the
equivalence between a CTMC and a DTMC subordinated to a Poisson process, we refer the
reader to Ross (1983, Section 5.8).

Consider now a statisticH defined on {x(t), 0 ≤ t ≤ T }, which can be written as a function
of the number of Poisson events J , the times 0 = T0 < T1 < · · · < TJ < T , and the states
z0, z1, . . . , zJ . To study the properties of H, we condition on the value of J , and use the facts
that the times are the ordered values of uniformly distributed times and that the states are from
a Markov chain with transition matrix R. Also, conditioned on J = n, we generally use a
recursion in n to evaluate the properties of H . As an illustration, consider the original use of
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the uniformization method

P(x(T ) = b | x(0) = a) =
∞∑
n=0

P(zn = b | z0 = a)Pois(n;µT )

=
∞∑
n=0

(Rn)abPois(n;µT ), (5)

where Rn can be calculated by the recursion Rn+1 = (Rn)R.
What kind of general statisticH do we want to consider? The class of statistics must contain

the time spent in a state Dα =∑J
i=0 1(zi = α)(Ti+1 − Ti), where TJ+1 = T , as well as the

number of transitions between two statesNαβ = ∑J
i=1 1((zi−1, zi) = (α, β)). These two cases

are covered by a general statistic of the form

H = ψ(z0)f (T1)+
J∑
i=1

φ(zi−1, zi)f (Ti+1 − Ti), (6)

where f (t) = t and φ(z1, z2) = ψ(z2) = 1(z2 = α) for Dα , and f ≡ 1, ψ(z) ≡ 0, and
φ(z1, z2) = 1((z1, z2) = (α, β)) for Nαβ . Note also that the general form ofH in (6) need not
be an additive statistic.

3.1. Computing mean values using uniformization

We want to find the mean of a general statistic E[H1(x(T ) = b) | x(0) = a] withH defined
in (6). We are particularly interested in two special cases: (i) where H = Dα and (ii) where
H = Nαβ . In Theorem 1 below we treat the general case, and in Corollaries 1 and 2 below
we consider the two special cases. Theorem 1 shows how the uniformization method allows a
division of the conditional mean problem into three components that are each easy to handle.
The components are concerned with properties of the number of jumps n, the interarrival times
Ti+1 − Ti , and the discrete Markov chain (z0, . . . , zn).

First we introduce some notation. Let M(n) be the m×m matrix with entries

M(n, a, b) = E

[
1(zn = b)

(
ψ(z0)+

n∑
i=1

φ(zi−1, zi)

) ∣∣∣∣ z0 = a

]
, (7)

and let φ = (φ(a, b)). Also, let diag(ψ) be a diagonal matrix with entriesψ(j), j = 1, . . . , m.
For two matrices A and B, we let A ∗ B be the matrix with entries given by the product of the
corresponding entries of A and B. Finally, we define δ(n, T , f ) = E[f (TWn)], where Wn is
a beta-distributed random variable with parameters (1, n).

Theorem 1. (General statistic.) Let H be the general statistic defined in (6). Then we have

E[H1(x(T ) = b) | x(0) = a] =
∞∑
n=0

δ(n, T , f )M(n, a, b)Pois(n;µT ). (8)

The matrix M(n) is determined by the recursion

M(n) = M(n− 1)R + Rn−1(φ ∗ R), n ≥ 1, (9)

with starting value M(0) = diag(ψ). The solution of the recursion is

M(n) = diag(ψ)Rn +
n−1∑
�=0

R�(φ ∗ R)Rn−1−�. (10)
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Proof. The properties of the interarrival times Wi = Ti − Ti−1, conditioned on J = n and
with T0 = 0 and Tn+1 = T , can be studied as follows. Let W1, . . . ,Wn+1 be independent,
exponentially distributed variables with mean 1/µ, and let Sn+1 = ∑n+1

i=1 Wi be the sum of
these variables. Then the conditional distribution of the vector T1, T2 − T1, . . . , Tn+1 − Tn
given J = n is the same as the conditional distribution of W1,W2, . . . ,Wn+1 given that
Sn+1 = T . In particular, we note that (W1, . . . ,Wn+1)/T conditional on Sn+1 = T follows
a Dirichlet distribution with parameter (1, . . . , 1). Consequently, the marginal distribution of
Wi/T conditional on Sn+1 = T is a beta distribution with parameter (1, n).

We now use the uniformization method:

E[H1(x(T ) = b) | x(0) = a, J = n]

= E

[(
ψ(z0)f (W1)+

n∑
i=1

φ(zi−1, zi)f (Wi+1)

)
1(zn = b)

∣∣∣∣ z0 = a, Sn+1 = T

]

= δ(n, T , f )E

[
1(zn = b)

(
ψ(z0)+

n∑
i=1

φ(zi−1, zi)

) ∣∣∣∣ z0 = a

]

= δ(n, T , f )M(n, a, b).

Here
M(0, a, b) = E[ψ(z0)1(z0 = b) | z0 = a] = ψ(a)1(a = b),

and, for n ≥ 1, we obtain the following recursion upon dividing the mean value according to
the value of zn−1:

M(n, a, b) = E

[
1(zn = b)

(
ψ(z0)+

n∑
i=1

φ(zi−1, zi)

) ∣∣∣∣ z0 = a

]

=
m∑
c=1

E

[
1(zn = b)1(zn−1 = c)

×
(
ψ(z0)+

n−1∑
i=1

φ(zi−1, zi)+ φ(zn−1, zn)

) ∣∣∣∣ z0 = a

]

=
m∑
c=1

M(n− 1, a, c)Rcb +
m∑
c=1

(Rn−1)acφ(c, b)Rcb.

In matrix form this recursion has the form (9), and it is easy to see that the solution is given by
(10).

To use solution (8) for the case H = Dα or H = Nαβ, we must specify δ(n, T , f ) and the
matrix M(n). Let the matrix with a 1 in the (α, β)th entry and 0s elsewhere be denoted by
U(α, β).

Corollary 1. In the caseH = Dα we haveφ= U(α, α), diag(ψ) = U(α, α),and δ(n, T , f ) =
T/(n+ 1). Solution (10) for M(n) becomes

M(n, a, b) =
n∑
�=0

(Rn−�)aαR�αb, (11)

https://doi.org/10.1239/jap/1324046009 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1324046009


Summary statistics for endpoint-conditioned continuous-time Markov chains 917

and the mean value (8) is

E[Dα1(x(T ) = b) | x(0) = a] =
∞∑
n=0

T

n+ 1

[ n∑
�=0

(R�)aα(R
n−�)αb

]
Pois(n;µT ).

Corollary 2. In the case H = Nαβ we have φ = U(α, β), diag(ψ) = 0, and δ(n, T , f ) = 1.
Solution (10) for M(n) becomes

M(n, a, b) =
n∑
�=1

(Rn−�)aαRαβR�−1
βb , (12)

and the mean value (8) is

E[Nαβ1(x(T ) = b) | x(0) = a] =
∞∑
n=1

[ n∑
�=1

(Rn−�)aαRαβR�−1
βb

]
Pois(n;µT ).

We note in passing that the mean value in (8) for the case H = Dα or H = Nαβ can be
obtained from the integral representations (3) and (4) on inserting the original uniformization
result (5) for P(t). As an example, we have

E[Dα1(x(T ) = b) | x(0) = a]
= I (a, b, α, α)

=
∫ T

0

[ ∞∑
i=0

(Ri)aα
(µt)i

i! e−µt
][ ∞∑

j=0

(Rj )αb
(µ(T − t))j

j ! e−µ(T−t)
]

dt

=
∞∑
i=0

∞∑
j=0

(Ri)aα(R
j )αb

T

(i + j + 1)
e−µT (µT )i+j

(i + j)!

=
∞∑
n=0

T

n+ 1

[ n∑
�=0

(R�)aα(R
n−�)αb

]
e−µT (µT )n

n! .

This derivation, however, cannot be generalized to the most general form of H in (6) as we do
not have an integral representation in the general case.

For the case where φ(z1, z2) = ψ(z2) and f ≡ 1, a recursion equivalent to (9) can be found
in Narayana and Neuts (1992). The explicit forms (11) and (12) forM(n) can be found in Bladt
and Sørensen (2005).

3.2. Computing covariances using uniformization

In this subsection we consider two statistics H and H̃ of the form (6), and we calculate
E[HH̃1(x(T ) = b) | x(0) = a]. We are particularly interested in the cases (2c)– (2e), where
H and H̃ are the times spent in a state and/or the numbers of jumps from one state to another.
First, we introduce some more notation. Define

δ1(n, T , f, f̃ ) = E[f (T X)f̃ (T X)] and δ2(n, T , f, f̃ ) = E[f (T X)f̃ (T Y )],
where (X, Y, 1 −X−Y ) follows a Dirichlet distribution with parameter (1, 1, n− 1). We note
that δ1 depends on X only and that the marginal distribution of X is a beta distribution with
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parameters (1, n). Define the two matrices M1(n) and L(n) as

M1(n, a, b) = E

[
1(zn = b)

(
ψ(z0)ψ̃(z0)+

n∑
i=1

φ(zi−1, zi)φ̃(zi−1, zi)

) ∣∣∣∣ z0 = a

]

and

L(n, a, b) = E

[
1(zn = b)

n∑
i=1

φ(zi−1, zi)

∣∣∣∣ z0 = a

]
,

and define L̃(n) similarly to L(n)with φ replaced by φ̃. Note thatM1(n), L(n), and L̃(n) have
the same structure as M(n) defined in (7), and, therefore, satisfy similar recursions and admit
the same form of explicit solutions as in Theorem 1. Finally, define the matrix M2(n) as

M2(n, a, b) = E

[
1(zn = b)

(
ψ(z0)

n∑
i=1

φ̃(zi−1, zi)+ ψ̃(z0)

n∑
i=1

φ(zi−1, zi)

+
∑

{i,j : i �=j}
φ(zi−1, zi)φ̃(zj−1, zj )

) ∣∣∣∣ z0 = a

]
.

Theorem 2. (Products of general statistics.) LetH and H̃ be two general statistics of the form
(6). Then we have

E[HH̃1(x(T ) = b) | x(0) = a]

=
∞∑
n=0

[δ1(n, T , f, f̃ )M1(n, a, b)+ δ2(n, T , f, f̃ )M2(n, a, b)]Pois(n;µT ).

The matrix M1(n) satisfies the recursion

M1(n) = M1(n− 1)R + Rn−1(φ ∗ φ̃ ∗ R)
with starting values M1(0) = diag(ψψ̃). The solution is

M1(n) = diag(ψψ̃)Rn +
n−1∑
�=0

R�(φ ∗ φ̃ ∗ R)Rn−1−�.

The matrices L(n) and L̃(n) satisfy similar recursions and solutions with ψψ̃ replaced by 0
and φφ̃ replaced by φ or φ̃. The matrix M2(n) satisfies the recursion

M2(n) = M2(n− 1)R + diag(ψ)Rn−1(φ̃ ∗ R)+ diag(ψ̃)Rn−1(φ ∗ R)
+ L̃(n− 1)(φ ∗ R)+ L(n− 1)(φ̃ ∗ R).

The solution to the latter recursion can be written as

M2(n) = diag(ψ)
n−1∑
�=0

R�(φ̃ ∗ R)Rn−1−� + diag(ψ̃)
n−1∑
�=0

R�(φ ∗ R)Rn−1−�

+
n−2∑
�=0

n−2−�∑
s=0

R�[(φ̃ ∗ R)Rs(φ ∗ R)+ (φ ∗ R)Rs(φ̃ ∗ R)]Rn−2−�−s .
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Proof. Conditional on the number of jumps n, we can divide the product of H and H̃
according to terms where the interarrival times are the same or different:

HH̃ = ψ(z0)ψ̃(z0)f (W1)f̃ (W1)+
n∑
i=1

ψ(z0)φ̃(zi−1, zi)f (W1)f̃ (Wi+1)

+
n∑
i=1

ψ̃(z0)φ(zi−1, zi)f̃ (W1)f (Wi+1)

+
n∑
i=1

φ(zi−1, zi)φ̃(zi−1, zi)f (Wi+1)f̃ (Wi+1)

+
∑

{i,j : i �=j}
φ(zi−1, zi)φ̃(zj−1, zj )f (Wi+1)f̃ (Wj+1).

Taking means with respect to (W1, . . . ,Wn+1) conditioned on W1 + · · · + Wn+1 = T and
conditioning on z0 = a, we obtain

E[HH̃1(x(T ) = b) | x(0) = a, J = n]
= δ1(n, T , f, f̃ )M1(n, a, b)+ δ2(n, T , f, f̃ )M2(n, a, b).

The derivation of the recursion for M1(n) is as in the proof of Theorem 1 for M(n) with ψ
replaced by ψψ̃ and with φ replaced by φ ∗ φ̃.

To establish the recursion forM2(n), we proceed as in the proof of Theorem 1, dividing the
mean value according to the value of zn−1. This gives, after some manipulations,

M2(n, a, b) =
m∑
c=1

[M2(n− 1, a, c)Rcb + (Rn−1)ac[ψ(a)φ̃(c, b)+ ψ̃(a)φ(c, b)]Rcb

+ L̃(n− 1, a, c)φ(c, b)Rcb + L(n− 1, a, c)φ̃(c, b)Rcb].

The starting value of the recursion isM2(0) = 0. The recursions for L(n) and L̃(n) are derived
as for M(n) in the proof of Theorem 1. The solutions of the latter recursions correspond to
the solution of the recursion for M(n). Using these, it can be shown that the solution of the
recursion for M2(n) is as stated in the theorem.

From the properties of the beta and Dirichlet distributions we obtain the following corollary.

Corollary 3. In the case where both H and H̃ correspond to either the times spent in a state
or the numbers of jumps between two states the covariance term can be found from Theorem 2
on using

δ1(n, T , f, f̃ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if f = f̃ ≡ 1,
T

(n+ 1)
if f (t) = t and f̃ ≡ 1 or f ≡ 1 and f̃ (t) = t,

2T 2

(n+ 1)(n+ 2)
if f (t) = f̃ (t) = t ,
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and

δ2(n, T , f, f̃ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if f = f̃ ≡ 1,
T

(n+ 1)
if f (t) = t and f̃ ≡ 1 or f ≡ 1 and f̃ (t) = t,

T 2

(n+ 1)(n+ 2)
if f (t) = f̃ (t) = t .

For the case where φ(z1, z2) = ψ(z2), f ≡ 1, φ̃ = φ, and f̃ = f, a recursion equivalent to
the recursion forM2(n) can be found in Narayana and Neuts (1992). Generally, the formulae of
this section appear to be new. Bladt and Sørensen (2009) used numerical differentiation (with
respect to the entries of the rate matrix Q) to find the covariance terms of this section.

3.3. Computing distributions using uniformization

In this subsection we use uniformization to derive the distribution of the number of state
changes and the time spent in states using uniformization.

Siepel et al. (2006) used uniformization to derive the distribution of the total number of sub-
stitutions N = ∑J

i=1 1(zi−1 �= zi). Other statistics of interest are the number of substitutions
Nαβ = ∑J

i=1 1((zi−1, zi) = (α, β)) between two different states α and β, and the number of
visitsNα = ∑J

i=1 1(zi−1 = α) to a state α. In this section we consider a general count statistic

NH = ψ(z0)+
J∑
i=1

φ(zi−1, zi), (13)

where entries in both φ and ψ can be 0 or 1 only. We let P(k, n) be the m × m matrix with
entries

P(k, n, a, b) = P

(
ψ(z0)+

n∑
i=1

φ(zi−1, zi) = k, zn = b

∣∣∣∣ z0 = a

)
. (14)

Thus, P(k, n, a, b) is the probability of recording k counts of interest when the Markov chain
starts in state a and must be in state b at time n. Note that

P(0, 0) = diag(1 − ψ) and P(1, 0) = diag(ψ),

and that P(k, n) = 0 for k > n+ 1.

Theorem 3. Let NH be given as in (13) where entries in both φ and ψ can be 0 or 1 only. We
have

P(NH = k, x(T ) = b | x(0) = a) =
∞∑
n=0

P(k, n, a, b)Pois(n;µt),

where, for n ≥ 1 and 1 ≤ k ≤ n+ 1, the matrix P(k, n) is given by the recursion

P(k, n) = P(k − 1, n− 1)(R ∗ φ)+ P(k, n− 1)(R ∗ (1 − φ)).

Proof. The uniformization method gives

P(NH = k, x(T ) = b | x(0) = a) =
∞∑
n=0

P(k, n, a, b)Pois(n;µt),

where P(k, n) is defined in (14).
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The recursion for P(k, n, a, b) is derived by dividing according to the value of zn−1, i.e.

P(k, n, a, b)

=
m∑
c=1

P

(
ψ(z0)+

n∑
i=1

φ(zi−1, zi) = k, zn−1 = c, zn = b

∣∣∣∣ z0 = a

)

=
m∑
c=1

P

(
ψ(z0)+

n−1∑
i=1

φ(zi−1, zi) = k − 1, zn−1 = c

∣∣∣∣ z0 = a

)
φ(c, b)Rcb

+
m∑
c=1

P

(
ψ(z0)+

n−1∑
i=1

φ(zi−1, zi) = k, zn−1 = c

∣∣∣∣ z0 = a

)
(1 − φ(c, b))Rcb

=
m∑
c=1

P(k − 1, n− 1, a, c)φ(c, b)Rcb +
m∑
c=1

P(k, n− 1, a, c)(1 − φ(c, b))Rcb,

on using the fact that φ(c, b) is either 1 or 0.

Let us illustrate the result of the theorem for the case considered in Siepel et al. (2006).
Thus, we consider the total number of substitutions, N = ∑J

i=1 1(zi−1 �= zi). For this case,
P(0, 0) = diag(1, 1, . . . , 1), P(1, 0) = 0, and the recursion is given by

P(k, n, a, b) =
∑

{c : c �=b}
P(k − 1, n− 1, a, c)Rcb + P(k, n− 1, a, b)Rbb.

The interpretation of the recursion is quite clear. We divide the probability according to the last
jump being from a state c to the state b, and the two terms in the recursion correspond to the
last jump being a real substitution (c �= b) or a virtual substitution (c = b).

In the case of the number of transitions from state α to state β given by the statistic Nαβ we
obtain the starting values P(k, 0, a, b) = 0 for k ≥ 0. For n ≥ 1 and 1 ≤ k ≤ n+ 1, we have
the recursion

P(k, n, a, b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P(k − 1, n− 1, a, α)Rαb +
∑

{c : c �=α}
P(k, n− 1, a, c)Rcb if b = β,

m∑
c=1

P(k, n− 1, a, c)Rcb if b �= β.

Again, the interpretation is quite clear. The probability is calculated according to the last jump
being from a state c. If the ending state b is different from β then the jump is never from α to
β; this is the last case. If the ending state is b = β then the jump is from α to β when c = β.
These considerations justify the first case.

As a final application of the uniformization method, we consider a sum of interarrival times
like, for example, the time spent in a stateα,Dα = ∑J

i=0 1(zi = α)(Ti+1 − Ti). Such a statistic
has a mixed distribution with point probabilities at 0 and T , and has a continuous distribution
between these two points. The trick to handle this statistic is that, conditional on J = n, the
distribution depends on the number of terms in the sum only. Furthermore, the distribution of
the number of terms is given through P(k, n) from Theorem 3. In the theorem below we treat
a general statistic of the form

DH = ψ(z0)T1 +
J∑
i=1

φ(zi−1, zi)(Ti+1 − Ti), (15)
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where both φ and ψ can be 0 and 1 only. We let f (t; a, b) be the conditional density of DH
given x(0) = a on the set x(T ) = b:

P(0 < DH < t, x(T ) = b | x(0) = a) =
∫ t

0
f (y; a, b) dy, t < T .

In the theorem below we let fB(u; λ1, λ2) be the beta density given by

fB(u; λ1, λ2) = �(λ1 + λ2)

�(λ1)�(λ2)
uλ1−1(1 − u)λ2−1.

Theorem 4. The distribution of DH in (15) is given by

P(DH = 0, x(T ) = b | x(0) = a) =
∞∑
n=0

P(0, n, a, b)Pois(n;µT ),

P(DH = T , x(T ) = b | x(0) = a) =
∞∑
n=0

P(n+ 1, n, a, b)Pois(n;µT ),

f (t; a, b) =
∞∑
n=1

n∑
k=1

1

T
fB

(
t

T
; k, n− k + 1

)
P(k, n, a, b)Pois(n;µT ),

where P(k, n, a, b) is given in Theorem 3.

Proof. Let NH = ψ(z0)+ ∑J
i=1 φ(zi−1, zi). Using the uniformization method, we condi-

tion on J = n. For DH to be 0, we must have NH = 0, and the probability of this is given by
P(0, n, a, b). Similarly, forDH to be T , we must haveNH = n+ 1, and the probability of this
is given by P(n + 1, n, a, b). For 0 < NH = k < (n + 1), the density of DH is the density
of

∑k
j=1Wi given that

∑n+1
j=1Wi = T . In this conditional distribution (1/T )

∑k
j=1Wi has a

beta distribution with parameters (k, n− k + 1). This then gives the formula for f (t; a, b) on
using the fact that the conditional probability of NH = k is P(k, n, a, b).

4. Integrals of matrix exponentials

For the time spent in a stateDα or the number of jumps between two statesNαβ, the first two
moments can be calculated from the integral representations (3) and (4). These representations
and an eigenvalue decomposition of the rate matrix were used in Section 2. When an eigenvalue
decomposition is not available we derived in Section 3 alternative expressions based on the
uniformization method. There is, however, a third approach to the calculation of integrals of
matrix exponentials as those in (3) and (4). The purpose of this section is to draw attention
to the theory developed in Van Loan (1978) for calculating such integrals. We describe the
method of Van Loan (1978) in its most simple form.

Consider the problem of evaluating the integral
∫ T

0
eQ(T−t)BeQt dt, (16)

where B is a matrix of the same dimension as Q. The special case with B = U(α, β) gives
the integral in (3). For evaluating this integral, Van Loan (1978) introduced a matrix A, with a
dimension twice that of Q:

A =
[
Q B

0 Q

]
.
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The structure of A implies that the matrix exponential must be of the form

eAt =
[
F(t) G(t)

0 F(t)

]
with F(0) = I and G(0) = 0.

Using the fact that deAt/ dt = AeAt , we obtain the equation

[
F ′(t) G′(t)

0 F ′(t)

]
=

[
Q B

0 Q

] [
F(t) G(t)

0 F(t)

]
.

We thus have two differential equations to solve. A homogeneous linear differential equation

F ′(t) = QF(t) with F(0) = I

(the solution is F(t) = eQt ), and an inhomogeneous linear differential equation

G′(t) = QG(t)+ BF(t) with G(0) = 0.

The inhomogeneous linear differential equation has the solution

G(t) =
∫ t

0
e(t−x)QBF(x) dx =

∫ t

0
e(t−x)QBeQx dx.

Thus, integral (16) is the upper-right corner in eAt .
A number of approaches exist for evaluating eAt and are implemented in software packages;

see Moler and Van Loan (2003) for a review. Calculating the matrix exponential eAt therefore
provides a very direct way of calculating the desired integral representation. The only caveat
is the accuracy of the matrix exponential utility provided by the software.

To handle integral (4), we can use the part of Van Loan’s methodology concerning integrals
of the type ∫ T

0

∫ t

0
eQ(T−u)B1eQ(t−u)B2eQu du dt.

This integral is given by the upper-right corner of eAt with

⎡
⎣Q B1 0

0 Q B2
0 0 Q

⎤
⎦ .

The reader is encouraged to consult Van Loan (1978) for the proof.

5. Discussion

We have presented three approaches for calculating expectations of summary statistics for
endpoint-conditioned continuous-time Markov chains. The eigenvalue decomposition method
and Van Loan’s method both take the integral representations (3) and (4) as a starting point. The
integral representations (3) and (4) cover the most important summary statistics (time spent in a
state and number of jumps from one state to another). However, in general, a summary statistic
H of the form (6) does not necessarily admit an integral representation. In Section 3 we provided
a framework for calculating properties of general summary statistics. The framework is based

https://doi.org/10.1239/jap/1324046009 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1324046009


924 A. HOBOLTH AND J. L. JENSEN

on the uniformization method, and, as shown in Theorem 1, the calculation is decomposed into
three simple parts that are each easy to handle.

All three methods of calculating properties of summary statistics are in principle easy to
implement, but they all have their limitations. The method based on an eigenvalue decom-
position becomes rather involved if the eigenvalues are not real. (However, we would like to
emphasize that a reversible substitution process always admits real eigenvalues.) Van Loan’s
method seems very attractive but requires access to a reliable matrix exponentiation software
package. Uniformization is the most general method, but requires that an infinite sum is
truncated. A discussion of truncation error can be found in Narayana and Neuts (1992) and
Grassmann (1993).
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