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A statistical model and analysis for genetic and environmental effects in twin-family data 
are presented. The model is used to derive expressions for phenotypic correlations of 22 
essential pair relationships in twin-family units. The analysis proceeds in two steps. First, 
differential effects of sex, generation, and sex-zygosity of twin-family units and correla
tions due to cluster sampling are eliminated from correlation data. Then, estimates and 
tests of model parameters are calculated from the adjusted data. The theory and methods 
were developed for a Swedish twin-family study of many behaviors possibly related to 
the smoking habit. There, it is important to screen for behaviors that clearly are under 
genetic control and to assess relative influences of various biological and social environ
ments on the development of all behaviors. Height data from the Swedish study are used 
to illustrate concepts and methods presented in this paper. 
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INTRODUCTION 

Two of the broadly stated objectives of the Swedish twin-family study described by Crum-
packer et al [5] are to screen many types of behavior that are possibly related to the smok
ing habit for evidence of genetic control and to assess the relative influences of several bio
logical and social environments on the development of these behaviors. Questionnaire re
sponses by the subjects interviewed in the twin-family sample form much of the data of 
the study. 

There are three fundamental methodological problems to solve before the objectives 
of any study like the Swedish study can be achieved. The first is to develop sets of ques
tionnaire items that provide quantitative measurements of the required types of behavior. 
Ideally, the distributional properties of these scored phenotypes are the same for different 
populations and for all combinations of sex and generation within populations. The prin-
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cipal item sets or scales that were used in the Swedish study have this property. The Com-
rey and Eysenck Personality Scales which were given [see 4 and 7] have been thoroughly 
tested by their authors in U.S. and English populations. Translated versions of these have 
been reported by Floderus [10] and Vandenberg and Price [20] to have similar charac
teristics in the Swedish urban population from which the twin-family sample was drawn. 
Williams et al [21 ] reported that modified versions of smoking-behavior scales devised in 
London by Russell et al [18] produce the same results in U.S. and Swedish samples as seen 
in the original English study. Scale measures of several types of alcohol consumption that 
were used as part of an inventory of Swedish twins [3,12] have been modified and ex
tended by Pedersen and McClearn [16] and shown to be reproducible in sex by generation 
subsamples of the twin-family sample. The second problem is to define a statistical model 
of genetic and environmental effects on a scored phenotype for pedigrees of the type that 
characterize units of a twin-family sample. The final need is for a statistical test of fit of 
score data to the model, estimates of model parameters, and tests of hypotheses concern
ing these. A detailed description of a model and complementary statistical methods for 
twin-family studies like the Swedish study are the subjects of this paper. These are expan
sions of the path-diagram and descriptive and verbal presentations given in Crumpacker 
etal [5]. 

There are several models currently used in the application of theories of quantitative 
genetics to the study of human phenotypes. These have been set out in detail in recent ex
haustive reviews by Elston and Rao [6] and Boyle and Elston [1]. None has been designed 
around the stated objectives of the Swedish study, and none has been worked out for very 
specific pedigrees such as characterize twin-family units. Along with these two guiding fea
tures, the model that we propose has the following desirable properties, not found in 
other works: 

1. Every random variable in the representation of a phenotype score is well-defined 
by a conditional expectation. As a consequence, correlations between any two components 
of a score can be derived, and no assumptions concerning these need be entertained. 

2. Correlations between random variables for two individuals of any pedigree relation
ship found in twin-family units are derived with a minimum number of clearly stated as
sumptions and principles. The resulting systems of correlations are non-negative definite 
and, therefore, internally consistent. They also satisfy known boundary conditions for 
random mating and perfectly assorting populations, and hence they satisfy external consis
tency checks. 

3. Factors of the environment of the autosomes are divided into two sets to be ac
counted for and investigated by different methods. First are the factors, such as generation, 
sex, and type of twin-family unit, of a coarse-grain characterization of the environment, 
which are of secondary interest and are eliminated by statistical adjustment of phenotype 
scores. The second are the remaining factors of a fine-grain characterization, which are of 
primary interest. These, for example, can be associated with descriptions of prenatal and 
postnatal environments. How the main effects of these and their interactions with geno
types affect correlations between relatives is carefully explained. 

4. Up to 18 parameters appear in a set of model expressions for correlations in 
phenotype scores between relatives in twin-family units. Nine of these pertain to direct ef
fects of the fine-grain environment, and three more are measures of indirect effects brought 
about by phenotypic assortment and convergence (increase in similarity of spouses) and by 
a degree of genetic control of family environment. The liberal parameterization of environ
mental effects, in contrast to the limited number of parameters included to measure genetic 
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effects, is part of an intentional effort to describe correlations in phenotype scores as fully 
as possible by common features of the environment before genetic factors are considered. 
As a consequence, when applied to screening studies, the evidence can be regarded as strong 
for those phenotypes indicated to be under partial genetic control. 

Two sets of methods constitute our statistical analyses. The second of these is a non
linear least-squares analysis, which is similar in many aspects to one proposed and used by 
Rao et al [17] in applications of a quantitative genetic model proposed by Morton [13]. 
The former is a method for obtaining inter-unit correlation estimates of the intra-class cor
relations described by our model. These estimates are adjusted for differential location and 
scale effects of the coarse-grain environment and are also partially adjusted for differential 
correlative effects produced by the environment. 

PAIR CHARACTERISTICS IN TWIN-FAMILY UNITS 

Twin-family units in the Swedish sample described by Crumpacker et al [5] are formed 
around a pair of like-sex MZ or DZ twins born between 1911 and 1935. There are, there
fore, four basic types of units that can be indexed by sex and zygosity of the twins. The 
two spouses of the twins and, ideally, all of the adult children of each married pair com
plete a unit. In fact, some adult children did not participate in that study, but it was re
quired that there be at least one adult child for at least one family in a unit. Most frequently 
both families were represented by one or more adult children. The exact composition of 
the sample can be seen in Table 1. 

There are 72 different pairs of relatives that can be found in the four types of twin-
family units if sexes of the individuals in a pair, as well as sex-zygosity classification of a 
unit, are considered. Many of the corresponding 72 phenotypic correlations can be com
bined if only the autosomes are of interest in a genetic analysis and phenotypic scores are 
adjusted statistically within groups for effects of all combinations of generation, sex, and 
sex-zygosity of a twin-family unit. The only sex distinctions that remain occur for pairs in 
which one individual is a twin or twin's spouse and the other is a child. The reason for this 
is that all such pairs can be traced through the relationship of a child with its mother or 
with its father and that children can correlate more highly with mothers than with fathers 
because the two pregnancies of a mother and her child are more closely related than those 
of a father and his child. In addition to these sex distinctions, a zygosity distinction must 
be retained for all relationships that can be traced through a pair of twins. Other than these, 
pair differences can be ignored so that the original 72 pairs can be classified into the follow
ing 22 types: 

1. MZ twins 
2. DZ twins 
3. Nontwin siblings 
4. Mother and child 
5. Father and child 
6. Woman and her MZ twin's child 
7. Man and his MZ twin's child 
8. Woman and her DZ twin's child 
9. Man and his DZ twin's child 

10. Cousins related through MZ twin mothers 
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TABLE 1. Relationship Structure of Swedish Sample of Twin-Family Units 

Number of twin-family units related through 

Number of children interviewed 
in pair 

0 ,1 
0 ,2 
0 ,3 
1,1 
1,2 
1,3 
1,4 
2 ,2 
2 ,3 
3 ,3 

familiesa 
MZ twin 
fathers 

10 
4 
0 
8 
9 
1 
0 
5 
2 
0 

39 

MZtwin 
mothers" 

2 
4 
0 
8 

12 
4 
0 
3 
2 
1 

36 

DZ twin 
fathers 

7 
6 
1 
6 
8 
0 
1 
3 
0 
0 

32 

DZ twin 
mothers 

1 
0 
0 

11 
12 

3 
0 
3 
0 
0 

30 

aThe following is a diagrammatic presentation of a twin-family unit taken from Crumpacker et al 
[5]: 

These families are related through twin mothers. In the first, there is one daughter, and in the 
second there is a child of each sex. The birth date for the parents is from 1911 to 1935. All 
children interviewed are at least 20 years old. 
DOne incomplete unit in which one family failed to attend the interview is not counted here. 
There was one child in the family interviewed. Data from the family were used in our analysis. 

11. Cousins related through MZ twin fathers 
12. Cousins related through DZ twin mothers 
13. Cousins related through DZ twin fathers 
14. Husband and wife 
15. Individual with MZ twin's spouse 
16. Individual with DZ twin's spouse 
17. Husband with wife's MZ twin's child 
18. Wife with husband's MZ twin's child 
19. Husband with wife's DZ twin's child 
20. Wife with husband's DZ twin's child 
21. Individual with spouse's MZ twin's spouse 
22. Individual with spouse's DZ twin's spouse (1) 

We next make a further distinction among the 22 listed relationships, which will 
divide them into two groups. Two individuals are said to be directly related if genes of one 
are descended from genes of the other. Two individuals are said to be biologically related 
if they are directly related or if both are directly related to a third individual who was born 
before either of the two. For example, two children in a family are directly and therefore 
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biologically related to their parents and biologically related to each other because they are 
directly related to common parents who were born before them. A husband and wife are 
directly related to their children, but they are not necessarily biologically related because 
their children are born after them. Among the 22 relationships, it is clear that the pairs in 
the first 13 are biologically related. We call these "consanguineous" relationships. It is not 
possible from the given data to establish a biological relationship for any pair among the 
final nine relationships. We call these "nonconsanguineous" relationships. 

The distinction between consanguineous and nonconsanguineous relationships is 
used in several steps in the development of our model. Therefore, it is important to notice 
that in many applications, such as for the Swedish study, the distinction is a feature of the 
breeding structure of the sampled population as well. In most countries, marriage between 
first cousins or more closely biologically related people is discouraged and can be legally 
sanctioned only with a court-approved petition. The most distant biological relationship in 
the 22 we have listed is between 12 and 13, in which the individuals are first cousins. The 
closest of the nonconsanguineous relationships is 14. Therefore, in applications we envision, 
the expected biological relationships, if any, of the nonconsanguineous pair that we will 
consider is less than the biological relationship of any consanguineous pair in our list. 

CORRELATION MODEL 

Ours is a second-order statistical model for application to populations at equilibrium. In it, 
random-variable additive genetic and residual components of phenotype scores are defined 
subject to specified relationships among the component-score variances and covariances. 
The covariance relationship between components of a phenotype score is a consequence of 
the precise definition of the component scores and relates to the definitions of narrow- and 
broad-sense heritability ratios. The relationships among covariances for the same or different 
component scores from different individuals partially characterize the mode and effects of 
population stratification, phenotypic assortment and convergence, and familial genetic in
fluences on residual scores in the population sampled. 

Three assumptions that are defined in mathematical terms in subsequent sections on 
the correlation model are required to develop the relationships of covariances associated 
with the 22 pairs of individuals listed in (1). They will be described here in less precise 
terms in order to enhance understanding of their meaning. The first two, which are identical 
except for score identification, apply to additive genetic and to residual scores of members 
of nonconsanguineous pairs. They are stated here as variations of a common assumption. 
The third pertains to the relationship of an individual's residual score to the additive genetic 
scores of all immediate members of the family in which he was reared. 

1. GG(RR). The only direct correlative relationship of additive genetic (residual) scores 
between nonconsanguineous relatives is between husband and wife. These result from pop
ulation stratification and phenotypic assortment (and convergence). All other correlative 
relationships are indirect and can be traced through one or more marriages in a chain of re
lationships that connect up two nonconsanguineous relatives. 
2. GR. The residual score of an individual can be related to the difference in the actual 
average of his parents' additive genetic scores and the predicted value of the average in terms 
of the individual's additive genetic score and a similar difference based on the average genetic 
score of all siblings, other than an MZ twin. 
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A final assumption used in the development of the model is that correlations in pheno-
types are equal for all pairs (among the 72 possible relationships for the four types of twin-
family unit) that fit into one of the 22 summary categories of relationships that we have 
described. For example, the husband-wife correlation does not differ among the four types 
of units. To approximate the conditions of this assumption, data on phenotype scores 
must be adjusted for differential effects of. generation and sex of individuals and sex-
zygosity of family units before any analysis based on the model can be made. These adjust
ments are discussed in detail in section 4, Statistical Analysis. 

Definition of Component Scores 

We have elaborated a standard method for the development of operational definitions of 
random-variable scores [eg, 11: Ch 15] in order to obtain precise mathematical descriptions 
of causes of phenotypic variation and covariation. 

The basic elements of the statistical process that we consider are twin-family units. 
The variable-length multivariate response for each of these is composed of a specification 
of the type of unit and, for each person in it, a unique identification tied to a list of pheno
type values and characterizations of his or her environment. All variation associated with 
single responses or pairs of responses is among twin-family units. Random variables that 
we study pertain to this process and to no other. It would be inappropriate without further 
study and more information to apply definitions of key components of the model, such 
as the genetic and environment-by-genotype interaction scores, to other processes. 

The first random variables that we introduce are indices of environmental and genetic 
differences. The first of these is F, which is used to make simple, obvious distinctions 
among possible environments of the autosomes, such as sex, generation, and type of twin-
family unit. These are our coarse-grain features of the environment. The second index vari
able is F, which subsumes F and is used to introduce additional, finer distinctions in the 
environment of the autosomes, such as characterizations of prenatal and postnatal familial 
differences. These are our fine-grain features of the environment. The final variable is G, an 
index of the autosomes' genotype. This is a matrix with zero-one-two elements that indi
cate the alleles represented at each segregating autosomal locus of the twin-family process. 

A suite of score random variables is defined for each value of F. The first of the ran
dom variables is a phenotype score, which is the deviation of a measurement made on an 
individual from the conditional expected — that is, the mean value — of the measurement, 
given F. The rest of the random variables are either linear combinations of specific condi
tional expectations of a phenotype score, best linear predictors of such conditional expecta
tions, or a deviation of a phenotype score from a conditional expected value. 

The first component of a phenotype score that we consider is s(F, G), the conditional 
expectation of the score given an environment-genotype combination indexed by F, G. 
Notice that when F is fixed, then F also is fixed, because F subsumes F. The deviation of 
a phenotype score from s(F,G) will be denoted by v(F, G), so that the score itself is the 
sum s(F, G) + v(F, G). The chapeau placed over v is a reminder that, conditionally, the 
deviation score is a random variable indexed by F, G in contrast to s(F, G), which is a 
mathematical function of the pair. The deviation score is a measure of all effects on a 
phenotype that are not explained by the genotype and features of the environment indexed 
by F. Among these are measurement errors. The conditional expectation of v(F, G) given 
F, G is zero, and therefore the covariance of s(F, G) with v(F, G) is zero. 
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The environment-genotype score s(F, G) is used next to define two additional scores. 
The first of these is a genotype score: 

s(G) = E[s(F,G)lF,G]. (2) 

and the second is a fine-grain environment-within-genotype score: 

s(F, G) - s(G). (3) 

There is no covariance between s(G) and s(F, G) — s(G) because the conditional expecta
tion of the second of these, given F, G, for which s(G) is a constant, is zero. Neither of the 
scores correlates with v(F, G) because the conditional expectation of the deviation score 
given F, G, for which both s(G) and s(F, G) — s(G) are constants, is zero. 

Different types of scores from those just defined can be formed from s(G) and G. 
These are an additive genetic score t(G), which is the best (minimum mean-squared error) 
linear predictor of s(G) from the elements of G, and the nonadditive genetic score u(G), 
which is the difference between s(G) and t(G). The linear predictor is defined with respect 
to the conditional distribution of G, given F. The covariance between additive and non-
additive genetic scores is zero because a characteristic of best linear predictors is that 
they do not correlate with their associated errors of prediction. Neither genetic score cor
relates with s(F, G) — s(G) or v(F, G) for the same reasons that s(G) does not correlate 
with these scores. 

The phenotype score can now be written as a sum of uncorrelated components, viz 

t(G) + u(G) + [s(F, G) - s(G)] + v(F, G). (4) 

Our analysis is based on this representation. We combine the final three terms and standard
ize the resulting two random-variable components by dividing each by its standard devia
tion. In this fashion, (4) is replaced by the equation 

X = h Y + ( l - h 2 ) 1 / 2 Z (5) 

where X, Y, and Z are respective standardized phenotype, additive genetic, and residual 
scores, and h2, the ratio of variances of additive genetic and phenotype scores, is a narrow-
sense heritability coefficient. The residual score Z is a linear combination of uncorrelated 
nonadditive genetic, fine-grain environment within genotype, and deviation scores. All 
variables are conditionally defined with respect to a process indexed by F. 

If the conditional correlation properties of the processes indexed by F are identical 
or are sufficiently similar with respect to their major characteristics, then estimates for cor
relations that have been averaged over the processes can be fit by modelled expressions for 
the process correlations. If similarities are not sufficiently strong, then averaged estimates 
and parameters will not reflect features of environmental and genetic variation in phenotype 
scores. Therefore, failure of modelled expressions for correlations based on (5) to fit data 
averaged over coarse-grain categories of the environment is one indication of large interac
tions of fine-grain environmental and/or genetic effects with coarse-grain environmental 
effects. Good fit of modelled expressions with parameter estimates that deviate significantly 
from null values is an indication of negligible interactions with the coarse-grain environ
ment — that is, of a commonality of effects of fine-grain environments and genotypes 
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among processes indexed by F. Good fit with nonsignificant parameter estimates can indi
cate either the absence of effects or an averaging out of interacting effects. 

In place of (5) one might consider 

X=gY* + (l -g 2 ) 1 / 2 Z* (6) 

where Y* and Z* are respective standardized genotype and corresponding residual scores 
and g2 is a broad-sense heritability coefficient. It turns out that this is not nearly so con
venient as the representation in (5). The reason is that Y is a sum of similarly defined addi
tive genetic scores of gametes (Y* is not) and that this property can be used to great ad
vantage in the derivation of correlation scores between relatives in the X, Y, and Z scores. 

For any pair of individuals, 1 and 2, there are four correlations that must be de
scribed for a second-order statistical model. These are for the pairs (Yt, Y2), (Yj, Z2), 
(ZI,Y2),and(Z1,Z2). 

Correlations of Additive Genetic Scores 

The index G of a diploid genotype of autosomes of an individual can be written as a sum 
of two indices, gi and g2, for the haploid genotypes of the following: 

(1) gametes that fuse to form the individual or 
(2) segregation products of any meiotic division in the germ plasm of the individual. 

The dimensions of a matrix g are the same as those of G, and its elements are zero-one 
random variables, which indicate those alleles at segregating loci that are present. Conse
quences of the two facts that G = g! + g2 and that t(-) is a linear function in the elements 
of its matrix argument and of population equilibrium are these: 

(3)t(G) = t(g l ) + t(g2)and 
(4) because of the mendelian laws of segregation, the correlation between t(gi) and 

t(g2) is the same for both identifications (1 and 2, above). 
These results hold only for additive genetic scores and make these much easier to 

work with than either nonadditive genetic or genotype scores. Because of them, one can 
express the additive genetic score of an individual, Y, as a linear combination of the additive 
genetic score, Y', of one of his parents and an uncorrelated residual Z', viz, 

Y = W + %[(1 - m)/(l + m)] U2Z'. (7) 

The correlation coefficient, m, is Wright's inbreeding coefficient for additive genetic scores. 
Furthermore, Y' and Z' can be written as linear combinations of standardized additive 
genetic scores, y[ and y'2, of the gamete that enters into the union that produces the indi
vidual and its segregation complements, viz, 

Y' = krWT<tf+^and z'=[icrbo]1/2(yl" y'2r (8) 

The important feature of this representation is that Z' does not correlate with any additive 
genetic score other than that of the individual. The reason for this is that y t and y2 corre
late equally with any additive genetic score other than Y, and therefore any correlation 
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with yi — y2 is zero. When convenient in a correlation analysis, Y can be written in the 
form of (7), and the second term can be ignored. 

The correlation coefficients for the 22 pair relationships we must consider can be 
written as simple functions of four correlation parameters: p, p , p", p'". The derivation is 
easy if the following order is used: the score of a child is always replaced by the first term 
in (7), and whenever a new unknown correlation is required, one of the four parameters is 
introduced. The following completely general results for pairs [on left, refer to (1)] and 
correlations (on right) are obtained: 

1 1 
14,15 
2,3,4,5,6,7 
16 
8,9 
17,18 
21 
10,11 
22 
12,13 
19,20 

P 
(l+p)/2 

P 
(1 + p + 2p')/4 
(P + P')I2 

If 

P 
(l+2p+p")/4 

P 
(1 + p + 4p' + 2p'")/8 
(p' + p'")/2 

It can be seen that the four parameters are correlations in additive genetic scores between 
nonconsanguineous relatives in the parent generation. In populations at equilibrium, the 
husband-wife correlation, p, is a function of m — viz, p = 2m/(l + m); in general, the others 
have no such simple expression. 

At this point, we introduce assumption GG, previously described, in order to reduce 
the number of correlation parameters to one. Without such parsimony, the finished model 
would contain too many parameters to obtain a unique fit to experimental data. In our 
precise formulation of GG, Yt and Y2 are additive genetic scores of spouses, and Yj is the 
set of additive genetic scores of all nonconsanguineous relatives of spouse 1. The assumption 
is that 

E(Y1lY,) = pY2, (10) 

that is, the conditional expected value of an individual's additive genetic score, given such 
scores for all his nonconsanguineous relatives, is proportional to the additive genetic score 
of his spouse. An immediate consequence of (10) is an expression for the correlation co
efficient for a husband-wife pair, viz: 

E(Y,Y2) = E[E(Y, Y21Y,)] = E[Y2E(Y, \Y1)]= E(pY2
2) = p. (11) 

This is the required result for husband-wife and an individual with MZ twin's spouse pairs 
[pairs 14 and 15 of (1)]. Almost as simple a derivation can be obtained for an individual 
with DZ twin's spouse [pair 16 of (1)] if we index the twin's spouse, DZ twin, and indi
vidual by 1, 2, and 3, respectively: 

E(Y,Y,) = E[E(Y1Y31 Y,)] = E[Y3E(Y1 I Y,)] = E(pY3Y2) = p[(l +p)/2]. (12) 
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This is the expression for p' in (9) in terms of p. Notice that E(Y3Y2) in this derivation is 
the correlation for DZ twins. The remaining two correlation equations that define param
eters can be derived as easily as these. Each turns out to be just the product of coefficients 
along a direct chain of pair relationships linking up the two individuals; viz: 

p" = p2andp'" = p 2 [ ( l+p) /2] . (13) 

The 22 required correlation coefficients of additive genetic scores, expressed as func
tions of p alone, are displayed later, in Table 3 under the column headed "ci: Coefficient 
of h2." It is easy to show that this system of correlations is positive-definite for any value 
of p between —1 and 1 and therefore is mathematically consistent. They also satisfy the 
known boundary conditions for no assortment of additive genetic scores (p = 0) and for 
perfect assortment of scores (p = —1 and 1). 

Correlations of Additive Genetic With Residual Scores 

There are two reasons why additive genetic scores can correlate with residual scores in the 
22 pair relationships we consider. The first is that the constructive method used to define 
additive and nonadditive genetic scores does not necessarily result in their being uncorre
cted, except in the pairings of an individual with himself and of MZ twins, which genetic
ally is an equivalent. The second is that the environment of an individual, which influences 
development of his residual score, can be in part controlled by his immediate relatives and 
therefore influenced by their genotypes. In the second case, if the influence of genes on 
environment is measured by the nonadditive score, then this effect will be picked up in 
the correlations between residual scores. If it is measured by the additive score, then it 
must appear in a cross correlation of additive genetic with residual scores. 

Expressions for the cross correlations can be derived from a precise statement of the 
previously described assumption GR. We formulate this in terms of the residual score, Z, 
of an individual and the set, Y, of additive genetic scores of all of his consanguineous rela
tives. The assumption is that 

E (Z lY)= K l [Y ' - [ ( l+p ) /2 ]Y] (14) 

if the individual is an only child or an MZ twin with only one sibling, or 

E(Z IY) = Kl[Y' - [(1 + p)/2]Y] + K2[Y - [(1 + p)/2]Y] (15) 

if the individual is not an MZ twin and has one or more siblings or is an MZ twin with two 
or more siblings. In these equations, Ki and K2 are constants, Y' is the average of the indi
vidual's parents' additive genetic scores, and Y is the average of additive genetic scores for 
all siblings of the individual, other than an MZ twin. Equations (14) and (15) can be com
bined into a single equation; viz: 

E(ZIY, fi) = Kl[Y'- [(1 + p)/2]Y] + f?K2[Y - [(1 + p)/2]Y] (16) 

if we let f) be an independent random-variable indicator of which of equations (14) (77 = 0) 
and (15) (fj = 1) is required for a particular problem. 

For an individual who is an only child or an MZ twin in a family of two children, 
the conditional expectation (16) depends only on the difference between the average of 

https://doi.org/10.1017/S0001566000006590 Published online by Cambridge University Press

https://doi.org/10.1017/S0001566000006590


Analysis of Genetic and Environmental Effects 19 

parents' additive genetic scores and the best linear predictor of that score in the individual's 
additive genetic score. Otherwise, the difference between the average of scores for siblings 
other than an MZ twin and the best linear predictor also enters into the formula for the 
conditional expectation. The reason that the additive genetic score of an MZ twin is ex
cluded from these relationships is that it does not differ from Y, and therefore it should 
have no correlative effect on Z, because Y and Z do not correlate. 

We recall that, as a consequence of the manner in which they are constructed, the 
additive genetic and residual scores in the partition of a phenotype score do not correlate. 
The GR assumption leads to the same result because 

E(YZ If?) = E[E(YZ IY, f?)] = E[YE(Z IY, f?)] 
= KAE(YY) - [(1 + p)/2]E(Y2)} + f?/c2{E(YY) - [(1 + p^EfY2)} 
= Klj[(l + p)/2] - [(1 + p)/2]} + fiK2{[(l + p)/2] - [(1 + p)/2]} = 0. 

(17) 

Equation (16) indicates that a parent's additive genetic score can correlate with any 
of his or her children's residual scores. This does occur because 

E(Y'Z I f?) = E [E(Y'Z IY, f?)] = E [Y'E(Z IY, f?)] 
• K E(Y'Y')- [(1 +p)/2]E(Y'Y)]}f f?K2{E(Y'Y)- [(1 + p)/2]F,(Y'Y)} 
K.{[( l+p)/2]-[( l+p)/2]2} +f?/<2{[(l + p ) / 2 ] - [(1 +p)/2]2} 

= (Kl + r?K2)[(l-P2)/4]. (18) 

If no distinction is made about the number of children in a family or their twin status, 
then the expectation of E(Y'Zlf?) with respect to f? can be used in a model for cross corre
lations. This we denote by 

E(Y 'Z) = (K I + TJ/<2)[(1 - p 2 ) / 4 ] = 5 . (19) 

It is a parameter in our expression for the cross correlations. The complementary correla
tion of a child's additive genetic score with his parent's residual score is zero, as is indi
cated by the absence of a child's score in equation (16); ie, 

E{YZ' I fj) = E[E(YZj Y\ f?)] = E[YE(Z' IY', r?)] 
= K 1 { E ( Y Y " ) - [(1 +p)/2]E(YY')j +fjK2{E(YY')_ [(1 + p)/2]E(YY')} 
= Kl{[(l + p)/2]2 - [(1 +p)/2]2} + f)K2{[(l + p ) / 2 ] 2 - [(1 +p)/2]2} 
= 0. (20) 

In this, Y" is an average of grandparents' additive genetic scores, and Y' is an average of 
scores for parent's siblings, other than an MZ twin. 

The other pair relationship that defines a parameter of the cross-correlation expres
sions is the full-sibling pair. For this, 

E(Y,Z2) = E[E(Y, Zjl Y2)] = E[Y,E(Z2 | Y2)] 
= «,{£(¥, Yi) - [(1 + p)/2]E(Y,Y2)} + K2{E(Y, Y2) - [(1 + p)/2]E(Y1Y2) } 
= K, [(1 + p ) / 2 ] - [(1 +p)/2]2} + K2{E[(l +p)/2]+ [(1 - p ) / 2 ( k - 1 ) ] -

[0+P)/2]2} 
= (K, + K2)[(1 -P 2 ) /4] + K2E[l / (k- l ) ] [ ( l - p ) /2 ] 
= 6 + K 2 { ( 1 - T J ) [ ( 1 +p)/2] + E [ l / ( k - ! ) ] } [ ( ! -p ) /2 ] (21) 
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where k — 1 is the random variable number of siblings of a child, other than an MZ twin, 
and k - 1 > 1. The second term in the final expression on the right-hand side of (21) is 
the second parameter in our expressions. We denote it by A. 

The full set of cross correlations for the 22 pair relationships can be derived in the 
manner that we have used for (17)—(21). For each pair involving a parent and a child, the 
complementary correlations must be worked out as in (19) and (20). In the list that follows, 
these are given with the combination of a parent's additive genetic score with a child's 
residual score in the first position. 

1,14,15, 
2,3 
10,11 
12,13 
4 ,5 ,6 ,7 
8,9 
17,18 
19,20 

16, 21, ,22 0 
5 + A 
(l+p)6/2 
(1 + P)25/4 
5,0 
( l+p)6 /2 , ( l+pX6+A) /2 
P5,0 
p( l+p)5/2 ,0 (22) 

Sums of these terms appear later, in Table 3 under the column headed "c2: Coefficient of 
h(l - h2)1/2." For pair relationships involving two parents or two children, the entry is 
twice the single value given in the list in (22). For other pairs, the entry is the sum of two 
values shown in (22). 

The results for cross correlations do satisfy known boundary conditions. All of the 
correlations are zero if neither parents nor siblings have a direct effect (K t = K2 = 0) or if 
additive genetic assortment is positive and perfect (p = 1). If siblings have no direct effect 
(K2 = 0) or additive genetic assortment is positive and perfect (p = 1), then the sum of full 
sibling correlations is twice the sum of parent with his or her child correlations (A = 0). 

Correlations of Residual Scores 

There is no basis, such as the mendelian law of segregation, on which to construct an analy
sis of correlations of pairs of residual scores. Therefore, any model to describe these corre
lations adequately must contain many more parameters than are required for pairs of addi
tive genetic scores. We divide the problem here into two parts. The first concerns correla
tions for the 13 consanguineous pair relationships in (1), and the second concerns those 
for the remaining nonconsanguineous pairs. 

One feature of the set of consanguineous pairs that can be identified and used is that 
pairs can be distinguished by relationships between members of a pair in prenatal environ
ments, postnatal familial environments, and nonadditive genetic scores. The first two of 
these are fine-grain distinctions in the autosomes' environment. For example, effects on 
adult phenotype of prenatal and postnatal familial environments for MZ and for DZ twins 
are quite similar and will be treated as the same. However, there are correlation differences 
in nonadditive genetic scores, because the scores of MZ twins are identical and those of 
DZ twins are not. In general, differences can be indexed, say by variables fi, f2, 2, respec
tively, for prenatal environments, postnatal familial environments, and genotypes. The f 
variables are elements off. Usually, a correlation in residual scores can be expressed 
exactly as a Fourier expansion of the following form: 

EZE.Mijk^fO^HOO- (23) 
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In this, a i>(°) is a basis function for the expansion and a y. is a parameter determined by 
the expansion. The number of terms required in an expansion depends on the range of the 
f and £ indices. 

If there is an expansion of the form in (23) in which all terms except a few of the 
leading ones are negligible, then the function can be well approximated by 

«i + |Jj + 7k (24) 

where i, j , andk replace the indices fi,f2, and 8; and a, j3, 7 are parameters of the repre
sentation. For the 13 consanguineous pair relationships, there are four distinguishable 
types of association of prenatal environments, five of postnatal familial environments, and 
four of genotypes. Therefore, we take i = 0, 1, 2, 3; j = 0, 1, 2, 3,4; and k = 0 , 1 , 2, 3, and 
use increasing values of an index to indicate increasing degrees of relationship. For example, 
for the consanguineous pairs in which individuals are least related — viz, first cousins re
lated through DZ twin fathers [13 of (1)], we have, i = j = k = 0, and the parameterized 
form of the correlation in residual scores is a0 + j30 + 70. The next most distantly related 
pairs are first cousins related through DZ twin mothers [12 of (1)]. The prenatal environ
ments of these cousins are more closely related than those whose fathers are DZ twins, 
because the mothers who provide the environment are consanguineous relatives. Therefore, 
we replace a0 by a^ The relationship of postnatal familial environments does not depend 
on the sex of DZ twin parents, nor does the relationship of nonadditive genetic scores. 
Therefore, there is no change in /3 and 7 parameters, and the parametric expression for the cor
relation in residual scores is at + j30 + y0- The indices must attain their maximum values 
for the MZ twins pairs [1 in (1)] in which prenatal environments are identical; postnatal, 
familial environments are most similar; and nonadditive genetic scores are identical. There
fore, the parametric expression for these pairs is a 3 + 04 + 73. 

The exact definitions of the levels i, j , k, which we use for Swedish-type studies, are 
set out in Table 2. The parametric expressions for the correlations in residual scores for 
consanguineous relatives are listed under the column headed "c3: Coefficient of (1 — h2)" 
in Table 3. 

Fine-grain environment by genotype interactions are a cause of errors in the approx
imation of (23) by (24). These can have two effects on analyses based on this model. 
First, if substantial interactive effects are unconfounded with additive effects that are ac
counted for by the approximation, then data will tend not to fit the model. Second, con
founded interactive effects are attributed to additive effects and will bias upward estimates 
of fractions of variance due to the latter. An adequate test of fit is a protection against 
the first of these. The second is recognized in our applications of the model where we ac
knowledge that a nonzero variance fraction associated with the fine-grain environment 
means that the effect is real for at least one genotype, although it could have a zero ex
pectation over all genotypes. 

At this point we introduce previously defined assumption RR to complete the deriva
tion of correlations in residual scores for nonconsanguineous relatives. In our precise formu
lation of RR, Z( and Z2 are residual scores of spouses, and Zt is the set of residual scores 
of all nonconsanguineous relatives of spouse 1. The assumption is that 

E(Z1IZ,) = 0Z2, (25) 
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TABLE 2. Indices for Fine-Grain Environment of the Swedish Twin-Family Study and Nonadditive 
Genetic Scores* 

Factor (model parameter) Index value Degree of similarity 

Prenatal familial environ
ment (a) 

Postnatal familial environ
ment (/3) 

Nonadditive genetic score (7) 

Less similar than for pregnancies of sibling mothers 

As similar as pregnancies of sibling mothers 
As similar as two pregnancies of one mother or of 

different pregnancies of MZ twin mothers 
As similar as the common pregnancy of twin siblings 
Less similar than for double first cousins reared sep
arately in natural homes 

As similar as double first cousins reared separately 
in natural homes 

As similar as parent and offspring reared separately 
in natural home 

As similar as nontwin full siblings reared together 
in natural home 

As similar as twins reared together in natural home 
Biologically related as first cousins 
Biologically related as half-siblings 
Biologically related as full siblings 
Biologically related as MZ twins 

*Index values denote different degrees of similarity in environments and nonadditive genetic scores. 
Only differences in pre- and postnatal environments are considered. These are associated with compari
sons among twin-family units, between families in units, and among children within families. In each 
case, comparisons are made within a type of twin-family unit characterized by the sex and zygosity of 
twin parents. 

that is, the conditional expected value of an individual's residual score, given such scores 
of all of his nonconsanguineous relatives, is proportional to the residual score of his spouse. 
The proportionality constant is the correlation for husband-wife pairs; ie, 

EfZjZ;,) = E[E(Z!Z21Z,)] = E[Z2E(Z! IZ,)] = E(0Zl) = 6. (26) 

The remaining expressions are as easy to derive as this one. Each turns out to be a product 
of coefficients in a direct chain of pair relationships between the two individuals. The com
plete list is set out in Table 3 in the final nine entries under the heading "c3: Coefficient 
of(l - h 2 ) . " 

In all, nine parameters are required for applications of our model of correlations in 
residual scores to the twin family units of Swedish-type samples. These are the linear 
combinations: (a0 + 0O + To), («i ~ «0), (a2 - a,), [(0, - 0O) + (71 - To)], [(02 - 0i) + 
(72 - 7i)], (03 - 02), (73 - 72), [(<*3 - <*2) + (04 - 03)], and 6. (The 13 basic parameters 
cannot be cleanly separated in the 22 pair relationships we consider.) This is a sharp con
trast to the single parameter needed to model correlations in the additive genetic scores. It 
is due principally to the lack of a biological system with properties that make it possible 
to relate residual scores of consanguineous relatives and to our desire to construct a model 
in which correlations in phenotype scores can be closely approximated by correlations in 
residual scores alone. 

https://doi.org/10.1017/S0001566000006590 Published online by Cambridge University Press

https://doi.org/10.1017/S0001566000006590


Analysis of Genetic and Environmental Effects 23 

TABLE 3. Model Expressions for Correlations Between Additive Genetic Scores (ct J, the Sum of 
Complementary Correlations Between Additive Genetic and Residual Scores (c2), and Between Residual 
Scores (c,)* 

Pair relationship c,: Coefficient of h2 c,: Coefficient of h(l - h2)1'2 c3: Coefficient of (1 - h2) 

Consanguineous 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
Joncon! 
14 
15 
16 
17 
18 
19 
20 
21 
22 

1 
( l + p)/2 
(1 + P)/2 
( l + p ) / 2 
(1 + P ) / 2 

(1 + P)/2 
(1 + P)/2 
(1 + <°)74 
(1 + P ) 2 / 4 

(1 + p)2/4 
(1 + P ) 2 / 4 

(1 + P)78 
(1 + P)3/8 

sanguineous 
p 
P 
P d + P)/2 
P d + P)/2 
P(l + P ) / 2 

P d + P)V4 
p ( l + p ) 2 / 4 
P2 

P 2 ( l + p ) / 2 

0 
2(8 + A) 
2(6 + A) 
S 
6 
6 
6 
(1 + p)(6 + A/2) 
(1 + p)(6 + A/2) 
(1 + P )6 
d + p ) 6 
( l + p)26/2 
( l + p ) 2 8 / 2 

0 
0 
0 
p6 
P« 
p ( l + p ) 6 / 2 
P d + p)6/2 
0 
0 

( < * 3 + 0 4 + T 3 ) 

( a 3 + P 4 + 7 2 ) 
(a2 + /33 + 72) 
(<* ,+0 2 +7 2 ) 
(<*„ + 0 2 +7 2 ) 
(a, + 0 2 + 7 2 ) 
K + ( 3 2 + 7 2 ) 
(a^+fl, + 7 l ) 

K+0, +7l) 
(0^+0 , + T l ) 
(<*„+£, + 7 l ) 

(«, + /30 + To) 
K + 0 o + 7 o ) 

e 
0(a3 + |34+73) 
9(a3 + ft, + 72) 
9(a, + /32 + 72) 
6(a0 + |32 +7 2 ) 
e(a, +(3, + 7 l ) 
0 K + 0 , + 7 t ) 
e 2 K + ( 3 4 + 7,) 
9 2 (a 3 + /34+7 2 ) 

*The index of pair relationships is given in the list in (1). The model expression for a correlation be
tween phenotype scores for any pair is the sum h2c, + h(l - h2)"2c2 + (1 - h2)c3, with the values of 
c,, c2, and c3 taken from the row indexed by the pair relationship. 

It is easy to show that the system of 22 correlations in residual scores is positive-def
inite for any 9 from —1 to 1 if the subsystem for 13 consanguineous pair relationships is 
positive-definite. This also is required for a mathematically consistent model. The subsys
tem will always be non-negative-definite if the parameters satisfy the inequality relation
ships: 

0 < a 0 < o ; 1 < a 2 < a 3 , O < | 3 o < 0 i <j32 <j33 <j34,and 0 < r 0 <Ti <7a <7a- (27) 

These are equivalent to a statement that all correlative relationships in effects of environ
ment and nonadditive genetic scores are non-negative. Negative effects, which might occur, 
for example, in complementary behavior, are not excluded, but there is no property simpler 
than non-negative defmiteness of the subsystem to place bounds on how they are reflected 
in the correlation parameters other than 8. 

The derived expressions for nonconsanguineous pairs of relatives satisfy required 
boundary conditions if there is no assortment for residual scores (6 = 0) or if assortment 
is perfect (9 = - 1 or 1). 
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Correlations of Phenotype Scores 

The correlation coefficient for phenotype scores Xj and X2 of any two individuals in a 
pair relationship is 

E(XiX2) = h ' E O W + h(l - h2)1/2[E(Y1Z2) + E(Z1Y2)] + (1 - h2)E(Z,Z2). 
(28) 

Expression for this can be obtained for pairs in list (1) from results summarized in Table 3. 
For example, the respective correlations for MZ twins and DZ twins [1 and 2 in (1) and 
Table 3] are 

h2 + ( l - h 2 ) ( a 3 + 0 4 + 73) (29) 

and 

h2[(l + p)/2] + 2h(l - h2)1/2(5 + A) + (1 - h2)(a3 + fa + y2). (30) 

The full system of 22 correlations of this type must be non-negative-definite for an intern
ally consistent model. We have already stated that this property obtains for each of the 
systems in E(YiY2) and E(ZiZ2) expressions, and therefore it also holds for E(XiX2) if 
8 = A = 0. More generally, one can show that the combined system of E(YiY2), E(YXZ2), 
E(ZiY2), E(ZXZ2) expression can be non-negative-definite for nonzero 5 and A. 

Useful functions of the model correlation expressions can be derived and interpreted 
from considerations of equations (4), (5), and (6) and the definitions of indexed a, (3, and 
7 parameters. First, the variance of a nonstandardized phenotype score can be written as 
a sum of variances as a consequence of correlation properties of the component terms in 
(4). It is 

v = var [t(G)] + var [u(G)] + var [s(F, G) - s(G)] + var [v(F, G)]. (31) 

The first three terms in (4) are the same for two MZ twins, and the final random variables 
do not correlate if indices of all environments that create correlations between MZ twins 
are contained in F. In these cases the covariance of phenotype scores for MZ twins is 

c = var [t(G)] + var [u(G)] + var [s(F, G) - s(G)] (32) 

and the correlation is the ratio c/v. The first functions we consider are the fractions of 
phenotype variance attributed to variation in additive genetic, nonadditive genetic, and 
genotype scores. The ratio for additive genetic scores, which also appears in (5) and is de
fined there, is 

h2= var[t(G)]/v. (33) 

The ratio for nonadditive genetic scores, which was introduced in the definition of 73, is 

( l -h2)73=var[u(G)] /v . (34) 
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With these two and the definition introduced with equation (6) for the ratio for genotype 
scores, we have 

i = var [s(G)] /v = {var [t(Q] + var [11(G)]} /v = h2 + (1 - h2 ) 7 3 . (35) 

This leaves 

(1 - h2)(a3 + fa) = var [s(F, G) - s(G)]/v (36) 

for the fraction that can be attributed to all effects of the fine-grain environment. Here, it 
is important to observe two things. First, s(F) — s(F) rather than s(F, G) — s(G) is the com
monly employed definition of a score for environmental effects, and s(F) — s(F) = 0 implies 
that var [s(F, G) — s(G)] = 0 only if there is no fine-grain environment by genotype inter
action. Therefore, nonzero a3 + fa indicates only that there are effects of the fine-grain 
environment for some genotypes. Second, the notation a3 + fa suggests that there is no 
interaction of effects of different types of the fine-grain environment. We have already 
stated that this is an assumption and indicated consequences of incorrect applications of 
the assumption. A final variance fraction is 

1 - (c/v) = (v - c)/v = var [v(F, G)] /v = (1 - h2)(l - a3 - fa - y3). (37) 

This is a fraction that must be attributed to factors not indexed in F, G. 
Other fractions of the phenotype variance can be worked out from consideration of 

terms that appear in differences that yield the fractions. Here, we mention three that will 
be used in our examples. The difference between DZ twins and full siblings in correlations 
of residual scores is a measure of the importance of cohort effects because twins are born 
at the same time of the same pregnancy and full siblings are born of different pregnancies. 
The fraction of phenotype variance associated with this is 

(1 - h2)(a3 + fa + 7 2 ) - (1 - h2)(a2 + fa + 72) = (1 - h2)[(a3 - oc2) + (fa -fa)]. 
(38) 

The correlative effects of pre- and postnatal familial environments on twins are indicated 
by a3 and fa. If cohort effects are subtracted from these, then the remainder can be used 
to indicate effects of pre- and postnatal familial environments adjusted for cohort differ
ences. These are 

(1 - h2)[a3 - (03 - a2)] = (1 - h2)a2 and (1 - h2)[04 - (fa - fa)] = (1 - h2)03 

(39) 

respectively. Each of the fractions in (38) and (39) must be interpreted in the same manner 
as (36); that is, a nonzero fraction indicates nonzero effects for at least one genotype; it 
does not mean that the effects cannot sum out over all genotypes. 

Model expressions can be used to investigate the meaning of parameters in other 
genetic analyses. We present four examples of these here, which will be used in our worked 
example. The first two are simple functions of correlations in phenotypes, which are often 
used to assess the importance of genetic effects. They are the doubled difference in corre-
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lations of phenotype scores for MZ twins and DZ twins and the coefficient of regression 
of child's score on the average of parents' scores [cf 8]. In terms of our model parameters, 
the respective expressions for these are 

h2(l _ P ) _ 4h(l - h2)1/2(5 + A) + 2(1 - h2)(73 - y2) (40) 

and 

h2(l + p) + 2h(l - h2)1/2S + (1 - h2)(a0 + a. + 2j32 + 2?2). ( 4 1 ) 

h2(l + p) + (1 - h2)(l + 9) 

The first is obtained from lines 1 and 2 of Table 3, and the second, which is the sum of 
correlations between child and mother and father divided by 1 plus the correlation between 
husband and wife, is obtained from lines 4, 5, and 14. The expression in (40) equals h2 

or g2 only if 

h2p + 4h(l - h2)1/2(S + A) + 2(1 - h2)T 2 = 2(1 - h2)73 or (1 - h2 >y3. (42^ 

Special cases where one or the other equality holds are easy to find; eg, 

p = 5 + A = 0 and 72 = 73 or 72 = 73/2, 

but from data on twin correlations only, it would be impossible to tell if any of the special 
cases is applicable. Conditions for the second expression to equal h2 or g2 are more com
plicated, but similar conclusions hold about analyses based only on the estimated regres
sion of a child's score on the average of parents' scores. The final two functions are the 
correlation for MZ twins raised apart and the deviation of it from the correlation for MZ 
twins raised together [cf 2]. If separation affects only the correlative effects of pre- and 
postnatal environments and results in the elimination of the latter, then our expressions 
for the correlation between twins raised apart is 

h2 + (1 - h2)(<*3 + 73) = g2 + (1 - h2 V 3 • (43) 

In this, the prime on a3 denotes the possibility of a modification of residual prenatal ef
fects as a result of separation. Then the difference in correlations is 

(1 - h2)[(a3 - a's) + &] = (1 - h2)/33 + (1 - h2)(a3 - c/3). (44) 

The values of these clearly depend on a3 and a3 — a'3. If CK3 = a'3 = 0, then (43) and (44) 
are expressions for fractions of the phenotype variance which can be attributed to varia
tion in genetic scores and differences in postnatal familial environments. The interpreta
tion of (43) is unchanged if only a'3 is zero, but the fraction in (44) must then be attribu
ted to a combination of pre- and postnatal familial environments. Again, it is impossible 
to determine if either of these special cases applies when only correlation data on these 
two types of pairings are available. 
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STATISTICAL ANALYSIS 

Several different statistical analyses are needed to make inferences about our model and 
parameters in it from data of the type collected in the Swedish twin-family study. The first 
set of analyses is used to adjust response data for coarse-grain environmental effects of sex, 
generation, and type of twin-family unit and to eliminate from sample correlation estimates 
potential biases due to the cluster-sample feature of the response data. These adjustments 
can be effected in two steps, the first of which involves an extension of the standard intra-
class correlation analysis to account for the random-variable length of a family-unit re
sponse record, and the second is a simple procedure for combining the 72 correlation esti
mates into 22 summary estimates. The second set of analyses is used to obtain a test of 
lack of fit of the model to the 22 estimates, estimates of model parameters, and tests con
cerning them. In these, it is necessary to deal with problems resulting from the nonestim-
ability of certain combinations of model parameters in general and in special cases where 
estimates of h2 are near zero or one. Inequality constraints like those set out in (27) play 
an important part in the solution of these problems, so that explicit use of them is a unique 
feature of our analysis. 

Inter-Unit Correlation Analysis 

The 72 pair relationships can be distinguished by differences in the coarse-grain environ
ment of Swedish-type studies and some additional differences among consanguineous and 
nonconsanguineous relatives. For example, a man with his DZ twin's son is characterized 
by two values of F, which denote sex of individual, generation of birth, and type of twin-
family unit for each member of the pair and by the uncle-nephew relationship. Scores of 
a phenotype for such a subsample provide data to estimate mean values that are needed 
to calculate the deviations within coarse-grain environments on which all random-variable 
scores in (4) depend. 

Pairs in a subsample are not independent. Some overlap, some are disjoint but are 
from the same family, and some are disjoint and from different families but are from the 
same twin-family unit. Therefore, ordinary sums of squares and cross-products pick up 
intra-family and inter-family, intra-unit variation, as well as inter-unit variation, and a 
special method of analyses is needed to obtain adjusted inter-unit estimates from the 72 
subsamples of pairs of phenotype scores. Details of our method can be set out easily if dis
tinctions are made between intra- and inter-family relationships and asymmetric and sym
metric relationships. The first of these is obvious. For the second, symmetric will be used 
only for pairs in which the individuals are the same sex and are born in the same generation. 
Examples are the inter-family, symmetric relationships between male first cousins and the 
intra-family, asymmetric relationship between father and son. 

Individuals and their useful identifying characteristics must be indexed in order to 
describe methods of calculation. We assume that this has been done and use the sub
scripts i, j , and k to index family units, families within a family unit, and individuals 
within a family. For a given pair relationship, the number of twin-family units in which 
at least one pair of the required type can be found is denoted by p, and values of the i 
index are assigned so that 1 < i < p. The number of families in the ith unit with at least 
one member of a pair is denoted by qj, and values of the j index are assigned so that 1 < 
j < q;. In symmetric relationships, the number of individuals in the jth family of the ith 
unit who are counted in the pairs is denoted by ny, and the values of the k index are as
signed so that 1 < k < ny. In asymmetric relationships, the numbers of individuals in the 
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jth family of the ith unit who are respective first and second members of an asymmetric 
pair are denoted by ny and ny. The unstandardized score of a phenotype for the kth indi
vidual in the jth family of the ith unit is denoted by xy^. 

Location adjusted, unbiased inter-unit covariance estimates for all asymmetric pair 
relationships can be calculated from 

1 / ( P - D 
P 1i «y njj* / P qi ny \ 

I E E E (i/mDxijkXii*k' - a / p ) ( E E EK*/mOxijk)x 
i=i j=i k=i k'=i \ i=i j = i 5=1 / 

[zLzL E (mij/mi)xij*k'l • 
\ i= l j=l k'=l / J 

(i/P)E 
i=l 

qi ny nij* 
E E E (1/mOxiJkXij*k'' 

_ j=l k=l k'=l 

/ 1i nij \ / <li n i j* \~| \ 

I E E (mWmi)Xijk)( E E (mij/mi)xij*k'l j (45) 

where im = miimh + rm^m^, my = ny, my = ny, and for respective intra-family and inter-
family and inter-family pairs j * = j and j * = 2(1) if j = 1(2). Two variance estimates can be 
obtained from the same formula by first replacing xy*k' everywhere by xy^ and then by 
reversing the order of replacement and substituting xy*k everywhere for xy^. Only slight 
modifications of (45) are required for symmetric pair relationships. The ratio my/mi must 
be replaced in the two positions where it appears by my/mi, and for intra-family pairs, 
the double summation on k and k' must be replaced by a sum over all (k, k') pairs for 
which k ¥= k'. The definitions of my, my, and j * for the respective intra-family and inter-
family pairs are: 

my = ny, my = (ny - 1), j * = j , and my = ny, my = ny*, j * = 2(1) 

if j = 1(2). (46) 

In Swedish-type studies, two members of a symmetric pair have the same pedigree charac
teristics, and therefore only one variance estimate is needed for a pairing. This can be ob
tained from (45), modified in the manner described, and from (46) by replacing xy*^ 
everywhere by xy^. 

Product-moment correlation ratios, rjjS, are formed from the covariance and variance 
estimates for location and scale adjusted, inter-unit estimates of the 72 intra-class correla
tions. For the rest of the analysis, each of these is first transformed into a Fisher z variable. 
For the Cth correlation estimate in the hth summary group, this is 

Zhs = %8n[(l+rhB)/0 ~ rhe)l • (47) 

The approximate distribution of one of these is normal with expected value 

H£n[0+ChB)/(l-chfi)] (48) 
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where Che is the intra-class correlation estimated by rhe, and has a variance that does not ex
ceed 1 /(phe — 3). The exact variance in this approximation is always intermediate to 
^(Phe — 3) and l/(phe — 3). By taking the larger limit, we can offset errors in the approxi
mation. Average estimates for the 22 summary classes are obtained from linear combina
tions of the form 

Zh = £ ( P h e - 3)zhc / £ (P^ - 3 ) . h = 1, . . . , 22. 
B / E 

(49) 

These are approximately normally distributed with expected values 

tt M O + ch)/(l - ch) ] , h = 1,. . . , 22. (50) 

and variances that are proportional to 

l / E ( P h B - 3 ) , h = l , . . . , 2 2 . (51) 

The proportionality constant is one, and Zh has minimum variance when the subsamples 
indexed by £ are independent, as in the case of husband-wife pairs. When the samples are 
related, as with male-male, female-female, and male-female pairs of cousins, the propor
tionality constant is not greater than one-half of the number of related pairs plus one, two 
in the example. In some of these cases in the Swedish sample, the constant is closer to one 
because few families have more than two children (see Table 1), and therefore only in
frequently is there more than one pair of a set like male-male, female-female, and male-
female in a sampled family unit. We found for the Swedish data that the proportionality 
constant can safely be taken as one for relationships 1, 2, 3,14, 15,16, 21, 22, and three-
halves for the rest. 

Summary correlation estimates corresponding to (49) are 

rh = (1 _ e"
2zh)/(l + e"2zh), h = 1 , . . . , 22. (52) 

The units of information used in the calculation of each can be taken as the inverse of the 
variance of the z variable. For the Swedish study, this is either the reciprocal of (51) or 
two-thirds of the reciprocal. 

Nonlinear Least-Squares Analysis 

The sum of squared deviations, 

22 

Q= £ I h { z h - 5 4 M ( l + C h ) / ( l - c h ) ] } 2 (53) 
h=l 

where Ih is the number of units of information on which Zh is calculated and model ex
pressions are substituted for Ch, can be minimized by choice of model parameters to pro
vide estimates for the parameters and a test of fit of data to the model. This nonlinear 
least-squares analysis is similar in detail to one proposed and used by Rao et al [17]. 
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Were the z variables independently distributed, then the estimates of model param
eters obtained in this manner would be efficient among estimates derived from the zj, 
variables, and the minimum of Q would be approximately chi square, with degrees of free
dom equal to 22 minus the number of parameters estimated. The variables are undoubtedly 
correlated, but we have not detected any noticeable effects of such correlations in 42 ap
plications of the analysis in our studies of the Swedish data, and therefore we postulate 
that they are negligible. 

Only 13 functions of the 18 parameters in our model can be estimated with data on 
the 22 summary correlations. We use 

0i = h 2 

02= P 
03= 0 
04= § 
05= A 

06 = (1 " 
07 = <*1 -

0 8 = a2 - ai 

09 = O-h!X(0i-0o) + (7i-7o)] 
010 = 0 - h ! ) [ ( 0 2 - 0 , ) + (72-7 i ) ] 
0n=(l-h2)O33-/32) 
012 = (1 - h2)(73 - 72) 

- h|)Oo + /3o + To) 0i3 = 0 - h2) [(a3 - a2) + <& - 03)1 
-«o (54) 

and write the ch in Q as expressions of these <j> parameters, using the equations in Table 3. 
Values of the parameters, such as A = a0

 + 0o + 7o = 0 o r 04 = 0s = 0, can be specified in 
these expressions (such a restricted parameterization was described in Crumpacker et al 
[5]). The residual quadratic can then be minimized by choice of estimates for the remain
ing parameters subject to constraints such as (27). These are the nonlinear least-squares 
estimates of the model parameters, and the minimum value of Q is a lack-of-fit sum of 
squares. Estimated variances and covariances of the parameter estimates are elements of a 
matrix V = (vrs) = (vrs)_1, where vrs equals 

22 

£ Ih(a/90r){% Bn[(l + ch)/(l - Ch)]}0/3fc){& fin[(l + ch)/(l - ch)]} (55) 
h=l 

evaluated in the nonlinear least-squares estimates of the unspecified 0 parameters. The 
residual quadratic is approximately distributed as a chi-square random variable, with de
grees of freedom equal to 22 minus the number of parameters estimated. In general, this 
is a noncentral chi square, which reduces to a central chi square when the model is ade
quate to describe the 22 correlations. 

Linear combinations of the 0 estimates can be used to provide estimates and estimates 
of bounds of meaningful functions of the model parameters. The estimated variance of one 
of these, such as \p =2_/tr0r, is 

v=232]trtsvrs (56) 
r s 

Significance tests can be computed from standardized ratios of the form (i// — tyo)!^, 
where i//0 is a hypothesized value, and the approximate null distribution is the standard 
normal. 

The parameters p and 6 cannot be estimated with any reasonable precision in small 
samples if h2 or (1 — h2) is close to zero. The reason for this is that p appears only in the 
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model expressions in functions multiplied by h2, and d appears only in functions multi
plied by (1 — h2). When one of the functions of h2 is negligible, all the corresponding 
terms in the functions of p or 6 in effect drop out of the model. We have not tried to inter
pret estimates of these parameters in the Swedish data unless h2 is at least 0.2 (for p) or 
at most 0.8 (for 0). 

Interval constraints, such as 0 < h2 < 1 and those given in (27), and preset boundary 
values, such as 5 = A = 0 and a0 + j30 + 70

 = 0, are very useful in the nonlinear least-squares 
analysis. First, they can be used to find bounds on certain functions of the model, which 
could not be estimated otherwise. This will be illustrated in the example to follow. Second, 
they limit the parameter space that has to be searched to find the minimum of Q. Finally, it 
should be noted that least-squares solutions in which some estimates are boundary values of 
constraint intervals, eg, 6 = A = 0, do not differ from least-squares solutions in which param
eters are specified to have these boundary values. This is a useful result because new analyses 
need not be calculated when some parameters are indicated to have such boundary values. 

A set of computer programs written in FORTRAN IV is available at cost of repro
duction and mailing from the authors. 

ANALYSIS OF HEIGHT 

Subjects in the Swedish twin-family study completed a medical questionnaire in which 
they were asked to state their height. All but five of 908 people provided this information. 
No verification of the accuracy of their reports has been made other than consistency checks 
at the time of coding and during computer editing of the data file. Therefore, the amount 
of measurement error and individual and family report bias in these data is undoubtedly 
greater than in data on ruled height, which might have been collected had there been suf
ficient interview time. 

The 22 summary correlation estimates required for our analysis are presented in Table 
4. These weighted averages of 72 estimates were calculated in the manner already described 
in order to eliminate differences due to the coarse-grain environment of the Swedish 
study — viz, 16 combinations of sex, generation, and sex-zygosity of family units. The en
tries for units of information are calculated in the manner described for our statistical analy
sis. Ratios in these indicate the relative amounts of information used in the calculation of 
correlation estimates. Notice that the relative amount of information drops as low as 9.3% 
(12/129) for first cousins related through DZ twin fathers (13), but that generally there is 
more information available to estimate the more important correlations for our analysis 
(1—5 and 14) than the less important ones. 

Twin, full sibling, and parent-child correlation estimates from three frequently cited 
studies are included in Table 4 to provide a comparison for the Swedish twin-family data. 
These include correlations for MZ twins reared apart. Height was ruled off to the nearest 
one-quarter inch by volunteer student assistants for the Pearson and Lee 1903 study [15]. 
Allowances were made for people measured with their boots on. For the Newman, Free
man, and Holzinger 1937 study [14], ruled measurements were made by technicians in a 
university laboratory. It is not known exactly which of Shields' records were obtained by 
ruled measurement and which by self-reporting. It appears from indirect comments in his 
1962 report that heights were self-reported for DZ twins and at least some of the MZ twins 
reared apart. Unfortunately, Shields [19] is less clear about how height data were obtained 
for his MZ twins reared together. Some of the response data for these pairs were taken from 
a booklet completed at home by the twins before office interviews. The booklet was a re
vision of a version used four years earlier to obtain information on the twins who were 
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reared apart. The original must have contained questions about height, because data from 
twins reared apart who were never interviewed were used in his height analyses. If such 
questions were deleted in the revision and heights of the twins reared together were measured 
by rule during the office interview, then, as will be apparent in the following discussion, 
much of the discrepancy between Shields' data and the rest can be easily explained. 

An immediate impression gained from a review of the estimates is that correlations 
for self-reported height are lower than for ruled height. The differences can easily be seen 
in the four studies for MZ twins reared together and for twin and nontwin full siblings. 
Shields' average estimate of 0.96 for MZ twins reared together is similar to the Newman et al 
al 0.94 estimate for ruled height. The average of these, 0.95, differs significantly from the 
0.78 Swedish estimate for reported height. The 0.97 estimate from the Newman et al study 
for MZ twins reared apart is close to their estimate for twins reared together. Shields' 0.82 
estimate of the same parameter is much closer to the 0.78 value for reported height of Swe
dish twins reared together. Similarly, his 0.44 estimate for reported height of DZ twins 
agrees well with the 0.41 value for the Swedish DZ twins and differs considerably from the 
Newman et al estimate of 0.65 for ruled height. The Pearson and Lee estimate of 0.54 for 
ruled heights of nontwin full siblings is substantially higher than the 0.36 Swedish estimate 
and intermediate to the combined Shields' and Swedish estimates and the Newman et al 
estimate for DZ twins. 

For our analyses, we set a0
 + 0o + y0 ~ 0, principally because there is no evidence 

from earlier studies of appreciable correlations in nonadditive genetic and environmental 
scores for relatives less related than half-siblings. The levels retained for a and j3 index the 
fine-grain environment for self-reported height in the Swedish study. There are 12 com
binations of these, which indicate differences in pre- and postnatal familial environments 
associated with comparisons between twin-family units, between families within units, and 
among children within families. 

There are 14 parameters for the model expressions to be fit by the 22 summary cor
relation estimates. These are h2, p, 6, 6, A, at, a2, a3, (tlt /32, $t,$4,i\ ,72 and 73. How
ever, only 12 functions of these, eg, h2, p, 6, 5, A, and (1 — h2)times aly a2, (j32 + 71), 
[(02 - 81) + (72 - 7i)], (j33 - 02), (73 - 72), and [(a3 - a2) + (j34 - j33)], can be estimated. 
Therefore, there are 22 — 12 = 10 degrees of freedom associated with the residual sum of 
squares with which lack of fit is tested. Three of the 10 degrees of freedom are associated with 
with model-predicted replications in the data. These are the pairs of correlations for rela
tionships 4 and 6, 5 and 7, and 9 and 11. The remaining 7 degrees of freedom are associated 
with overall differences between the estimated pattern of correlations and the most closely 
fitting pattern predicted with the model. The value of the residual sum of squares, 8.56 
(Table 5) is far from being significant (P = 0.58). We judge the fit of model to the data to 
be adequate. 

Estimates of parameter functions minimize the residual sum of squares (53) subject 
to the constraints displayed in (27). Numerical values of the estimated functions are: 

h2 =0.52 
p = 0.28 
0 = 0.28 
5 = 0.00 
A = 0.00 
(1 - h 2 ) ^ = 0.00 

(1 
(1 
(1 
(1 
(1 
(1 

- h2)a2^0.00 
-h2)(/31 + 7 l ) ^ 0 . 0 0 
-h2)[(02-/31) + (72-7 i ) ] = O.O6 

- h2)(/33^2) = 0.00 
-h 2 ) (73^72)^0-20 
- h 2 ) [ ( a 3 - a 2 ) + 0 3 4 - ^ ) ] = 0.01 
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From these and use of the constraints, we obtain 0.00 < (1 — h2)(ai3 - a2), (1 — h2) X 
03^j3 3 )< 0.01 and 0.00 < (1 - h 2 ) ^ ^ ! ) , (1 - h 2 ) ^ ^ ^ ) < 0.06. These can now 
be combined to provide the important estimated bounds 

0.00 < (1 - h2)|33 < 0.06 and 0.20 < (1 - h2)73 < 0.26. 

The final estimates shown in Table 5 are: 

h2 = 0.52 (1 - h2)j33 = 0.00^0.06 

(1 - h2) 7 3 = 0.20 - 0.26 (1 - h2)[(a3 - a2) + (04 - 03)] = 0.01 
g2 = h2 + (1 - h2)T 3 = 0.72 - 0.78 (1 - h2)[l - a ^ ( 3 4 - y3] = 0.22 
(1 - li2)d2 = 0.00 p = 0.28 

6 = 0.28 

Estimated sampling variances of these are obtained in the manner described from the matrix 
V [equation (55)] and variance formula (56). Only one of these is spelled out in detail 
here for the purpose of illustrating the technique. The estimated bounds for (1 — h2)73 

are 

(1 - h 2 ) ( T ^ 7 2 ) and (1 - h2){(0,'+>i) + [(02 - ft) + (72 " 7i)] + ( r p 7 2 ) } . 

Therefore, the sampling variances of the bound estimates are 

va r [ ( l -h 2 X7r > 72) ] 

and 

var[(l - h 2 ) ( ^ 7 0 ] + var{(l - h2)[(/52 - fcpfo - 7i)]} + var[(l - h2)(yf>y2)] + 
2 cov{(l - h ' X / J f ^ i ) , (1 - h2)[(02 - J30^(72 - 7i)]} + 2 cov[(l - g X P i ^ T i ) , 
(1 - h2)(73^72)] + 2 cov{(l - h2)[(H2 - fr/+t72 - 7i)l, (1 - h 2 ) (7^72)} 

respectively, and the individual variance and covariance estimates to use in these are ob
tained from their corresponding positions in V. 

A second analysis of the data in which c*i, a2 ,0i , 71, and (/33 - /32) are set equal to 
zero will not result in a change in the nonzero estimates. This, as indicated, is a characteristic 
of the constrained nonlinear least-squares analysis. Were any parameter set equal to a value 
other than its numerical estimate and a new analysis calculated, then all of the remaining 
estimates could change in value. 

One of the most instructive observations to be made about the results in Table 5 is 
that it is difficult to demonstrate a significant deviation from the hypothetical values when 
data are fit to a many-parameter model. Normalized ratios of the form (\p — i/>o)/v1/2 can 
be used to calculate approximate significance probability for deviations of estimates, \p, 
from hypothetical values, \p0. These values are shown in Table 5 for postulated zero values 
of the parameters. Only four of the probabilites are sufficiently small to be regarded as sig
nificant, even though one might consider all eight estimates of bounds of h2, (1 - h2)73, 
g2, (1 — h2)(l — <*3

 _ j34 - 73), p, and 9 to be substantially greater than zero hypothetical 
values. 
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There are three interesting results in our analysis of the Swedish data that can be 
used to explain self-reported height and to compare techniques for estimating h2, g2, and 
(1 — h2)(33. The first is that familial environment seems to be an unimportant determinant 
of the phenotype because all of the variance not assigned to s(G) (ie, 22%) can be attributed 
to v(F, G). At least part of this can reasonably be ascribed to reporting bias if the substan
tial estimate of 9 is accepted as an indication of nonzero correlation in residual scores. A 
plausible hypothesis is that people tend to round estimates of their height up or down to 
agree more closely to preconceived notions of what it should be, for example similar to a 
popular norm or to a spouse's stature. Most of the remainder of the 22% is probably due to 
reporting errors, because the correlations in ruled height for MZ twins is so high (r = 0.95 in 
Table 4), and therefore there is little variance left over (5%) to attribute to environmental 
differences not captured in our F scheme. The second result is the fractional division of g2 

into h2 and (1 - h2)-y3. We estimate that from 67% (0.52/0.78) to 72% (0.52/0.72) of the 
variance in genotype scores is due to the additive genetic component. Fisher [9], in an 
analysis of the Pearson and Lee data, estimated that the variance of additive genetic scores 
for measured height in England makes up 79% of the variance in genotype scores. The third 
result pertains to the portion of the additive genetic fraction that can be attributed to phen-
otypic assortative mating and population stratification. This is |var[t(G)] - 2 var[t(g)]}/ 
var[t(G)] = m/(l + m) = p/2 and is estimated to be 0.14, or 14%, in our analysis. Fisher ob
tained a substantially larger estimate of 27% in his analysis of the Pearson and Lee data. 
However, Fisher's method must be in error because, based on the rest of his analysis, the 
correlation between husband and wife (0.28 in Table 4) is an estimate of h2p + (1 — h2)0 
(line 14, Table 3), which he estimates to be 0.79p + 0.210, and therefore the only admis
sible estimates for p are between (0.28-0.21 )/0.79 = 0.09 and 0.28/0.79 = 0.35. The esti
mated percent of the additive genetic fraction due to assortative mating or population 
stratification should therefore be between 4% and 18%, which is in close agreement with 
our 14% result. 

The heritability estimates based on the difference between correlations for MZ and 
DZ twins that can be calculated from the Newman et al data and the Shields' data are very 
different. The first, 0.58, is close to our h2 estimate, while the Shields' value, 1.00, reflects 
the suspected difference in collection techniques in his data. The twin-difference estimate 
calculated from the Swedish data is 0.74, and predicted by our equation (40) evaluated in 
our h2 ,p, 5, A, and (73 - 72X is 0.77. These are considerably higher than our 0.52 model 
estimate for h2 and the Newman et al estimate. The first of these comparisons points out 
that the twin difference estimate can be considerably biased for h2, and the second suggests 
that the Newman et al correlation for DZ twins is an overestimate. 

Fisher used the regression coefficient of child's height on the average of parents' 
height to obtain his estimate of 0.79 for h2. The same estimate from the Swedish data is 
(0.36 + 0.47)/(l .00 + 0.20) = 0.69 and from our modelled expression for the regression 
ratio [equation (41)], and the result of our analysis of the Swedish data is 0.62. The differ
ence between 0.69 or 0.62 and our 0.52 model estimate is fairly large. If these three esti
mates are multiplied by a factor 1.21, the ratio of correlations for MZ twins reared apart for 
the Newman et al and Swedish studies, to adjust for reporting errors, which appear to ac
count for much of the environmental difference between reported and ruled height, then 
the first two of the resulting values 0.83,0.75, and 0.63 are in good agreement with Fisher's 
estimate. However, they and Fisher's values appear to be overestimates of h2, which is 
better approximated by our adjusted model estimate, 0.63. 
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If the conclusion from our analysis, that a3 ~ 0 , can be applied to the twin data col
lected by Newman et al and by Shields, then the correlations for MZ twins raised apart 
are consistent estimates for g2 [equation (43)]. This results in an estimate of 0.97 for ruled 
height and, assuming that Shields used only booklet data, 0.82 for reported height. The 
latter is consistent with our upper bound estimate of 0.78, and the former agrees with 
Shields' and our estimates after they have been adjusted upwards by 1.21 to 0.97 and 0.94 
to eliminate reporting errors. 
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