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Immunosenescence during ageing is a major challenge which weakens the ability of older
individuals to respond to infection or vaccination. There has been much interest in dietary
strategies to improve immunity in older people, but there is an assumption that modulation
of the immune response in older people will be based on the same principles as for younger
adults. Recent evidence suggests that ageing fundamentally alters the impact of nutrition on
immune function. As a result, interpretation of data from studies investigating the impact of
diet on immune function is highly dependent on subject age. Study design is critically im-
portant when investigating the efficacy of dietary components, and most studies involving
older people include rigorous inclusion/exclusion criteria based on medical history, labora-
tory tests, general health status and often nutritional status. However, immunological status
is rarely accounted for, but can vary significantly, even amongst healthy older people. There
are several clear examples of age-related changes in immune cell composition, phenotype
and/or function, which can directly alter the outcome of an intervention. This review uses
two case studies to illustrate how the effects of n-3 PUFA and probiotics differ markedly
in young v. older subjects. Evidence from both suggests that baseline differences in immuno-
senescence influence the outcome of an intervention, highlighting the need for detailed im-
munological characterisation of subjects prior to interventions. Finally, future work
elucidating alterations in metabolic regulation within cells of the immune system as a result
of ageing may be important in understanding the impact of diet on immune function in older
people.

Ageing: Fatty acid: Immunity: Nutrition: Probiotic

Nutritional status has a profound influence on resistance
to infection, which is exemplified by the vicious cycle be-
tween undernutrition and infection in developing coun-
tries(1). However, vulnerable groups in developed
countries are also at risk of age- or disease-related malnu-
trition, which can impact on the immune response to in-
fection and to vaccination. Thus, while decreased
immune function due to malnutrition primarily affects
children in developing countries, in the developed
world, it is mainly a problem for older people(2). By
2050, approximately 25 % of the population will be
older than 65 years(3) and the impact of this on public
health is a major global challenge. However, decreased
immune function as a result of malnutrition should not

be confused with immunosenescence; an obvious differ-
ence is that malnutrition and, to some extent its conse-
quences, are treatable. Immunosenescence is irreversible
and describes the biological ageing of the immune sys-
tem, which is associated with a progressive decline in
both innate and adaptive immunity, poor response to
vaccination and increased prevalence of cancer, infec-
tions and autoimmune and chronic diseases. While nutri-
tional interventions may delay this process, the evidence
for this remains controversial, particularly in terms of the
nature and potency of immunomodulatory activity and
of translation into a corresponding change in clinical out-
come(4,5). Furthermore, there is a fundamental lack of
understanding as to how immunosenescence alters the
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response of cells of the immune system to dietary compo-
nents. Most studies examining the effects of diet on im-
mune function fail to adequately characterise target
populations in terms of nutritional status, health status,
genetic background and few, if any, characterise them
in terms of the immunological status. This review focuses
on two case studies, which demonstrate that failure to ac-
count for immunosenescence can significantly influence
the outcome of a nutritional intervention. It also explores
proposed mechanisms by which ageing alters metabolic
regulation of immune cells and whether metabolic path-
ways could be targeted for immunoregulation.

Case study: ageing alters the immune response to n-3
PUFA

Fatty acids play diverse roles in all cells, serving as an im-
portant source of energy, as structural components of cell
membranes, signalling molecules, bioactive mediators
and regulators of gene expression. Human immune cell
phospholipids contain about 1 % EPA and 2·5 % DHA
in addition to 20 % arachidonic acid(6,7). As the long-
chain n-3 PUFA content of the diet increases, lympho-
cyte arachidonic acid decreases in a curvilinear fashion.
In human studies, dietary n-3 PUFA never exceeds 3 %
of total energy, whereas in animal studies, intake is
often considerably higher, and this is thought to explain
the discrepancies that exist between animal and human
studies investigating the immunomodulatory effects of
n-3 PUFA(7). As a result, it remains unclear to what ex-
tent and at what dose n-3 PUFA have immunomodula-
tory effects in human subjects. Nevertheless, the
literature suggests that fish oil has a greater impact on
immune function in elderly compared with young
subjects(8–10) and that this may be related to the fact
that older subjects appear to incorporate EPA into
plasma and peripheral blood mononuclear cells more
readily than younger subjects(11) (Fig. 1). EPA resulted
in a dose-dependent decrease in neutrophil respiratory
burst in older, but not younger subjects(11). However,
prostaglandin E2 production by peripheral blood mono-
nuclear cells was decreased in both groups and phagocyt-
osis and cytokine production were not affected in either
group(11). This highlights the fact that age is likely to
be an important factor when considering the impact of
n-3 PUFA on immunity, not only because of the influ-
ence of immunosenescence, but also because immune
cells from older subjects appear to be more responsive
to the availability of n-3 PUFA. Recent work suggests
that the cholesterol content of T lymphocytes from
healthy elderly subjects is higher than that of young sub-
jects, and that membrane fluidity is subsequently
decreased(12). Furthermore, the coalescence of lipid
rafts at the site of T cell receptor engagement is impaired
in elderly subjects(12,13). The impact of ageing on lipid
raft composition and function appears to be most evident
in the CD4+ T cell population and affects cytokine sig-
nalling(13,14). Thus, the greater responsiveness of T cell
membranes to n-3 PUFA in older subjects could result
in alteration of lipid raft structure, and subsequently

of cell function, effects which are absent in younger
subjects.

Case study: ageing alters the immune response to
probiotics

Influenza is amajor cause of death inolder people andwhile
vaccination offers a prophylactic solution for preventing in-
fection and associated complications, immunosenescence
significantly impairs vaccine efficacy(15). Potential adju-
vantsanddietarystrategies to improve the immune response
to influenzavaccines are therefore of interest, particularly in
older people. Emerging evidence suggests that the resident
gut microbiota plays an influential role in shaping antiviral
defences and modulating the outcome of viral infections
through inflammasome-mediated cytokine release(16).
Antibiotic-treated mice have reduced levels of IL-1β

Fig. 1. Arachidonic acid (AA): EPA ratio in plasma phospholipids
from young and older subjects. Mean (SEM) ratios of AA to EPA in
plasma phospholipids before (grey bars) and after (white bars)
supplementation with placebo (0 g EPA) or low (1·35 g/d),
moderate (2·7 g/d) or high (4·05 g/d) doses of an EPA-rich oil for
12 weeks in the young (upper panel) and older (lower panel)
subjects. n 24, 23, 23 and 23 for the young subjects in the
placebo, low-EPA, moderate-EPA and high-EPA groups,
respectively. n 16, 16, 15 and 15 for the older subjects in the
placebo, low-EPA, moderate-EPA and high-EPA groups,
respectively. At baseline there was a significant effect of age (P <
0·001) but not of treatment group (i.e. EPA dose) and no age ×
treatment group interaction. At baseline the ratio was significantly
higher in the young than in the older subjects (P < 0·05).
Two-factor ANOVA showed a significant effect of treatment group
(P < 0·001) but not of age and no age × treatment group interaction
for the change in the ratio of AA to EPA. *Significantly different
from baseline, P < 0·001 (paired Student’s t test). Figure taken
from(11), with permission.

P. Yaqoob348

P
ro
ce
ed
in
gs

o
f
th
e
N
u
tr
it
io
n
So

ci
et
y

https://doi.org/10.1017/S0029665116000781 Published online by Cambridge University Press

https://doi.org/10.1017/S0029665116000781


secretion in the lung during influenza infection, supporting
the suggestion that gut-resident bacteria are involved in
regulating cytokine production(16). It has been speculated
thatgutmicrobes release low levelsofpattern recognitionre-
ceptor ligands, which provide signals for inflammasome-
mediated cytokine release (for example, in the lung during
influenza infection). These in turn regulate the activity of re-
spiratory dendritic cells during activation of adaptive im-
munity against the virus(16), and together, this forms the
basis for the hypothesis that pre- and probiotics maymodu-
late responses to infection or vaccination.

Trials investigating the use of probiotics in prevention
of common respiratory illnesses have produced mixed
results(17), although a recent systematic review concluded
that they significantly reduce episodes of acute upper re-
spiratory tract infection and antibiotic usage in infants
and young to middle-aged adults(18). Response to vaccin-
ation is increasingly being used as a surrogate for the
response to infection(19). Themajorityof studies investigat-
ing the impact of probiotics on responses to vaccination
havebeen conducted inhealthyadults, and some showbor-
derline effects of probiotics on serumor salivary IgA titres,
although the clinical relevance is not clear(20). Studies in
infants and in elderly subjects, particularly those examin-
ing the response to influenza vaccination, are very limited,
as are studies on the effects of prebiotics on immune func-
tion(21) and vaccination(20). Since ageing is associated with
reduced biodiversity and compromised stability of the gut
microbiota(22), as well as immunosenescence, older indivi-
duals may derive particular benefit from intervention with
pre- and/or probiotics.

Previous studies investigating the effects of probiotics
on the response to vaccination have mainly focused on
antibody production. While some studies have reported
a modest effect of probiotics on the antibody response
to vaccination in adults, trials in older subjects are large-
ly inconsistent and data are limited(20). In a recent study
(the PRIMAGE (Probiotics, Immunity and Ageing)
trial), we demonstrated that while there was marked
impairment of the antibody response to influenza vaccin-
ation in older subjects, intervention with a novel synbio-
tic, Bifidobacterium longum bv. infantis CCUG 52486
combined with gluco-oligosaccharide (B. longum +
Gl-OS) failed to reverse this impairment(23). Although
there is general consensus that ageing impairs the re-
sponse to influenza vaccination(24), there are very few ro-
bust studies specifically comparing responses of young
and older subjects, and there are no other studies directly
comparing the efficacy of pre- and probiotics on the im-
mune response of young and older subjects to vaccin-
ation. In the PRIMAGE trial, the response of the
young and older subjects to the intervention differed to
some degree. In older subjects consuming the synbiotic,
there was a trend for reduced seroconversion to the
Brisbane subunit of the vaccine, whereas in the young
subjects, there were trends for enhanced production of
vaccine-specific IgM and, to some extent, IgG(23).
Increased production of vaccine-specific IgM and IgG
following intervention with probiotics has been reported
in several other studies(25–29). The possibility that there is
a differential immune response to probiotics in young v.

older subjects has also been demonstrated in in vitro stud-
ies. You and Yaqoob(30) demonstrated that peripheral
blood mononuclear cells from older subjects (60–85
years) were more responsive to the immunoregulatory
effects (IL-10 induction) of two strains of bifidobacteria
than young subjects (18–30 years), whereas peripheral
blood mononuclear cells from young subjects were
more responsive to the immunostimulatory effects
(IL-12 induction) of two strains of lactobacilli. Further
studies demonstrated that probiotics increased the re-
sponsiveness of dendritic cells in older subjects to a
greater degree than young subjects, but this was not suffi-
cient to overcome the impact of immunosenescence in a
mixed leucocyte reaction(31). The choice of probiotic,
particularly for older individuals, is a matter of debate
and it has been suggested that ‘successfully aged’ donors
of probiotic strains might survive better in an older host
and achieve a more suitable equilibrium with the resident
microbiota(32). B. longum bv. infantis CCUG 52486 is an
example of a strain present in particularly healthy sub-
jects aged >90 years(33). It has subsequently been demon-
strated to have particular ecological fitness and
anti-pathogenic effects in vitro(34) and, as described earl-
ier, immunomodulatory effects, which are strongly
influenced by the age of the host(30,31).

Further immunological characterisation in the
PRIMAGE trial revealed that B and T cell profiles dif-
fered markedly between young and older subjects, and
that vaccination increased numbers of specific memory
subsets in young subjects, but failed to do so in older sub-
jects (S Enani, A Przemska-Kosicka, CE Childs et al.,
unpublished results). A key finding was the observation
that there was a greater degree of immunosenescence at
baseline in older subjects randomised to the synbiotic,
which occurred entirely by chance, but could explain
the particularly poor response of these subjects to the
vaccination(23). T cells are particularly susceptible to sen-
escence, resulting in loss of CD28; repeated antigenic
exposure, for example to cytomegalovirus, is suggested
to play a major role in this(35,36). Latent infection with
cytomegalovirus has been demonstrated to result in a
poor response to infection and vaccination(36). In the
PRIMAGE trial, not only did older subjects randomised
to the synbiotic have a significantly higher number of
senescent (CD28−CD57+) helper T cells at baseline com-
pared with those randomised to the placebo, they also had
significantly higher plasma levels of anti-cytomegalovirus
IgG and a greater tendency for cytomegalovirus seroposi-
tivity. Moreover, higher numbers of CD28−CD57+ helper
T cells were associated with failure to seroconvert to the
Brisbane subunit of the vaccine, strongly suggesting that
the subjects randomised to the synbiotic were already at a
significant disadvantage in terms of likely ability to respond
to the vaccine compared with those randomised to the pla-
cebo and that differences in immunosenescence between
the randomised groups at baseline may have influenced
the outcome of the intervention (Fig. 2). Futurework there-
fore needs to consider prospective randomisation of sub-
jects based on robust immunological markers; this is
challenging given the wide range of potential markers
and uncertainty regarding their predictive value.
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Ageing alters metabolic regulation of T cells

Over the past few decades, our understanding of T cell
activation has extended to exploration of integration be-
tween canonical T cell signalling pathways and metabolic
signalling programmes(37), and it has been proposed that
immunosenescence is linked to alterations or defects in
that integration(38). Although several transcription fac-
tors and serine/threonine kinases are central to the inte-
gration of immunological and metabolic pathways(37),
the energy sensor, AMPK, is of particular interest in
the context of ageing. AMPK is a central regulator of
metabolic stress and is activated by an increase in the
AMP:ATP ratio, as well as by T cell receptor engage-
ment. In fact, it has been suggested that AMPK activa-
tion in response to antigen anticipates ATP depletion
even in the presence of adequate nutrients(23). In
AMPK-deficient T cells, metabolic stress due to glucose
deprivation induces enhanced cell death. Senescent T
cells demonstrate spontaneous phosphorylation- and
therefore activation- of AMP(38). However, contrary to
expectation, senescent cells did not contains low levels
of ATP(8,38). Instead, it is suggested that AMPK activa-
tion triggered by glucose deprivation results in activation
of the p38 pathway, which leads to DNA damage and
immunosenescence(38). Conversely, AMPK silencing
restores proliferation(37). This is a previously unrecog-
nised mode of activation for p38 in T cells and the first
demonstration of a pathway which integrates low nutri-
ent sensing with DNA damage and senescence. The

observation that nutrient deprivation triggers pathways
linked with immunosenescence seems to contradict the
widely held belief that energy restriction enhances lifespan,
but data on energy restriction and infections is not clear cut
and this remains an important area for future work.

Transcription factors and signalling proteins involved
in regulatory and metabolic pathways represent novel
targets for immune modulation. Indeed, it has been sug-
gested that targeting AMPK and mechanistic target of
rapamycin may be a strategy for suppressing immune
responses and treating inflammatory diseases(37).
However, the suggestion that this may allow more select-
ive regulation of immune responses than ubiquitous sig-
nalling pathways should be interpreted with caution as
there is no clear reason to believe that this is the case.

Conclusion

Ageing alters the immune response to dietary interven-
tions; specific examples described in this review demon-
strate that young and older subjects respond differently
to interventions involving dietary fatty acids and probio-
tics. It is critical that baseline differences in immunose-
nescence in dietary studies involving older subjects are
accounted for as they can directly influence the outcome
of the intervention. Ageing also alters metabolic regula-
tion of T cells; elucidation of alterations in metabolic
regulation in ageing T cells may prove to be important
in understanding the impact of diet on immune function
in older people.
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