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Abstract

Let X be a Banach space with the analytic UMD property, and let A and B be two commuting sectorial
operators on X which admit bounded H°° functional calculi with respect to angles 9\ and 02 satisfying
#t+02 < T- It was proved by Kalton and Weis that in this case, A + B is closed. The first result of
this paper is that under the same conditions, A + B actually admits a bounded H°° functional calculus.
Our second result is that given a Banach space X and a number 1 < p < oo, the derivation operator on
the vector valued Hardy space W(IR; X) admits a bounded H°° functional calculus if and only if X has
the analytic UMD property. This is an 'analytic' version of the well-known characterization of UMD by
the boundedness of the H°° functional calculus of the derivation operator on vector valued Lp -spaces
Z/(R; X) for 1 < p < oo (Dore-Venni, Hieber-Priiss, Priiss).

2000 Mathematics subject classification: primary 47A60.

1. Introduction and main statements

This paper deals with two questions concerning H°° functional calculus of sectorial
operators, as introduced by Mclntosh on Hilbert spaces (see [23]) and then developed
in the Banach space setting by Cowling, Doust, Mclntosh and Yagi in [6]. These
questions are both closely related to the pioneering work of Dore and Venni [9]
concerning the sum of commuting operators with bounded imaginary powers on
UMD Banach spaces.

Let X be a Banach space and let A and B be two commuting sectorial operators
on X, with respective types coi and a)2, and with respective domains D(A) and D{B).
Then their sum A + B : x (->• A(x) + B{x), with domain D(A + B) = D(A)nD(B),
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is a closable operator. Assume that co\ + 002 < n. Then according to some earlier
work of Da Prato and Grisvard [7, Section 3], the closure A + B is in turn a sectorial
operator of type max{a>i, 0^}. Now assume the stronger condition that A and B admit
bounded imaginary powers, with the following estimates:

(1.1) Wse and \\Bis

for some constants Ku K2 > 0 and 6\, 02 in (0, n) such that 6\ + 02 < n. It was
proved in [9] (in the invertible case) and then in [13] and [26] (in the general case)
that if X is a UMD Banach space, then A + B is closed. Furthermore, it was proved in
[26] and [10] that under these conditions, A + B admits bounded imaginary powers.

This led to the following two natural questions. Assume that

(H) A has a bounded H°°(i:ei) functional calculus, B has a bounded #°°(E%)
functional calculus, and G\ + 02 < n.

For which Banach spaces X does this imply that A + B is closed and for which
ones does this imply that A + B admits a bounded H°° functional calculus? This
amounts to consider the following two possible properties (PI) and (P2) of a Banach
space X.

(PI) Whenever A and B are commuting sectorial operators on X satisfying (H) for
some 9\,82 e (0,n), the sum A + B is closed.

(P2) Whenever A and B are commuting sectorial operators on X satisfying (H) for
some G\,92 e (0, n), the operator A + B admits a bounded H°° functional calculus.

The above questions were first tackled in [19] where it is shown for example that
Banach lattices, or Banach spaces with Pisier's property (a) satisfy (PI) and (P2). On
the other hand, UMD Banach spaces obviously satisfy (PI) by the above mentioned
Dore-Venni Theorem. However the problem whether (P2) is satisfied by all UMD
Banach spaces was left open in [19]. Our first result (Theorem 1.1 below) solves this
question. We will actually be able to consider the larger class of Banach spaces with
the so-called property (A), defined by the inequality (1.4) below.

Let(£i)i>i be a Rademacher sequence on a probability space (£2, IP). Thatis, thee,'s
are pairwise independent random variables on £2 and F(e, = 1) = P(e, = — 1) = 1/2
for any i > 1. Then for any finite family Jt] , . . . , xn in X, we let

(1.2)
i=\ Rad(X)

-L 1=1

dP(a>).

Now let (e'j)j>i be another Rademacher sequence on (£2, IP) and assume that (e,),>i
and (ej)>>i are mutually independent. Then for any finite family (jyOi<ij<« in X, we
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let

(1.3)

Results about H°° calculus 353

-L U=>

dP(o>).

By definition we say that X satisfies (A) if there is a constant C > 0 such that for any
finite family (*y) !<,,;<„ in X, we have

(1.4) < c
Rad2(X) Rad2(X)

This property was explicitly defined by Kalton and Weis in [18]. It goes back to a
paper of Haagerup and Pisier [15] where it is implicitly shown that any analytic UMD
Banach space (AUMD in short), hence any UMD Banach space satisfies (A) (see
also [18, Proposition 3.2]). We refer to [11], [15, Section 4] and Section 2 below for
the definition of AUMD Banach spaces and relevant information. Kalton and Weis
showed in [18, Corollary 6.4] that any Banach space with property (A) satisfies (PI)
above. Our first result says that (P2) is satisfied as well for this class.

THEOREM 1.1. Let A and B be two commuting sectorial operators on a Banach
space X and let 6\, 62 in (0, n) such that 8\ +92 < n. Assume that A has a bounded
Hx'(£9,) functional calculus, B has a bounded H°° (E^) functional calculus and X
has property (A). Then A + B is closed and for any 6 > max{0i, 92], A + B has a
bounded W00(Ee) functional calculus.

In [9], Dore and Venni were mainly interested in applications to V-maximal
regularity for generators of bounded analytic semigroups on UMD Banach spaces. For
that purpose, they needed one of the operators A or B in (1.1) to be a derivation operator.
Indeed, they proved the following result [9, Theorem 3.1]: given a number 1 < p < oo
and a UMD Banach space X, the derivation operator d/dt on LP(R; X), with domain
W'^tl ; X), admits bounded imaginary powers. This result was strengthened in [16]
where it is proved that in this case, d/dt has a bounded H°°(T,e) functional calculus
on LP(R;X) for any 6 > n/2. Shortly after the Dore-Venni paper appeared, Priiss
showed the following converse to their result. If the derivation operator d/dt on
Lp (0&; X) admits bounded imaginary powers, then X is UMD (see [25, Section 8.1]).

Our second result (Theorem 1.2 below) says that similarly, the AUMD property
characterizes those Banach spaces X such that the derivation operator has a bounded
H°° functional calculus (or bounded imaginary powers) on X-valued Hardy spaces
Hp (R; X). We note that contrary to the above mentioned results, the value p = 1 can
be included in our analytic setting. We will assume that the reader is familiar with
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classical (= scalar valued) Hardy spaces on the real line R and on the torus T = R/27rZ,
and we refer to the monographs [17] and [12] for the necessary background.

Vector-valued Hardy spaces on the real line are defined as follows. We let X be
a Banach space. Given any / 6 L'(R;X), we l e t / : R ->• X denote its Fourier
transform defined by

= ff We"'*' dt,

By definition, H' (R; X) is the (closed) subspace of Ll (R; X) of all functions / such
that/(£) = 0 for any £ < 0. Now let 1 < p < oo. Then we define HP(R;X) C
L"(R; X) as the closure of # ' (R; X)fW(R; X) in L"(R; X). Equivalently, H"(R; X)
is the subspace of all functions / e Z/(R; X) whose Poisson integral on the upper
half-plane of C is analytic. In the case when X = C, these spaces coincide with the
classical Hardy spaces //P(R).

Given 1 < p < oo, let (r,),>0 denote the isometric translation semigroup on
Z/(R;X), defined by

T,(f)(s) =f(s -t), f € L"(R;X), t > 0, s e R.

Then //P(R;X) is an invariant subspace of (Tt)t>0. Indeed, for any/ e // '(R;X),
for any t > 0, and for any £ < 0,

The negative generator of (r,),>0 on LP(R;X) is equal to the derivation operator d/dt,
with domain Wl-p (R; X). We will use the same notation d/dt to denote its restriction
to //p(R;X), with domain Wlp(R;X) n //P(R;X). Of course the latter coincides
with the negative generator of the restriction of (T,),>o to Hp (R; X). We do not refer
to either p or X in this notation, but the space on which we consider d/dt should be
clear from the context.

We now turn to analogous definitions on the torus T = R/27r2. We assume that T
is equipped with its normalized Haar measure. That is, if we identify T with [—n, n)
in the usual way, then the associated measure on this interval is dt/2n. Given a
Banach space X and/ e L'(T; X), we define its (X-valued) Fourier coefficients by

/"(*) = — / f(t)e-ik'dt, JfceZ.

By definition, HP(J;X) (respectively //O
P(T;X)) is the subspace of LP(J;X) of all

functions / such that / (it) = 0 for any k < 0 (respectively k < 0). We simply
write HP(J) and HQ(J) in the case when X = C. Again we may define derivation
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operators in this context. Indeed, for any 1 < p < oo, let (T,)t>0 be the isometric
semigroup on LP(J;X) defined by letting T,(f)(s) = f (s — t) for any t > 0 and
any s e R/2nI.. Then HP(1;X) and H£(T;X) are both invariant subspaces under
the action of (T,),>0 and we let d/dt denote the negative generator of (T,),>0 either on
U (T; X), or on H" (T; X), or on Hp (T; X).

Before stating our result, we note that for any X and any 1 < p < oo, d/dt is
a sectorial operator of type JT/2 (in the sense of (2.1) below) on either HP(R;X) or
HP(J;X).

THEOREM 1.2. Given a Banach space X, the following assertions are equiva-
lent.

(i) X is an AUMD Banach space.
(ii) For all 1 < p < oo, and for all 6 > n/2, d/dt has a bounded H00^)

functional calculus on HP(R; X).
(iii) There exist 1 < p < oo and s e K* such that (d/dt)'s is bounded on

H"(R;X).
(iv) For all 1 < p < oo, and for all 9 > n/2, d/dt has a bounded //°°(£e)

functional calculus on HQ (T; X).
(v) There exist 1 < p < oo ands G R* such that (d/dt)'s is bounded on Hfi (T; X).

Section 2 contains the necessary background on H00 functional calculus and AUMD
Banach spaces. Section 3 is mainly devoted to the proof of Theorem 1.1. The latter
relies on remarkable recent results of Kalton and Weis [18] connecting H°° functional
calculus and R-bounded sets of operators in the sense of [3]. Section 4 is mainly
devoted to the proof of Theorem 1.2. The latter reduces to the study of certain Fourier
multipliers on vector valued Hardy spaces and we include several results on this topic.

NOTE. The reader should notice that we use the same notation / i-> / for all sorts
of Fourier transforms.

2. Preliminaries and notation

Given a Banach space X, we let B(X) denote the Banach algebra of all bounded
operators on X. If A is a linear operator on X, we let D(A) and R(A) denote the
domain and the range of A respectively. Furthermore, we denote by a (A) the spectrum
of A and by p(A) the resolvent set of A. For A 6 p(A), we let R(X, A) = (A. - A)~l

denote the corresponding resolvent operator. For co e (0, n), let !!<„ be the open sector
of all z e C \ {0} such that | Arg(z)| < co. By definition, A is a sectorial operator of
type co e (0, n) if A is closed and densely defined, A is one-to-one, A has a dense
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range, er(A) c £<„, and for any 6 G (co, n) there is a constant C > 0 such that

(2.1) VAeET,

We note the classical fact that if (r,),>0 is a bounded Co-semigroup on X and if —A
denotes its infinitesimal generator, then A is a sectorial operator of type n/2 provided
that A is one-to-one and has dense range.

For 9 e (0, n), and for a Banach space E, we let H00^; E) be the space of all
bounded analytic functions F : Es —> E. This is a Banach space for the norm

Then we let H^{H0; E) be the subspace of all F e H°°(Jle; E) for which there exist
two positive numbers s, C > 0 such that

We will simply denote //°°(S9; C) and //0°°(Ee; C) by //°°(Ee) and HS°(Lg).
We now come to H°° functional calculus for sectorial operators. The definitions

and basic facts below essentially go back to [23] and [6]. The reader may also consult
[20] or [18] for more information. Given a sectorial operator A of type a> e (0, n) on
a Banach space X, we define its commutant by

EA = {T e B(X) : TR(k, A) = R(X, A)T, ke p(A)}.

Clearly EA is a closed subalgebra of B(X). Let co < y < 0 < n, and let Fy be the
oriented contour defined by

\-te'y, feOL.;
(2.3) ry(t) =

Then for any function F e H™CZe \EA), we set

(2.4) F(A) = — f F(X)R(k,A)dk.

Since A satisfies (2.1) and F satisfies (2.2), F{A) is well defined and belongs to
B(X). By Cauchy's Theorem, the definition (2.4) does not depend on the choice of
Y 6 (a), 6). Furthermore, //0°°(Ee; EA) is an algebra and the mapping F H-> F(A) is
an algebra homomorphism. Note that the latter is unbounded in general. Now let cp be
the scalar valued function defined by <p(z) = z/(l + z)2. Then the bounded operator
<p(A) = A(l + A)~2 is one-to-one and its range is equal to D{A) n R(A), which is
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dense in X. Given any F e H°°(T,9; EA), we may therefore define F(A) as follows.
We note that the function <pF belongs to //0°°(Efl; EA) and we set

This possibly unbounded operator has domain equal to the space of all x € X such
that [(<pF)(A)](x) 6 R(<p(A)). The latter is dense and F(A) is closed. We record for
further the following well-known lemma.

LEMMA 2.1. Let 0<Q)<0<nbe two numbers and let Abe a sectorial operator
of type a> on X.

(1) Let F 6 H°°(Ee; EA) and let (Fn)n>i be the uniformly bounded sequence of
H™CEe-E A) defined by letting Fn(z) = (n/(n+z)-l/(l + nz))F(z)foranyz e S9.
Then F(A) is bounded if and only if the sequence (Fn(A))n>i C B(X) is bounded and
in this case, F(A) is the strong limit of (Fn(A))n>1.
(2) Let F e / /°°(Ee; EA) be a function with the following property: there exist two

positive numbers s, C > 0 such that

(2.5) \\F(Z)\\EA < C-^- , z € E e .

Assume moreover that A is invertible. Then F(A) is bounded and for any y e (co, 6),

(2.6) F(A) = - ^ / F(X)R(X, A) dk .

PROOF. Part (1) is a variant of the so-called 'convergence lemma' [23, 6]. Turning
to (2), note that since 0 € p(A), the mapping Xi-> F(X)R(A., A) is bounded on FY.
Hence (2.1) and (2.5) ensure that the integral in the right-hand side of (2.6) converges
and defines an element of B(X). It is easy to conclude from (1) and Lebesgue's
Theorem that this element of B(X) equals F(A). •

We finally recall two major definitions. First, let A be a sectorial operator on X of
type a> e (0, n), and let 6 > a>. We say that A has a bounded //°°(Ee) functional
calculus if F(A) is bounded for any F e H°°(Ee). Second, let B be another sectorial
operator on X. We say that A and B commute if R(X, A)R(/z, B) = /?(/x, B)R(X, A)
for any X e p(A), /x 6 p(B).

We now tum to some background and notation on AUMD Banach spaces for which
we refer to [11] and [15, Section 4]. Equip the compact space TN with its product
measure and let (t\, ... , tn, ...) denote a typical element of JN. For any integer
n > 1, let &n denote the a-field generated by the first n variables t],... ,tn. Let
(gn)n>\ be an X-valued martingale with respect to the filtration (&n)n>\, that is, each
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gn : TN —• X is an ^-measurable function and letting dn = gn — gn_i, we have
E(rfn|«^n_i) = 0 for any n > 1. As usual the convention is that g0 = 0 and <̂ "0 is
the trivial a-field. We say that ign)n>\ is analytic if for any n > 1, there exists a
measurable function <t>n : J"~l —> X such that

(2.7) dnih tn) = 4>n(f,,... , U-iW", h tnel.

Let 1 < p < oo be a number. By definition X is an AUMD Banach space if there is
a constant Kp such that whenever (gn)n>i is an X-valued analytic martingale, N > 1
is an integer, and ei,... , eN e {—1, 1}, we have an estimate

(2.8)
n=\ n=\

where the norms are computed in LP(JN;X). This property does not depend on p.
Furthermore, to prove that a given Banach space is AUMD, it suffices to show (2.8)
in the case when the martingale is finite (that is, dn is eventually 0), and each <!>„ in
(2.7) is an X-valued trigonometric polynomial, that is, a sum of elements of the form

xeii\h ... <.'•«-''»-•, where x e X and qu ... , qn_x e 1.

The class of AUMD spaces includes UMD Banach spaces, Lx -spaces, and quotients
L1 /R of an Ll-space by one of its reflexive subspaces R. Also, it is stable under
taking subspaces. Conversely, C(S2)-spaces (where £2 is an infinite compact set), the
quotient space Ll(J)/Hl(J), and the Schatten space Sl(H) of trace class operators
on an infinite dimensional Hilbert space H are not AUMD.

3. Perturbation of /?-sectorial operators and proof of Theorem 1.1

The main purpose of this section is the proof of Theorem 1.1. The latter relies
on some recent work of Kalton and Weis [18] involving /?-boundedness, and on
a perturbation result (Proposition 3.2 below) of independent interest, which is the
key ingredient of the proof. We shall first give the necessary background on R-
boundedness. Our main reference for this notion is [3], see also [18].

Let X be a Banach space and let & c B(X) be a set of bounded operators on X.
By definition, we say that & is /^-bounded if there is a constant C > 0 such that for
any finite families Tt,... ,Tn'm.^, and xu ... , xn in X, we have

(3.1) Z>
Rad(X) i=\ Rad(X)

In this definition, the norms || ||Rad(X) are defined by (1.2). The least constant C
satisfying (3.1) is called the /?-boundedness constant of 17 and is denoted by
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Obviously any R-bounded set S is bounded and ||7|| < 3?.(S) for any T e S,
but the converse does not hold on non-Hilbertian Banach spaces. Given any two sets
ft, ft2 C B(X), we let ft + S2 = {7, + T2 : 7, e ft, T2 e ft2] and Sxft2 = {7, T2 :
7] e Su T2 e ft2}. In the next lemma, we record some well-known stability results
concerning R-bounded sets.

LEMMA 3.1. (1) If ft C B(X) is R-bounded, then its closure & is R-bounded
andR(S^) = R(&).
(2) lf£fx ,&2CB(X) are R-bounded, then ̂ X + S2is R-bounded and R(^[ + S2) <

(3) If ft, Sid B{X) are R-bounded, then ftS2 is R-bounded and R(ftS2) <
R(ft)R(S2).
(4) If S C B(X) is R-bounded, then its absolute convex hull aco(S) is R-bounded

andR(aco(S))<2R(S).
(5) Let S C B(X) be R-bounded and let C > 0 be a constant. Then the

set {f™f(t)T(t)dt\T : R*+ -> S and f : K*+ -+ C are continuous, and
fo° \f (t)\dt — C] is R-bounded and its R-boundedness constant is less than or
equal to 2CR(S).

PROOF. The first three assertions are more or less obvious. The assertion (4) is [3,
Lemma 3.2]. To prove (5), it therefore suffices to check that if T : R*+ ->• S and
/ : R\ ->• C are two continuous functions and if /0°° \f (t)\dt < C, then

/•OO

/ f(t)T(t)dteCaco(S).
Jo

For this it suffices to show that for any 0 < a < ft < oo,
3

f(t)T(t)dte Caco(^).
/

The latter property clearly follows from an approximation of the integral by Riemann
sums. •

PROPOSITION 3.2. Let A be a sectorial operator on a Banach space X, and let
fi e (0, n) be such that the set

(3.2) {XR(k,A):k£%}

is R-bounded. Letv,<p e (0,n) be two numbers such that [x+v < n andmax{ix, v} <
cp. Suppose that F e //""(X^) and that F(A) is bounded. Then the set

15 R-bounded.
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Note that all the operators considered in the previous statement make sense. Indeed,
our assumption on (3.2) implies that A is sectorial of type < ix. (According to the
terminology of [18], A is actually an i?-sectorial operator of fl-sectorial type < fi.)
Since ix + v < n, A + z is therefore a sectorial operator of type max{/z, v] for any
z e Sv, which allows us to define F{A + z) for any F e //°°(£»,).

Replacing /?-boundedness by boundedness, our statement corresponds to the fol-
lowing perturbation result established by Uiterdijk in his Ph.D. thesis [28]: if A is a
sectorial operator of type < /A, if /x + v < n and max{/z, v} < <p and if F € //°°(S^)
is a function such that F(A) is bounded, then F(A + z) is bounded for any z e E ,
and the resulting family of operators is bounded. Strictly speaking, Uiterdijk proved
that result only for v = 0 but it is possible to extend his proof to the general case. It
turns out that his arguments also yield our Proposition 3.2, up to some estimates on
the /?-boundedness of certain sets of operators, as explained in the proof below.

PROOF OF PROPOSITION 3.2. We let A be as in Proposition 3.2 and we let
F e //°°(i;^) be such that F(A) is bounded. FollowingUiterdijk'sideain[28,2.3],we
decompose F(A+z) for any z 6 Ev as follows. Writing/* =
we have F(A + z) = z{A + z)~xF{A + z) + A (A + z)~xF{A + z) hence

F(A + z) = z(A + Zyl F(A + z) + A(A + z)-1 F(A)

+ A(A + z)-1 (F(A + z) -

Since v < n — /x, the R-boundedness of (3.2) implies that {z(A + z)"1 : z e Eu} is
R-bounded. Applying Lemma 3.1 (1), we deduce that [A(A + z)"1 F(A) : z e T,v} is
/?-bounded and that it suffices to show that

(3.3) [z{A + z)"1 F(A + z) : z e Sp} is ^-bounded;

and

(3.4) [A{A + zy^FiA + z) - F(A)) : z € £„} is ^-bounded.

We first prove (3.3). Let /J,' > fi and v' > v be such that ix' + v' < n and let
<p > max{/x', v'}. Then there exists a positive number r > 0 (depending on v and v')
such that

(3.5) V Z e £ v , z - 2 r | z | e 5 V

Fix some z e Ev. For any k e EM<, the complex number X + z — r\z\ belongs to
Emaxl̂ .v,'), hence to Hv. Indeed, z - r\z\ € T,v, by (3.5) and n' + v' < n. We may
therefore define hz e //""(E^) by letting

hz{X) = - ——F(\ + z-r\z\),
k + z- r\z\
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Let T = T,, be defined by (2.3), for some y e (fj,, fi'). Clearly khz(k) is bounded
away from 0 on EM- and A + r\z\ is an invertible sectorial operator of type /x. Hence
by Lemma 2.1 (2), hz(A + r\z\) is bounded and

hz(A + r\z\) = ^-r f h(k)R(k,A + r\z\)dX.

However, hz(A +r\z\) = z(A +z)~l F{A +z) hence we have the integral representation

(3.6) z(A + z)-1 F(A + z) = — / - v" • - •'-" R(X-r\z\,A)dk.
2ni Jr A + z — r\z\

Let / (z) be the integral in the right-hand side of (3.6). Letting r + = T D {Im(A.) > 0}
and T_ = rn{Im(A) < 0}, we write /(z) = 7+(z) + /_(z), where /+(z) = ^ / r + • • •
and 7_(z) = ^- / r • • •. Then

• ' " + z - r | z | )

re»+z-r|z|

27TJ Jo (te'

We will prove below that

(3.7) sup
Jo

z-r\z\)
- r\z\)

dt < oo.

Now recall that we chose y > /x.. Thusforanyr > 0, te'Y ^ EM hence /e')/—r|z| £ EM.
Hence the continuous function T(t) = (te'y — r\z\)R(te'y — r\z\, A) is valued in the
R-bounded set (3.2). Thus according to Lemma 3.1 (5), and (3.7), we obtain that
{/+(z) : z e £„} is R-bounded. Similarly, the set {/_(z) : z e £„} is R-bounded, and
so the first required result (3.3) follows using (3.6) and Lemma 3.1 (1).

We now prove the crucial estimate (3.7). Write any z € £„ as z = \z\e'e, with
\6\ < v. Then the integral in (3.7) is

<\\F\\ f
OO,(f I

Jo
|f«I> + | z | ( e w - r ) | | r « " ' - r | z | |

Changing t into |z|r, the latter is equal to

1
(3-8)

°-Vo eie - - r\
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Now observe that ew € Ey, hence eie — 2re Ev- by (3.5). Hence 2r — ew belongs to
E _̂u- , hence to EM< . Consequently, we have

\teiY + eie -r\ = \(teiy + r) - (2r - ew)\

> dist (teiy + r, ETT") > K\teiY + r\,

where K > 0 is a constant not depending on t > 0. Therefore the integral in (3.8) is

1r
Jo r\\te'y - r\

•dt.

This shows (3.7).
We now turn to the proof of (3.4). Let F = VY be defined by (2.3), for some y

satisfying max{/z, v) < y < <p. We will need the following integral representation,
which is essentially due to [28]. For any z € £„,

(3.9) A(A+zyi{F(A+z)-F(A))

= J-.f F(X)z(AR(k, A)(A + z)-')R(k - z, A) dk .

To prove this, first note from the boundedness of the operator A(A + z)~l and the
sectoriality of A that there exists a constant K > 0 (depending on z) such that

(3 .10) \\(AR(k, A)(z + A)-])R(k - z , A)\\ < K m i n j l , * 1 , keT.

Hence the right-hand side of (3.9) makes sense. Assume that F e //O°°(EV). Then
applying (2.4), we have

F(A+z) = — fF(k)R(k-z,A)dk and F(A) = -J- IF(k)R(k, A)dk,
2ni Jr 2ni Jr

hence (3.9) follows by applying the identity

R(k -z,A)- R(k, A) = zR(k - z, A)R(k, A).

Now for an arbitrary F e H^CE^,), we let (Fn)n>, be the sequence of //O°°(EV)
defined in Lemma 2.1 (1) so that A(A + z)"'(F(A + z) - F(A)) is the strong limit
of A(A + z)-'(Fn(A + z) - Fn(A)). Thanks to (3.10), we may apply Lebesgue's
Theorem to deduce that since (3.9) holds for each Fn, it holds as well for F.

We let r [ = m {|A.| < \z\] and rz
2 = r n [\k\ > \z\}. According to (3.9), we have

that for any z e l ,

(3.11) A(A + z)-'(F(A + z) - F(A)) = z(A + z)-'5,(z) + A(A + z)-'S2(z),
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with

1 r
F(k)AR(k, A)R(k - z, A) dk ;= —f

2ni Jr,
B2(z) = — / F(k)zR(k, A)R(k - z, A) dk .

2ni Jn

Then we decompose again as Bx{z) — B+(z) + flf(z) and B2{z) = Bf(z) + B^iz),
where B,+(z) corresponds to the integration along F? n [Im(k) > 0} and B~(z)
corresponds to the integration along F* n (Im(A.) < 0}. Let us show that

(3.12) {B+(z) : z e £„} is fl-bounded, i = 1,2.

For any z e £„, we have

e'y /*'2'
B,+(z) = / F(teiy)AR(teiy, A)R(teiy - z, A) dt

2ni Jo

= / _J: J-(AR(teiy,A)(teiy-z)R(teiy-z,A)) dt.
2ni Jo te'v -z

By assumption, the set {aR(a, A) : a £ EM} is R-bounded hence the set {AR(a, A) :
a £ EM} is ^-bounded as well. Hence applying Lemma 3.1 (2) we find that

(3.13) {aR(o,A)coR(co, A) :o,co<t %}

is fl-bounded. Now for any 0 < t < \z\, the operator AR(teiy, A){teiy - z)R(teiy -
z, A) belongs to the set (3.13). Hence by Lemma 3.1 (5), the set [Bf(z) : z G Dv} is
R -bounded provided that

r|z| \F(teiy)\
(3.14) sup / j — -\dt<oo.

zel Jo \te'y-z\

To check (3.14), we let z = \z\e'e be an arbitrary element of Ew with \6\ < v. Then
changing t into \z\t, the integral in (3.14) is

dt
O.V I

Jo
\teiy - ei6\

Hence it remains to observe that the latter integral is less than or equal to the inverse
of the distance between the two disjoint compact sets [teiy : t e [0, 1]} and {ew :
9 e [—v, v]}. This concludes the proof of the /?-boundedness of {S,+ (z) : z e £„}•
Similarly we write

C> F(teiy)zR(teiy,A)R(teiy -z,A)dt

zF(teiy) .
2ni j M

2TT/ 4 , - z)
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The proof that (52
+(z) : z 6 E») is /^-bounded reduces to showing that

\te<y\\te'r-Z\

We let z = |z|e'8 with \0\ < v and changing t into |z|f, we find that the integral in
(3.15) is

- / ' 'y - ew\

There is a constant K > 0 such that \te'Y—ew\ > Kt foranyt > landanyfl e [—v, v].
Consequently the latter integral is less than or equal to K'1 WFW^^ J™ dt/t2. This
completes the proof of (3.12).

We now conclude the proof by applying Lemma 3.1. Arguing as above we find
that the sets {B~(z) : z e £„} are R-bounded hence the sets {fl,(z) : z e Ev} are
R-bounded. Since — Sp = S^-/" C SjT. o u r assumption implies that {z(A + z)"1 :
z e £„} is /?-bounded. We therefore deduce that [z(A + z)~xBx(z) : z 6 Ev} is
fl-bounded. Likewise [A(A + z)"1 : z e E , | hence {A (A +z)~lB2(z) : z e S , l is
/?-bounded. Now the result (3.4) follows from the decomposition (3.11). •

PROOF OF THEOREM 1.1. Suppose that A, B satisfy the assumptions of Theorem 1.1
on a Banach space X with property (A). We already know that A + B is closed by
[18, Corollary 6.4], hence is sectorial of type max{#i, 02}. We let 0 > max^ , 02)
and F 6 H°°(Eg). Then we choose /J, > 6t and v > 02 such that /x + v < n and
8 > max{/z, v}. Since A has a bounded //""(X^,) functional calculus and X satisfies
(A), the set {kR(X, A) : z $ 5̂ "} is fl-bounded by [18, Theorem 5.3, (3)]. Hence the
set

(3.16) [F(A+z):ze SVJ

is /^-bounded by Proposition 3.2 applied with <p = 6. Since A and fi commute,
the function F{A + •) : z H> F(A + z) takes values in the commutant algebra EB,
and hence belongs to //°°(Ee; £B). Now the /?-boundedness of (3.16) implies that
(F{A + -))(B) is bounded by [18, Theorem 4.4]. Hence it remains to check that

(3.17) (F(A + •))(«) = F(A + B),

which shows that F(A + B) is a bounded operator.
To check this equality, we use the function <p(z) = z/(l + z)2 considered in

Section 2. We let co\ and a^ denote the respective types of A and B. We let Fi, r2, F3

be three contours as defined by (2.3) corresponding to three numbers yx, y2, y?, such
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that cox < Yi < 0u C02 < y2 < 92, and max{0i, 62) < y3 < 9. It follows from the first
part of the proof of [19, Theorem 4.1] that for any X <£ Em^ie,M, we have

(3.18)

<p(A)<p(B)R(X,A + B) = (-!-) f f v{z!Mf R(z',A)R(z,B)dzdz'.
\2niJ JrJr2 X-(z' + z)

Hence if F e H™(T,g), we have

F(A + B)<p(A)<p(B)

by (3.18)

= ^~. i F(X)<p(A)<p(B)R(X, A + B)dX by (2.4)
2ni J

/

by Cauchy's Theorem

Since (p(y4)ip(fi) has a dense range this shows (3.17) in the case when F € //0°°(Ee).
The general case now follows from Lemma 2.1 (1). D

We note that Theorem 1.1 does not remain true if sums are replaced by products,
even on UMD Banach spaces. Namely, let A, B be two commuting sectorial operators
on a UMD Banach space, and assume that A has a bounded Hco{'Lex) functional
calculus, B has a bounded / / ^ ( E ^ ) functional calculus, and 9\ + 92 < n. Then the
operator A B, with domain equal to the space of all x e D(B) such that B{x) € D(A),
is closable and it is proved in [26] that its closure AB is a sectorial operator of type
8i + 62 which admits bounded imaginary powers. However A B does not admit a
bounded H°° functional calculus in general. Indeed given 1 < p < oo, let Sp denote
the Schatten space of all compact operators T : I2 —> I2 such that \T\P has a finite
trace, equipped with the norm \\T\\p = (tr( |7Y))1/p. Then Sp is a UMD Banach
space if 1 < p < oo and the example given in the proof of [19, Theorem 3.9] to
show that Sp fails the so-called joint calculus property shows as well that if p ^ 2 ,
there exist commuting operators A, B on Sp so that A B does not admit a bounded
H°° functional calculus although for any 6\, 92 > 0, A (respectively B) has a bounded
//°°(Eei) (respectively //""(X^)) functional calculus.

We do not know any Banach space satisfying (PI) without satisfying (P2) or satis-
fying (P2) without satisfying (PI). The example below [18, Corollary 6.4] showing

https://doi.org/10.1017/S1446788700003360 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003360


366 Christian Le Merdy [16]

that if X is a Banach space such that Rad2(X) satisfies (PI), then X has property (A),
can be easily adapted to show that if Rad2(X) satisfies (P2), then X has property (A).
On the other hand we notice that the Banach space S°° of compact operators on I2

does not satisfy (P2) by [28, Chapter 7]. The same argument shows that S1 does not
satisfy (P2). We conclude this section by a remark and an open question.

REMARK 3.3. Up to now, we know two classes of Banach spaces satisfying (PI) and
(P2), namely Banach spaces with property (A) and Banach spaces with the so-called
property (A) introduced in [19]. It is natural to consider the following property, which
is both weaker than (A) and (A). Let us say that a Banach space X satisfies (WA)
(for weak (A)) if there is a constant C > 0 such that for any finite families (^y)i<,j<n

in X and (x*j)i<ij<n in X* we have

< C £ £•

Any Banach space with property (WA) satisfies (PI). Indeed the argument in the
proof of [18, Theorem 5.3, (3)] can be easily adapted to show that if A has a bounded
//°°(Efl) functional calculus on X, then A is W7?-sectorial (in the sense of [18]) with
respect to any a> > 0. The result therefore follows from [18, Theorem 4.5]. However
we do not know whether any Banach space with property (WA) satisfies (P2). In
particular we do not know whether our Proposition 3.2 remains true if '/?-bounded'
is replaced by ' WR-bounded'.

4. Fourier multipliers on vector valued Hardy spaces
and proof of Theorem 1.2

In this section, we shall first explain how to define Fourier multipliers on spaces
Hp (R; X) or //o

p (T; X) and their link with the H°° functional calculus of the derivation
operators. We shall then study the relationships between multipliers on Hp (K; X) and
multipliers on HQ(J; X) and establish the proof of Theorem 1.2.

Let 1 < p < cxi be a number and let X be an arbitrary Banach space. Let 0* denote
the space of all complex trigonometric polynomials, that is, the linear span of the
functions ek(t) = e'kl, k el. Then we let £?A (respectively ^ ) denote the subspace
of & spanned by [ek : k > 0} (respectively {ek : k > 1}). Using for example Fejer's
approximation, we see that &A <8> X and &$ ® X are dense subspaces of HP(J\X)
and HQ (T; X) respectively. Let (mk)k>i be a bounded sequence of complex numbers.
We say that («n)t>i is a bounded Fourier multiplier on //£(¥; X) if there exists a
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constant C > 0 such that for any/ = J2k>if (*) ® e* e

367

(4.1) < C

In that case there is a (necessarily unique) bounded operator on //£(¥; X) mapping
x ® ek to m(k)x ® et for any x e X and any fc > 1. Its norm is the least constant C
satisfying (4.1) and is called the norm of the Fourier multiplier (m,t)t>i on Hfi (T; X).
Of course, similar definitions can be given on Hp (T; X).

We now proceed to Fourier multipliers on Hp (R; X). We first note that the tensor
product HP(R) ® X is a dense subspace of HP(R; X). Indeed the arguments in [17,
Chapter 8] showing that Hp (R) and Hp (T) are isometric extend almost verbatim to the
vector-valued case giving an isometric isomorphism Jp x : HP{R;X) —*• HP(J;X).
Moreover Jp,x maps Hp (R)®X onto H" (T)®X. Since the latter is dense in Hp (T; X)
(by Fejer's approximation), we deduce the density of HP(R) ® X in HP(R;X).
Consequently, (H2(R) n //P(R)) ® X is a dense subspace of HP(R; X).

Letm : R^ -> C be a bounded measurable function, and let rm : H2(R) —> //2(R)
be the associated Fourier multiplier defined by letting xm(f) = mf on R*+ for any
/ € H2(R). We say that m is a bounded Fourier multiplier on HP(R; X) if rm maps
H2(R) n HP(R) into itself and if there exists a constant C > 0 such that for any
~ m(H2(R)DHp(R))®X,

(4.2) < C

In other words, m is a bounded Fourier multiplier on Hp (R; X) if rm (8) Ix is bounded
with respect to the //p(R;X)-norm. In that case, xm ® /^ uniquely extends to a
bounded operator on //P(R;X) whose norm is the least constant C satisfying (4.2).
This norm will be called the norm of the Fourier multiplier m on Hp (R; X).

LEMMA 4.1. Lef 1 < p < oo and consider a function F e H°°(Eg) for some
9 > it/I

(1) LetA= d/dt on the space HP(R; X). Then F(A) is bounded if and only if the
function m : R^ -> C defined by m{%) = F(il-) is a bounded Fourier multiplier on
Hp(R;X).
(2) LetA= d/dt on the space H%{T\ X). Then F{A) is bounded if and only if the

sequence (F(ik))k2i is a bounded Fourier multiplier on Hfi (T; X).

PROOF. This result is elementary. Using the definitions above, one can reduce to
the scalar case. Then it suffices to apply the formula/'(£) — i%f (£) (in case (1)) or
f'(k) = ikf (k) (in case (2)) for suitable functions. •
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LEMMA 4.2. Let f : K —• C be a continuous 2n -periodic function, and let <p €
Ll(K) with f q>{t) dt = 1. Then

(4.3) — / f(t)dt = limr] f (t)<p(nt)dt.
In J-n »-o 7

PROOF. By equicontinuity, we may reduce to the case when / e & hence by
linearity, we may assume that/ = ek for some k e Z. Since we have

fj / et(r)^0<^ = ?"(—j-

the result follows at once. •

The next result extends the well-known fact that if m is a bounded and continuous
function on K, then m is a bounded Fourier multiplier on Lp (R) if and only if the
sequences (m(ek))k€i are uniformly bounded Fourier multipliers on Z/(T). In the
latter result, the 'if part is due to Stein and Weiss [27, VII, Theorem 3.18] whereas
the 'only if part goes back to de Leeuw [21]. Note that de Leeuw's Theorem
can be regarded as a consequence of the Coifman-Weiss transference principle (see
[4, Chapter 3]). The above mentioned equivalence extends to vector-valued Lp-
spaces with identical proofs. To deal with vector-valued Hp-spaces, we will need
some substantial modifications that are indicated below. Note for example that the
Coifman-Weiss transference principle is no longer available for Hardy spaces.

PROPOSITION 4.3. Let 1 < p < oo be a number, letm : R*+ -> C be a bounded and
continuous function, and let C > 0 be a constant. Then the following two assertions
are equivalent:

(i) m is a bounded Fourier multiplier on HP(U.;X) whose norm is less than or
equal to C;

(ii) for any s e (0, 1], the sequence {m(ek))k>\ is a bounded Fourier multiplier
on HQ (T; X) whose norm is less than or equal to C.

PROOF. We first show that (i) implies (ii), by adapting the proof of [21, Theo-
rem 2.3]. In proving (ii), we may clearly assume that £ = 1. Indeed if m satisfies (i),
then the function £ H* m(e%) satisfies it as well for any £ > 0. We let 1 < q < oo be
the conjugate number of p, that is, p~l + q~l = 1. Suppose that

(4.4) P{t) = YJP^)eikl and Q(t) = £ Q{n)einl.
k>\ r,

are two vector-valued trigonometric polynomials with P e .fJ^igiX and Q 6
Let us consider two (scalar-valued) functions y, 6 L'(K) n LP(R) and y2 € L'(IR) n
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L9(R) which satisfy

(4-5) llttll, = llwll, = l and Supp(fi) C [-1 , 1].

Thenforanyrj 6 (0, 1), let us define Pn e L1(R;X)nLp(R;X)a.nd Qn e Ll(R;X*)D
L«(R;X*) by letting P,(r) = P(t)yx{r)t) and (2,(0 = G(0tt(»?f) for any t e R.
Given k > 1, r\ e (0, 1), and £ 6 R, the Fourier transform of f h+ e"'yi(»?0 a t t h e

point £ equals (l/f?)pi((£ — *:)/??). Hence we have

(4-6) P,(|) = -

For any £ < 0 and k > 1, we have £ — fc < — 1. Hence (£ — k)/r] < — 1 and
hence )^((£ - &)//?) = 0. It therefore follows from (4.6) that P, actually belongs to

Applying the assumption (i), let T : Hp(Ul;X) ->• W(R;X) be the bounded
Fourier multiplier operator induced by m, which we may apply to P,. We will show
that

(4.7) lim IJ(7-(P,), G,> = {Yun)[Yjm{k)P{k)®ek, Q) ,

where the brackets in the left-hand side stand for the duality between I/(!R; X) and
V (R; X*), the first brackets in the right-hand side stand for the duality between Lp (R)
and Lq (R), and the second brackets in the right-hand side stand for the duality between

Once this is established, one can conclude as follows. On the one hand, we note
that

J d t ^ ^ - ^ \\P(t)\\p
xdt=\\P\\>p

by Lemma 4.2. Similarly, r) || Qn || Gil' if q < oo, and in the case when q = oo,
we have an estimate | Qn [^ < || Glloo- Hence, we finally have that

lim sup ^ I P , I | Q , | | < | |P ||, || Gi l , .

and hence

(4.8) limsup|»j(r(P,),
o

On the other hand, recall that the natural embedding LP(J;X)
isometry (see for example [8, IV. 1]). We easily deduce that

Lq{J;X*)* is an

= sup *, G
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where the supremum runs over all Q e & <g> X* with \\Q\\q < 1. Combining
with (4.8) and (4.7), we obtain that |<y,, Yi)\ ||£*>i m(k)P(k) ® ek\\p < C \\P\\p.
Since the supremum of\(yu y2)| over all yx and y2 satisfying (4.5) equals 1, we finally
obtain that (m (&))*> i is a bounded Fourier multiplier on //<f (T; X) with norm < C.

It therefore remains to prove (4.7). Applying (4.6) we see that

Furthermore arguing as in the proof of (4.6), we find that

— . . 1

Hence we have for any r\ e (0, 1)

Let us denote by h.nii) the integral on the right-hand side of this equality. By the
change of variable J = (£ + n)/r], we see that

= n I m(r)s -n)y[ Is j y2(-s)ds.

In the case when n = —k, this integral equals r] f m(k + r)s)yi(s)yi(—s) ds hence the
continuity of m at the point it yields

1

• / •

\\m-Ik,-k{r]) -m(k) / y1(s)y2(-s)ds = 2nm(k)(yu y2).
1 - 0 T) J

Assume now that n + k ^ 0. Since Supp(yi) C [—1, 1], we have

n
<\\m

0 when r) —» 0 since lim ;
J-»OO '

n+k n+k
< J < 1 H

= 0.
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Combining these estimates, we finally obtain that

),Q,) = (YuY.
k>l

pn I
Jkt= {Yu Yi) ^~ I (Yj2n J-* \7£

m(,k)P{k)eikt, T Q(n)ein')dt

\k>\ I
which completes the proof of (4.7).

We now prove that (ii) implies (i), by adapting the proof of [27, VII, Theorem 3.18]
to our analytic setting. In particular we will use the Poisson summation principle. We
let <% be the space of all C°° functions / : R -» C belonging to Hl(R) such that
lini|,Koo \t

2f (t) | = 0. Then according to [12, Chapter II, Corollary 3.3], <fr is a dense
subspace of //P(K) for any 1 < p < oo. Therefore, 9/ <g> X is dense in HP(R; X).
Hence to prove (i), it suffices to prove (4.2) on ̂  ® X.

Let T = rm <g> /^ be the Fourier multiplier operator corresponding to w defined on
% <g> X and l e t / be an arbitrary element of 9/ <g> X. Since any function in ̂  is C°°
hence C2, we have lim,eh00 |^|2 | | / ( ^ | = 0 hence limIIKoo |^|2|m(?)| | | / ( f )|| = 0.
By Fourier's inversion formula we deduce that for any ( e l ,

1 f°°
Tf{t) = — / m(£)/(|)e"^.

27T Jo

Since m is continuous, we deduce by means of Riemann sums that

= lim l±-

For any £ 6 (0, 1), let Fe be defined by

(4.9) 7/ (0 = lim I - - Ym(ek)f(sk)eilek) , t €

~° \27r ^T /

Since/ € ^ ® X, Fe is a well-defined continuous function on K. Moreover Fe is
27r-periodic. Then regarding it as an element of C(T; X), we see that

(4.10) VJkeZ, Fe(k)=f(ek)-

Indeed, this follows from the standard proof of the Poisson summation formula. This
shows in particular that Fe e HQ{J;X). We now claim that

K(4.11) Hm|^£||F£(0ll^== U
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Indeed, by our assumption that / e ^ <8) X, there is a constant K > 0 such that
11/(̂ )11 < K\s\~2 for any s satisfying \s\ > n. Let t e [—7r, 7r]. For any non-zero
integer,/ and any e e (0, 1), we have \(t + 2nj)/e\ > n and hence

f
(i
v

±35L
- 7t\2\j I - 1)2

We deduce that for some absolute constant K' > 0, we have

< K'e, r e [-n, JT], e e (0, 1).

Integrating this inequality and passing to the limit, we obtain that

lime'-/" F.tt)-*Lftt) dt = O.

Our claim (4.11) now follows from the fact that

dt=(2ny[ \\f(s)\\pds
J-rt/e

-> (27r)p ||/ \\p
p when s -> 0.

For any £ e (0, 1), we let Te : Hg(T;X) ->• H£(T;X) be the bounded Fourier
multiplier operator induced by the sequence (/n(e£))t>i. Then we let r) : R -* K+ be
a compactly supported continuous function such that rj(O) = 1 and

' = 1, /el.

(See [27, VII, Lemma 3.21].) Arguing as in [27, page 266], we find that

e" J WTeFAstMeOW" dt = e"-1 j ||7^0011' dy.

Hence applying our assumption, we have

(4.12) e" J WT.FiietMetn" dt < Cs1"1 J \\Fc(y)\\p dy.

Combining (4.10) and (4.9), we infer that

7 / ( 0 = lim —TeFe(et)r)(et), t e R.
c->o 2n

It therefore follows from Fatou's Lemma, (4.12), and (4.11) that

j ' || r/(r)II ' dt<C J' ||/(Oil" dt.

This concludes the proof that m satisfies (i). •
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In proving Theorem 1.2, we will need the following elementary result whose proof
is left to the reader.

LEMMA 4.4. Let A C Z be a finite set of integers, let s, y > 0 be two positive
numbers, and let e e {—1,1} be a sign. Then there exists an integer k > 1 such that
for any a e A, a + k > I and \(a + k)is — e\ < y.

PROOF OF THEOREM 1.2. Clearly (ii) implies (hi) and (iv) implies (v). More-
over, (ii) implies (iv) and (iii) implies (v) by Lemma 4.1 and Proposition 4.3. Thus
we only have to show that (i) implies (ii) and (v) implies (i).

Assume (i), that is, X is an AUMD Banach space, and let (mt)t>i be a bounded
sequence of complex numbers. Then according to Blower's extension of Mikhlin's
Theorem in [1], (mk)k>\ is a bounded Fourier multiplier on Ho

l(J; X) provided that

C\ — sup&lmt+i — mk\ < oo and
(4.13)

C2 = supk \mt+2 — 2mi+i + mk\ < oo.
k>\

Moreover, letting Co = supt>, \mk\, the norm of the Fourier multiplier (mk)k>i on
HQ(J;X) only depends on Co, C\, C2 and on the 'AUMD constant' K\ appearing
in (2.8) for p = 1. Furthermore it is easy to check that for any 1 < p < oo, Blower's
Theorem extends to Fourier multipliers on Hi (T; X) with the same proof. Of course
in this case, Kp replaces K\ in the estimate of the norm of the Fourier multiplier
(ifit)4>,onfl0'(T;X).

We now prove (ii). Let 1 < p < oo and 0 > n/2 be two numbers, and let
F € //°°(S9). Then according to Lemma 4.1, Proposition 4.3, and the preceding
discussion, it suffices to show that for any e e (0, 1), the complex numbers mk =
F(iek) satisfy (4.13) and that the resulting constants C\, C2 are uniformly bounded
with respect to £ 6 (0, 1). To prove this, we first note the well-known fact that for
any z e /OS, \zF'(z)\ < Ke\\ F\\^e and \z2F"(z)\ < tf'e||F||00,fl, for some constant Ke

only depending on 0. Indeed, this follows from Cauchy's Theorem and probably goes
back to [5]. Now for any k > 1 and any e e (0, 1), we have

I

hence

-mk = F(is(k + 1)) - F(iek) = is f F'(ie(k + t)) dt
Jo

<ks I \F'{it
Jo

k\mk+i - mk\ < ks I \F'(ie(k + t))\dt

dtI
./o e(k
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Similarly, we have

mk+2-2mM+mk =

= (is)2 f f F"{ie(k + t + s))dtds
Jo Jo

- F(iek))

hence k2\mk+2 — 2mk+i + mk\ < Ke\\ FWooj. This completes the proof of (ii).
We now assume (v) and prove (i). We will use Bourgain's transference technique

introduced in [2]. We note that our proof is close to the Guerre-Delabriere char-
acterization of UMD spaces [14]. Let p and s be given by (v). For any integer
k > 1, (ik)'s — k'se~sn/1 hence by Lemma 4.1, the sequence (ifc")jt>i is a bounded
Fourier multiplier on / / £ ( ! ; X). We denote by T : HS(J;X) -> //O

P(T;X) the
resulting bounded operator. Let N > I be an integer, and for any I < n < N, let
4>n : T""1 -> X be an X -valued trigonometric polynomial (<t>i e X being a constant),
and let dn : J" -*• X be defined by (2.7). Given E\,... ,eN 6 {—1, 1}, we aim to
prove that

(4.14)
n=\ n=\

where the norms are computed in LP(TN;X). This will show that X is an AUMD
Banach space.

For 1 < n < N, let A(<t>n) c Z""1 be the spectrum of <!>„, that is, the support of
the Fourier transform of <£>„. Then A(4>n) is a finite set and

(4.15) eiChh • • • «""-*•-, tu ... , ft,_, € T.

We let 8 > 0 be an arbitrary positive number. Then we define (by induction) a
sequence Jfci,... , kN of positive integers as follows. We let Cn =
for 1 < n < N. We first choose k\ > 1 such that

Then we assume that 2 < n < N and that ku ... , kn_\ have been chosen. We let

Then An is a finite subset of 2 and so applying Lemma 4.4 with A = An and e = en

we choose kn > 1 such that

n-\ n-\

(4.16) if ^^qjkj e An, then kn + ^^qjkj > 1
y=i y='
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NCn

Thus for any 1 < n < N, we have the following estimate

(4.17) E
n-l

- £ „
£
n

We fix t\,... , tN e J and, for any 1 < n < N, we introduce An : T -
letting An(f) = dn{tx+kxt,... , tn + knt) for any t e T. Then we have

A*M = 4>»(r, + * , r , . . . , /„_, + ^^O^*'"^"" by (2.7)

Q,,(q)ei«l«+k>')---e">-li'-l+k-l')e'l'"+k-') by (4.15)

X by

e
iqxh

Looking at (4.16), we see that An is an analytic polynomial without constant term

(that is, An € &$ <8> X) and applying the Fourier multiplier operator T, we obtain that

TAn(t) = J2 ®n(q)ei<hh • • • e ' " - " - ' ^ I kn + ̂ jqjkj I e ' (*»+^l*^) ' , t e J,

9€A(*B) \ j=\ I

It therefore follows from (4.17) that for any 1 < n < TV and any t e J,

\\TAn(t)-enAn(t)\\<S/N

whence | r ( ^ = 1 An)(t) - E L e » A , , ( 0 l < 6, r 6 T. Integrating on T yields

I T( EL A.) - E l , ^A n ||p < 8, hence | E l , £nA«||p < * + II7111 E l , An||p,
whence

n=\

<2" ~l

More explicitly,

f dnih +kxt,... ,tn + knt)

n=l

|7*||"

dt

n = ,

8" + \\T\\P f
J -IT

knt)

n=\

dt_

2n
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Now by integrating the latter inequality with respect to(tu ... , tN) elN and applying
Fubini's Theorem, we deduce that

< 2"'1 IS" + ||T\\"
n=l

Since 8 > 0 is arbitrary, we finally obtain (4.14), which completes the proof. •

REMARK 4.5. Let X be any Banach space and consider the sectorial operator d/dt
either on HP(R;X) or on Hg(T;X). Then it is easy to see that for any eo > 0,
the operator —id/dt is sectorial of type u>. Moreover it is clear from the proof of
Theorem 1.2 that in the case when X is AUMD, the operator —id/dt has a bounded
H°°(Ee) functional calculus for any 6 > 0.

REMARK 4.6. It was first established by Lust-Piquard and independently by Drury
(see [22]) that there exist bounded Fourier multipliers on //„' (T) which are not bounded
on HQ(J;SX). Since 51 is not AUMD [15], Theorem 1.2 yields several explicit
examples. In particular we recover Drury's example, namely for any s e R*, the
sequence (&")*> i is not a bounded Fourier multiplier on HQ(J; S1). We note that the
latter fact can also be easily deduced from [24, Theorem 6.2]. More generally, if
(»u)*>i is a bounded non-converging sequence and if limt_0o(/nt+i — mk) = 0, then
(wu)*>i cannot be a bounded Fourier multiplier on HQ(J; S1). Indeed, let {mkp)p>i and
(miq)q>\ be two converging subsequences of (mt)*>i, with distinct limits fi\ and fi2.
Assume that (mt)*>i is a bounded Fourier multiplier on //„' (T; S1). Then according to
[24, Theorem 6.2], there exist a Hilbert space H and two bounded sequences (*t)*>i
and (yi)i>\ in H such that mk+i — (xk, yt) for any k, I > 1. In particular, we may
write mkp+lq = (xkp, ylq) for any p, q > 1. For any q > 1, lim/,^00(mtp+,, - mkp) = 0
hence \\mp^0Omkp+lq = fi\. Similarly, lim,_>0OmA(j+/? = /)2 for any p > 1. Now if x
and y are weak cluster points of the bounded sequences (JC^)P>I and (yiq)q>i, we see
that for any q > 1, P\ = l i m ^ ^ o o ^ , ytq) = (x, ylq) hence /3| = {x, y). Likewise,
^2 = (x, y), which gives a contradiction.

REMARK 4.7. Let X be a Banach space, and let //J,(R; X) be the X-valued atomic
H '-space. Then the translation semigroup is well-defined and isometric on H*t(til; X).
We may then define d/dt on H^(R;X) as its negative generator, and consider the
question whether it admits a bounded H°° functional calculus. Using Calderon-
Zygmund Theory for vector-valued Lp -spaces, one can show that d/dt has a bounded
f/°°(Ee) functional calculus for any 6 > n/2 if and only if d/dt has bounded
imaginary powers if and only if X is UMD. We omit the details.
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