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Abstract

Let G be a graph of order n ≥ 6 with minimum degree δ(G) ≥ 4. Arkin and Hassin [‘Graph partitions
with minimum degree constraints’, Discrete Math. 190 (1998), 55–65] conjectured that there exists
a bipartition S , T of V(G) such that bn/2c − 2 ≤ |S |, |T | ≤ dn/2e + 2 and the minimum degrees in the
subgraphs induced by S and T are at least two. In this paper, we first show that G has a bipartition such
that the minimum degree in each part is at least two, and then prove that the conjecture is true if the
complement of G contains no complete bipartite graph K3,r, where r = bn/2c − 3.
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1. Introduction

All graphs considered here are finite, simple and undirected graphs. Let G = (V(G),
E(G)) be a graph. The complement of G is denoted by G. For S ⊆ V(G), let G[S ]
and G − S denote the subgraphs induced by S and V(G) − S , respectively. When
S = {v}, we simplify G − {v} to G − v. Let NS (v) be the set of the neighbours of
a vertex v contained in S , NS [v] = NS (v) ∪ {v} and dS (v) = |NS (v)|. A k-vertex is
a vertex of degree k. We call k-vertices adjacent to v k-neighbours of v. The
minimum degree of G is denoted by δ(G). Simply, we write δ(G[S ]) as δ(S ). A
complete bipartite graph of order s + t is denoted by Ks,t. For X, Y ⊆ V(G), define
(X, Y)G = {uv ∈ E(G) | u ∈ X, v ∈ Y} and let G[X, Y] be a graph with vertex set X ∪ Y
and edge set (X, Y)G. Let P be a path. We denote by

−→
P the path P with a given

orientation and by
←−
P the path P with the reverse orientation. If u, v ∈ V(P), then u

−→
Pv

(u
←−
Pv, respectively) denotes the consecutive vertices of P from u to v in the direction

specified by
−→
P (
←−
P , respectively). To contract an edge e = uv of a graph G is to delete

e, and then identify its ends and delete possible parallel edges. The resulting graph is
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denoted by G/e. A bipartition S ,T of V(G) is said to be balanced or almost balanced if
bn/2c ≤ |S |, |T | ≤ dn/2e or bn/2c − 2 ≤ |S |, |T | ≤ dn/2e + 2. A bipartition S , T of V(G)
is said to be an (s, t)-bipartition if δ(S ) ≥ s and δ(T ) ≥ t, where s, t are nonnegative
integers.

In [6], Stiebitz showed that every graph with minimum degree at least s + t + 1
admits an (s, t)-bipartition. Kaneko [4] and Diwan [2] strengthened this result, proving
that it suffices to assume that the minimum degree is at least s + t or s + t − 1 (s, t ≥ 2)
if G contains no cycles shorter than four or five, respectively.

It is natural to ask an analogous question on balanced or almost balanced
bipartitions. Let s and t be two nonnegative integers. Is there an integer k such that
every graph with minimum degree at least k admits a balanced or an almost balanced
(s, t)-bipartition? In [5], Maurer proved an interesting result, from which it is easy to
see that every connected graph with minimum degree at least two admits a balanced
(1, 1)-bipartition.

Theorem 1.1. Let G be a connected graph of order n with δ(G) ≥ 2. Then, for any
positive integer l with 2 ≤ l ≤ n − 2, G admits a (1, 1)-bipartition S ,T such that |S | = l
and |T | = n − l.

Arkin and Hassin [1] have given the following conjecture for graphs with minimum
degree at least four.

Conjecture 1.2. Let G be a graph of order n with δ(G) ≥ 4. Then G admits an almost
balanced (2, 2)-bipartition.

Note that if a graph G has a (2, 2)-bipartition, then clearly |G| ≥ 6, and so we need
only consider whether Conjecture 1.2 is true for n ≥ 6. In [3], El-Zahar established the
following theorem.

Theorem 1.3 (El-Zahar [3]). Let G be a graph of order n = n1 + n2 with δ(G) ≥
dn1/2e + dn2/2e; then G contains two vertex disjoint cycles of lengths n1 and n2, where
n1, n2 ≥ 3 are two integers.

By Theorem 1.3, if δ(G) ≥ 4, then G contains two vertex disjoint cycles of lengths
n1 = n2 = 3 if n = 6, n1 = 3 and n2 = 4 if n = 7 and n1 = n2 = 4 if n = 8. This is to
say that Conjecture 1.2 is true for 6 ≤ n ≤ 8. Up to now, no results were obtained
on Conjecture 1.2 and so it is still open. In this paper, we first improve a result on
(2, 2)-bipartitions due to Stiebitz [6] by showing the following theorem.

Theorem 1.4. Let G be a graph of order n ≥ 6 with δ(G) ≥ 4. Then G admits a (2, 2)-
bipartition.

By Theorem 1.4 and the definition of almost balanced bipartitions, it is easy to
obtain the following corollary.

Corollary 1.5. Let G be a graph of order n ≥ 6 with δ(G) ≥ 4. If n ≤ 11, then G admits
an almost balanced (2, 2)-bipartition.
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Next we show that Conjecture 1.2 is true under some additional constraint. This is
the main result of this paper.

Theorem 1.6. Let G be a graph of order n ≥ 6 with δ(G) ≥ 4. If G contains no K3,r,
then G admits an almost balanced (2, 2)-bipartition, where r = bn/2c − 3.

Obviously, our result supports the truth of Conjecture 1.2.

2. Proof of Theorem 1.4

In order to prove Theorem 1.4, we need the following lemma.

Lemma 2.1. Let G be a graph of order n ≥ 6 with δ(G) ≥ 4. Then G contains two vertex
disjoint cycles.

Proof. If G is disconnected, then the result holds trivially. So, we may assume that
G is connected. Let P = v1v2 · · · vp be any longest path of G. By the maximality of
P, we have NG(v1) ⊆ V(P) and NG(vp) ⊆ V(P). Since dG(v1) ≥ 4, we may assume
that vi, v j ∈ NG(v1), where 2 < i < j < p. If v1vp < E(G), then, since dG(vp) ≥ 4,
there is either some k with i + 1 ≤ k < p − 1 such that vk ∈ NG(vp) or some l,m with

1 < l < m ≤ i − 1 such that vl, vm ∈ NG(vp). Thus, v1
−→
Pviv1 and vk

−→
Pvpvk in the former

case and v1vi
−→
Pv jv1 and vpvl

−→
Pvmvp in the latter case are two vertex disjoint cycles of G.

Therefore, we must have v1vp ∈ E(G). In this case, p = n. Noting that vi−1
←−
Pv1vi

−→
Pvp

and v j−1
←−
Pv1v j

−→
Pvp are also longest paths of G, by similar arguments as before, we

may assume that vi−1, v j−1 ∈ N(vp). If j > i + 1, then v1
−→
Pviv1 and vpv j−1

−→
Pvp are two

vertex disjoint cycles and hence j = i + 1. If i > 3, then v2
−→
Pviv1v j

−→
Pvp is a longest path

and so v2vp ∈ E(G). Thus, v1viv jv1 and v2
−→
Pvi−1vpv2 are two vertex disjoint cycles.

If i = 3, then, since p = n ≥ 6, we have 4 = j < p − 1, whence vp−1
←−
Pvivpvi−1v1 is a

longest path and so v1vp−1 ∈ E(G). Hence, vpvi−1vivp and v1v j
−→
Pvp−1v1 are two vertex

disjoint cycles. �

Proof of Theorem 1.4. By Lemma 2.1, G has two vertex disjoint subgraphs H1 and
H2 such that δ(Hi) ≥ 2 for i = 1, 2. Choose H1 and H2 such that |H1| + |H2| is as large
as possible. If |H1| + |H2| < n, set H3 = G − V(H1) − V(H2). By the choice of H1 and
H2, we have dHi (h) ≤ 1 for any h ∈ V(H3) and i = 1, 2, which implies that δ(H3) ≥ 2
since δ(G) ≥ 4. In this case, H1 and H2 ∪ H3 satisfy δ(H1) ≥ 2 and δ(H2 ∪ H3) ≥ 2,
which contradicts the choice of H1 and H2. �

3. Proof of Theorem 1.6

Proof of Theorem 1.6. We will use induction on n. By Corollary 1.5, Theorem 1.6
holds for 6 ≤ n ≤ 11. Now we assume that n ≥ 12 and that the result holds for all small
n. In the following, we let r = bn/2c − 3.
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Firstly, we show that G admits a (2, 2)-bipartition S , T such that | |S | − |T | | ≤
d(n − 1)/2e − b(n − 1)/2c + 5.

If there exists x ∈ V(G) such that δ(G − x) ≥ 4, then δ(G′) ≥ 4 and G′ contains
no K3,r, as G′ ⊆ G, where G′ = G − x. Thus, G′ admits an almost balanced (2, 2)-
bipartition S ′, T ′ by induction. Since dG(x) ≥ 4, we have dS ′(x) ≥ 2 or dT ′(x) ≥ 2,
say dS ′(x) ≥ 2. Let S = S ′ ∪ {x}, T = T ′; then S , T is a (2, 2)-bipartition of G and
| |S | − |T | | = | |S ′| + 1 − |T ′| | ≤ d(n − 1)/2e − b(n − 1)/2c + 5. So, we assume that

δ(G − x) = 3 for any x ∈ V(G). (∗)

By (∗), we have δ(G) = 4 and, if dG(x) = 4, then x has a 4-neighbour.
Let u, v be two adjacent 4-vertices.

Claim 1. u, v have at most two common neighbours.
To prove our claim, suppose that u, v have three common neighbours w1,w2,w3.

Denote X = V(G) − {u, v,w1,w2,w3}; then NG(u) = NG(v) = X. Since G contains no
K3,r, we have |NG(w) ∩ X| ≤ r − 1 for any w ∈ V(G) − {u, v}. Then |NG(wi) ∩ X| ≥
n − r − 4 for 1 ≤ i ≤ 3 and |NG(x) ∩ X| ≥ n − r − 5 for any x ∈ X. Noting that dG(x) ≥ 4,
we have |NG(x) ∩ (V(G) − {u, v, w1, w2})| ≥ 2. If n = 12, then |NG(w3) ∩ (V(G) −
{u, v,w1,w2})| ≥ n − r − 4 = 5; thus, {u, v,w1,w2}, V(G) − {u, v,w1,w2} is an almost
balanced (2, 2)-bipartition of G. If n ≥ 13, let x0 ∈ X; then x0u, x0v ∈ E(G). Since
|NG(x) ∩ (X − x0)| ≥ n − r − 6 = n − bn/2c − 3 ≥ 4 for any x ∈ X − x0 and |NG(wi) ∩
(X − x0)| ≥ n − r − 5 = n − bn/2c − 2 ≥ 5 for 1 ≤ i ≤ 3, we have δ(G − x0) ≥ 4, which
contradicts (∗). This proves our claim.

Claim 2. If u, v have a common neighbour w, then dG(w) ≥ 5.
To prove our claim, suppose to the contrary that dG(w) = 4. Then |V(G) −

NG[u] − NG[v] − NG[w]| ≥ n − 9 ≥ bn/2c − 3 = r that is, there exist x1, x2, . . . , xr ∈

V(G) − NG[u] − NG[v] − NG[w] and G[{u, v,w}, {x1, x2, . . . , xr}] is a K3,r, which is a
contradiction. This proves our claim.

Let G′ = G/uv and denote by w the vertex resulting from the contraction of e. By
Claim 1, we have |NG(u) ∪ NG(v)| ≥ 4 and dG′(w) ≥ 4. For any x ∈ V(G) − {u, v}, if
x is not a common neighbour of u, v, we have dG′(x) = dG(x) ≥ 4; if x is a common
neighbour of u, v, we have dG′(x) = dG(x) − 1 ≥ 4 by Claim 2. Therefore, δ(G′) ≥ 4.
Since G′ contains no K3,r, by induction, G′ admits an almost balanced (2,2)-bipartition
S ′, T ′. Assume without loss of generality that w ∈ S ′. If dS ′−w(u) = 0, then we
must have dT ′(u) ≥ 3, as dG(u) ≥ 4. Since dS ′(w) ≥ 2, we have dS ′−w(v) ≥ 2. Let
S = (S ′ − w) ∪ {v}, T = T ′ ∪ {u}; then S , T is a (2, 2)-bipartition of G and | |S | −
|T | | = | |S ′| − |T ′| − 1| ≤ d(n − 1)/2e − b(n − 1)/2c + 5. Thus, by symmetry of u and v,
we may assume that dS ′−w(u) ≥ 1 and dS ′−w(v) ≥ 1. Let X = (S ′ − w) ∪ {u, v}, T = T ′;
then S , T is a (2, 2)-bipartition of G and | |S | − |T | | = | |S ′| + 1 − |T ′| | ≤ d(n − 1)/2e −
b(n − 1)/2c + 5.
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Next, we show that G admits an almost balanced (2, 2)-bipartition.
By the argument above, G admits a (2, 2)-bipartition S , T with | |S | − |T | | ≤

d(n − 1)/2e − b(n − 1)/2c + 5. Assume without loss of generality that |S | ≥ |T | ≥ 3.
If |S | − |T | ≤ dn/2e − bn/2c + 4, then we see that S , T is an almost balanced
(2, 2)-bipartition. Therefore, we have dn/2e − bn/2c + 5 ≤ |S | − |T | ≤ d(n − 1)/2e −
b(n − 1)/2c + 5; thus, n is even and |S | = d(n − 1)/2e + 3 = bn/2c + 3 and |T | =
b(n − 1)/2c − 2 = bn/2c − 3. In the following, we will show that G admits an almost
balanced (2, 2)-bipartition under these conditions.

If δ(S ) = 2, we assume that H is any component of the subgraph induced by the
2-vertices of G[S ] and V(H) = {x1, . . . , xp}. Clearly, H is a path or a cycle. Let
P = x1x2 · · · xp be a path in H. Since dS (xi) = 2 and dG(xi) ≥ 4, we have dT (xi) ≥ 2 for
1 ≤ i ≤ p. If p ≥ 3, then |S −

⋃3
i=1 NS (xi)| ≥ |S | − 5 = bn/2c − 2 ≥ r. Let y1, y2, . . . , yr ∈

S −
⋃3

i=1 NS (xi). Then G[{x1, x2, x3}, {y1, y2, . . . , yr}] is a K3,r, which is a contradiction.
Therefore, p ≤ 2. If p = 2 and x1, x2 have a common neighbour x in S , then dS (x) ≥ 4.
Otherwise, |S − NS [x] − NS [x1] − NS [x2]| ≥ |S | − 4 = bn/2c − 1 > r, that is, there exist
y1, y2, . . . , yr ∈ S − NS [x] − NS [x1] − NS [x2]; then G[{x, x1, x2}, {y1, y2, . . . , yr}] is a
K3,r, which is a contradiction. Thus, δ(S − {v1, . . . , vp}) ≥ 2. Let S ∗ = S − V(P),
T ∗ = T ∪ V(P). Noting that δ(T ) ≥ 2, dT (xi) ≥ 2, we have δ(T ∪ V(P)) ≥ 2. Since
| |S ∗| − |T ∗| | = |S | − |T | − 2p ≤ 4, we see that S ∗, T ∗ is an almost balanced (2, 2)-
bipartition of G.

Now we assume that δ(S ) ≥ 3. Denote X = {x | x ∈ S and dT (x) ≥ 1}. Then X
contains all 3-vertices of G[S ]. Since |T | = bn/2c − 3 = r and G contains no K3,r,
we have (S , T )G , ∅, that is, X , ∅. Choose x ∈ X such that dS (x) is as small as
possible and let x1 be a neighbour of x in T . Since G contains no K3,r, we have
(NS (x), T )G , ∅. Choose y ∈ NS (x) ∩ X such that dS (y) is as small as possible and let
y1 be a neighbour of y in T . If δ(S − {x, y}) = 1, then δ(S ) = 3 and x, y have a common
neighbour z of degree three in S . Noting that z ∈ X, by the choice of x, y, we have
dS (x) = dS (y) = 3. Since |S − NS [x] − NS [y] − NS [z]| ≥ |S | − 6 = bn/2c − 3 = r, there
exist w1,w2, . . . ,wr ∈ S − NS [x] − NS [y] − NS [z]. But then G[{x, y, z}, {w1,w2, . . . ,wr}]
is a K3,r, which is a contradiction. Therefore, we have δ(S − {x, y}) ≥ 2. Noting that
δ(T ) ≥ 2, {x1, y} ⊆ NT∪{x,y}(x) and {x, y1} ⊆ NT∪{x,y}(y), we have δ(T ∪ {x, y}) ≥ 2. Let
S ∗ = S − {x, y}, T ∗ = T ∪ {x, y}. Since | |S ∗| − |T ∗| | = |S | − |T | − 4 = 2, we see that
S ∗,T ∗ is an almost balanced (2, 2)-bipartition of G.

Therefore, the proof of Theorem 1.6 is complete. �
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