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ON A CERTAIN FUNCTION ANALOGOUS TO logly(z)

TETSUYA ASAI

The purpose of this paper is to give the limit formula of the Kronec-
ker’s type for a non-holomorphic Eisenstein series with respect to a Hilbert
modular group in the case of an arbitrary algebraic number field. Actually,
we shall generalize the following result which is well-known as the first
Kronecker’s limit formula. From our view-point, this classical case is cor-
responding to the case of the rational number field Q.

Let z be a point of the complex-upper-half-plane, and by y(z) we
denote the imaginary part of z, i.e., y(z) =y >0 for z =2 + iy. L denotes
the group SL(2,Z) (Z: ‘the ring of rational integers), and L, the subgroup
consisting of all ¢ = <‘T" g €L such that 7=0. (2> stands for (az+ f)-
(rz+8)"* as usual. The non-holomorphic Eisenstein series with respect to
L is defined by

E*z,5) = 20 y(e=),

seL{\L

and this converges absolutely in the half plane Re s >1. E*(,s), as the
function of s, is essentially an Epstein zeta function of the positive definite
binary quadratic form. In fact, define another Dirichlet series by

S

8

1

2 D mz A ¥
(o, my£0, 0)

E(z,s) =

then obviously, E(z,s) = §(2s)E£%(z,s), where {(s) is the Riemann zeta function.
The series E(z,s) can be holomorphically continued to the whole s-plane,
and the continuation is regular except for one simple pole at s =1 with the
residue zn/2. The Kronecker’s limit formula gives the constant term in the
Laurent expansion at s =1 explicitly, i.e.,

lim(E(z, 5) — “f%‘) = 2 (2C — log4 — logy(2) + h(2)),
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where C is the Euler constant and %(z)=—4log|7(z)|; 7(z) being the Dedekind
p-function. It is well-known that the function 7(z) is a holomorphic cusp
form of dimension —% with respect to L, but we here notice only the

following properties of the non-holomorphic function k(z) itself.

I. h(z) is a real-valued, real analytic function of two real variables
2,9 ( z =2 + zy) and vanishes by the Laplace-Beltrami operator
( e 6T of the complex-upper-half-plane.

II. &(z) is a modular form with the automorphic factor log|rz + 4|2
with respect to L, i.e., h(z) = log|rz + 8|2 + h(o¢z)) for any ¢ = (? ‘g)EL.

Furthermore, as was recently remarked by Weil,

III. h&(z) is associated with the Dirichlet series &(s)¢(s + 1) in the usual
sense, i.e., essentially under Mellin transform.

Now, all the above result can be generalized to the case of any al-
gebraic number field. Let F be an arbitrary algebraic number field and o
be the ring of integers of F, whose class number, we assume for simplicity,
is equal to one. Let r,, 7, be the numbers of real and imaginary infinite
places of F, respectively. For the upper-half-space corresponding to F, we
need the product space 27 = H[1xH}2, where H. and H, are the complex-
upper-half-plane and the quaternion-upper-half-space, respectively. H, con-
sists of all quaternion numbers z = (2; _g> such that y >0 while z is any
complex number, and we also denote y(z) = y for such z. Take the Hilbert
modular group I' = SL(2,0) which operates on 27 discontinuously, and let
I, be the group of all ¢ = <? f;)el“ such that 7 =0. For a point z = (z)
of 27 and a complex number s with Re s >1, the non-holomorphic
Eisenstein series with respect to I" is defined by

E*z,s) = E DN,

el \I"

here y(z) = (y(z;)) and Ny(z) =rl.4_1-1ny(zj)e’ ; e; being 1 or 2, according as the
case of H, or Hy. Similarly to t};;: classical case, E(z,s) = {»(25)E*(z,s) (where
¢r(s) being the Dedekind zeta function of F) can be regarded as a general-
ized Epstein zeta function, and it can be holomorphically continued to the
whole s-plane regularly except for a simple pole at s =1. When we calcu-

late the explicit limit formula of the Kronecker’s type for E(z,s), we are
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naturally led to a certain new function %(z) on S#. The function A(z) is
very analogous to log|7(z)|, and really #k(z) satisfies all the conditions cor-
responding to the above I, II and III. (For this reason, we may call the
function %(z) “the harmonic modular form” on S7.)

The harmonic modular form #%(z) is in general expressed by the modi-
fied Bessel function in the Fourier expansion form, and so we may find the
close relationship to the non-holomorphic automorphic functions defined by
Maass. Actually, it seems possible to construct the theory of Maass’ type
in the case of Hilbert modular groups, but we shall not make further dis-
cussion on this subject in this paper.

For the purpose of emphasizing that the concept of the harmonic
modular form is very naturally introduced, we would like to start our con-
sideration by calculating the inverse Mellin transform of £u(s)¢z(s + 1) in the
case of F being the Gauss’ number field (in §1). The Eisenstein series
E(z,s) in the general case will be defined in §2, and there we shall mention
about the holomorphic continuation and the functional equation. In §3
the main theorems about the Kronecker’s limit formula will be proved,
containing the discussion on the Dirichlet series associated with the harmonic
modular form. Throughout this paper, we restrict our consideration only
in the case of the class number one, but this does not essentially lose the
generality. It, however, becomes some complicated in the general case; for
instance, we must deal with many numbers of Eisenstein series and harmonic
modular forms of a vector type.

In the case of totally real number fields our limit formula seems in
substance the same one of Konno ([6]), or Katayama ([5]) in the real
quadratic case. But it seems that they did not catch the harmonic modular
form explicitly, and really, Hecke who originally studied on these problems
did seek after ‘““die zu logy(z) analogen Funktionen, though we choose the
simpler way to seek after “‘die zu log|7(z)| analogen Funktionen” by contrast.

The author got many hints especially from Kubota ([7]) and Siegel
([11]); from the former as to the quaternion-upper-half-space and the Eisen-
stein series corresponding to it, and from the latter as to the manner of
dealing with the limit formula itself.

§1. Inverse Mellin transform of (,(s){r(s+1) in the Gauss’
number field case

Recently, Weil ([13]) gave a new proof of the classical formula: logy(z)=
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— % log(—iz)+log 7 (— %), by using the functional equation of &(s)¢(s + 1),
where {(s) is the Riemann zeta functoin. Really, he pointed out that the
“modular form” log 7(z2) is associated with the Dirichlet series £(s)é(s + 1) in
the usual sense, i.e., essentially under Mellin transform. We here consider
a simple analogy of this fact, that is, we shall treat the problem what
“modular form” is associated with the Dirichlet series Z(s)Z(s 4+ 1), where
Z(s) is the Dedekind zeta function &(s) of the Gauss’ number field F = Q/—1 ).
This section will also play a role of introduction to the subsequent sections.

1-1. Let us consider the functions
o(s) = Z(8)Z(s + 1), O(s) =z~ @D (s)["(s + 1e(s).
From the functional equation of the zeta function Z(s), we can derive
O(s) = O( — s).

Further, as is immediately observed from the properties of Z(s), the function
o(s) is holomorphic in the whole s-plane except one double pole at s =10
and two simple poles at s =+ 1, and bounded in ¢<Re s<¢ Im s=¢
for any ¢, ¢/, and ¢>0. The residues of @(s) are Z(2)/4n?, —Z(2)/4x* at

=1, —1 respectively, and &(s) + 1/(16s? is holomorphic at s = 0. Of course,
for Re s >1, ¢(s) is expressed as the Dirichlet series:

v

o

[ py|-@s+1),

1
v(s) 16 4, vezy=1]
sy =0

Here we should recall the Mellin transform formula of the modified Bessel

function:

S:K1(Za?/)y23“ _ny?_l_ — %a_(zxﬂ)F(S)F(S +1)

in Re s >0 and for any « >0 ([10], p. 91, for example). Hence we have
the integral expression of @(s):

o) = | sy 4L, Res>1,
0 Yy
where the function f(y) is defined by the absolutely convergent series:

fly) = % liﬂ‘Kl(an,uuly)y, y >0.

2
u,veZl-1]
ny 0
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At the same time we also have the inversion formula:

fly) = 1 Sd+l:°° o(s)y~2ds, o>1.

i g—ico

In this expression, we can change the path of integration Re s =g¢ to
Re s = —¢. Namely, from the properties of the meromorphic function &(s)
mentioned above, it follows that
—nli_ Szt:z O(s)y~2ds
—g+4ioo

-2 __ g2 _1_ L =25
(> — y?) + - log y + M.S " O(s)y-2ds.

-—3J—100

- Z(2)

T 2on?

Further, from the functional equation &(s) = &(—s), we have

1 S”"“‘” B(s)y=2ds = L.S"“‘” o) (L) " as

il ~g—ico Tl g—ico i

These relations shows that
o1 1
) oy = - logy +9()

where we put

- Z(2) ., 1 _‘i_l
g(y) ol n,ve%./?u 7 K\@r|mvly)y, y>0.
ED

Now in the classical case of Weil, the function corresponding to g(y) can
be holomorphically continued to be a modular form — 4logn(z) on the
complex-upper-half-plane. In our case, how can we make the function to
be a modular form? This problem is not so obvious, for there are no
holomorphic solutions on the complex-upper-half-plane. We can, however,
give a natural solution of the above problem on the quaternion-upper-half-
space.

Before presenting this modular form, we must recall something about the
quaternion-upper-half-space. (It is described more precisely in Kubota [7].)
The quaternion-upper-half-space H; is a three dimensional hyperbolic space

which is realized as the set of all quaternion numbers z = (; _%) such

that  is any complex number and y is any positive real number. The
group SL(2,C) (C: the complex number field) naturally operates on H, as
follows:
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SL(2,C)306 = G“ g) P22 = (az + P Tz + )7,

where the complex numbers «,--:- are identified with the quaternion
numbers (“ &), «++. The subgroup SL(2,Z[/—1 ]) operates discontinuous-

ly. Further, we know that the Laplace-Beltrami operator

— g2 0% 0t N_, 0
Do = y* (4505 + 3y2> Yy

is essentially a unique SL(2,C)-invariant differential operator on H,.
We are now ready to answer the above problem:

TueoreM 1. Define the function h(z) on H, by

B =822 yop g 31 | 2| Kyon|p]y) -y etsiree,
s nyEZY=1] ¢
2y =0

Sor z= (z _%>EH4. Then the following properties hold :

I. hiz) is a real-valued, real analytic function on H, of variables =, %, y and
vanishes by the Laplace-Beltrami operator Dg of H,.

II.  R(z) ts a modular form with the automorphic factor 2log(|7Tx + 8|2+ 7]2y%)
with respect to the group SL(2,Z[/—1 1), t.e., h(z) =2log (|7z + |2 + |7[?y?) +
+ b)) for ap o= (& 9)eSL2,2[/=T ).

We call the function 4(z) the harmonic modular form on H,. Obviously,
h(2)| ;=0 = 16 9(y). Thus we can say as follows:

TureoreM 2. The harmonic modular form h(z) is associated with the Dirichlet
series Z(s)Z(s + 1).

1-2.  Proof of Theorem 1. We begin with a lemma.

Lemma. For any s=C and any non-zero a<C the function of z = (;; "%)eH,,
defined by

ez, a) = Kyoi(| | y)yetRee
s an etgenfunction of Dg, i.e.,

Dyes(z, a) = 4s(s — 1es(z, a).
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Proof of Lemma. 'The function w = K,(v) satisfies the modified Bessel
differential equation ([10], p. 66):

d*w wfi_w____ 2 2y, —
i + v 0 (v + utw = 0.

,1;2

This implies the lemma.
Further, as is immediately checked,

Dgy?* = 4s(s — 1)y*.
Combining this with the lemma for the case s =1, we obtain
(2) Dgh(z) = 0.

It is easy to see that k(z) is real-valued. Thus the assertion I is proved.
To prove the assertion II, we have only to show the transformation for-

mulas for the generators of SL(2, Z[y—1 )): L=<_i i)’ T= (l i) U= (1 i)

and A= <1 —'1) . It is quite easy to see

h(z) = h(LL2)) = h(T<2)) = h(U<2)).
For the transformation A, we must show k/z) =0, where

k(z) = h(z) — 2log(l®|® + y?) — h(AL2D).
As is stated in the equation (1), we know

®3) k(2)] 320 = 0.

Since A{z) = (|| + yz)“‘<—i :g) for z = (; —%) we can obtain by a

simple calculation,

Lo =-2ona| = -Lonaw)|
And so,
@ e =2 ka2l =o.
Further, from (2) we get also
(5) Dgk(z) = 0.
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Since the function k(z) is real analytic with respect to variables z, ¥ and y,
k(z) has a power series expansion:

(6) k(z) = iocmm(y)x"‘i", zE H,.

From (3), (4) and (6), we can first get

) €o,0(¥) = €1,0(¥) = €o,1(y) = 0.

From (5) and (6), we can derive

2
@ (P — Ygy) Cmnl®) + 49%m 1) (1 + Demsnalt) = 0,

for every m, n=0. Combining (7) with (8), it follows inductively that
9) Cm,n(y) = 0 for every m,n=0.

This means that k(z) =0, hence we obtain the assertion II. Thus the proof
of Theorem 1 is finished.

We shall later give another proof of Theorem 1 in the more general
form as a result of the Kronecker’s limit formula for the non-holomorphic
Eisenstein series. But the direct proof given here may be interesting, because
it is related to the method by Maass in the problem between non-holomorphic
automorphic functions and determining the Dirichlet series by the functional
equations ([9]).

§2. The non-holomorphic Eisenstein series of the Hilbert modular
group

In this section we shall define a non-holomorphic Eisenstein series of a
simple type with respect to a Hilbert modular group in the case of an arbit-
rary algebraic number field, and give the holomorphic continuation and the
functional equation for the Eisenstein series. Furthermore, we shall get the
explicit expression of the Eisenstein series, which can be essentially regarded
as the Fourier expansion formula. For the sake of simplicity we really treat
only the case that the class number of the field is one.
2-1. Let F be an arbitrary algebraic number field with the class num-
ber one, which has 7, real conjugate fields and 2r, imaginary conjugate
fields, and so the degree n of the field F over the rational number field @
is equal to 7, + 2r,. We denote the conjugate maps «—>a?; real ones for
1<j<r, and imaginary ones a® = a¥*r» for r, +1<j<r, +r. Let 2
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denote the upper-half-space corresponding to the field F. Namely, 57Z is
the product space r;ljllrz H; of r, copies of the complex-upper-half-plane
H.=H; 1=j<r,) and r, copies of the quaternion-upper-half-space H, = H;
(nm+1=<j<r +r). The product group G = SL(2,R)"1xSL(2,C)": is natu-
rally operating on the space ~ as follows: for any o= (0;)€G; g; =

7‘3‘: g;')eSL(Z, R) or SL(2,C) according as 1<<j=<r, or r,+1<j<<r, +r,y,

and for any z=(z;)€ 57 ; zj=a; + iy; or z,-z(Z; —%-;> according as 1<j <7,
or r,+1<j=<r +r, the operation is given by o{z> = (62>); 0{z> =
(esz; + By) (T;2; + 8;)7', where @y, - -+ being identified with <“fa]_>, - .. for
r+1=<j<r +r. Leto be the ring of integers in F. Then I' = SL(2,0)
is a discontinuous subgroup of G under the identification I's¢ = ("), here

@ g . .
o = (f;‘(,) ‘g(,-)) for ¢ = <§',‘ g) We shall also use the following notations:

for any z;==;+iy; or @;’ "%D € H;, we denote y(z;) =y;, and for
z = (z;)e 57, the vector y(z) = (y(z;)). And then, Ny(z) denotes the “norm”
“jﬁzy(zj)e:. Here the symbol ¢; means equal to 1 or 2, according as the
case of 1<<j=<r, or r,+1=<j=<r +r,. This symbol e¢; will be frequently
used later for abbreviation. Further, for any g,veF with (g,»)#(0,0) and

any z = (z,)€ 97, the vector y(g,v;z) is defined by y(g,v; z) = (y(9,v?; 25))

r1+7e X
C N — @ D e D D,y Y;
and Ny(e,v; z)= ]_{_Il y(e, 7 Zj) s, where (e, v 21)_ I#(j)$j+u(j)]2+ !#(”lzy§

for z;==z;+iy; or z = @J _%J> Then, y(o(z>)=y(r,d6;2) for any
J J

a=(? ‘f;)el’, in fact, we can check y(@¥(z)) = y(1?,6";2,) by a simple

calculation. Through this paper, all the above notations are fixed once and

for all.

Now we are going to define a non-holomorphic Eisenstein series with
respect to I' = SL(2,0). Let Iy be the subgroup of I' consisting of all
6= (? ‘g) such that 7 =0. The Eisenstein series, converging absolutely in
the half plane Re s >1, is defined by

(10) E¥(z,s) = X1 Ny(2>).

oeT\T

On the other hand, it is convenient for the later use to define another series

by

(11) E(z,s) = > Nylg,v;2),
{#, v}#{0, 0}
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where {g,v} in the summation runs over all non-associated pairs (z,v)E0X0
except {0,0}, and here two pairs (z,v) and (g,»,) are called associated if
both relations g, = ¢¢ and v, = ¢&v hold for a same unit ¢ of n. Between
these two series, the relation

(12) E(z,5) = £p(25)E*(2, 5)
holds, in fact, this follows easily from the expression of the Dedekind zeta
function of F:

Cr(s)= 23 |Ne|=®, Re s>1.
Dl(#)=*0

Thus the series (10) is almost the same as the series (11), and so we shall
call the series (11) the non-holomorphic Eisenstein series, too. Actually, the
series (11) can be regarded as a type of the Epstein zeta function, and for
this advantage we hereafter deal with the Eisenstein series (11) mainly.

The Eisenstein series E(z,s) converges absolutely also in the half plane
Re s>1, and it can be holomorphically continued to the whole s-plane;
and it becomes regular except only a simple pole at s=1, This can be
shown directly by using the binary Hecke’s theta formula in the similar
manner of Tamagawa ([12]). It, however, is convenient for our purpose to
show it by the some different method, and this method is like one to
calculate the Fourier expansion formula of the Eisenstein series in the Q-case
by Maass. -

2-2. Before the calculation, it should be recalled the assumption that the
class number of F is one. In particular, we can justly denote by v*=(w) the
inverse different, and then No* ' = |Nw|™!= 4 is nothing but the absolute
value of the discriminant of F,

We first decompose the summation in (11) as follows:

> o= 3+ 2 .
{a,v}F{0,0}  D|(¥)=0 D|(4)*¥0 D>y
#=0

Theﬁ, for Re s >1, we have

E(z,s) = >3 Ny(0,v;z)'+ 21 > Nylg,v;2)°

DI(v)=*0 Di(x)*0 Dp>v
= Ny(z)'Cp(2s)
V!'E’z __(ﬁf)_ejiswe-e,nt, TCSANE zf)_ltfu" dtj
ol(i+0 oev =1 I'(ejs) Jo 4
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= Ny(2)°Cx(2s)

_m \Tif (2m)* \Te =L (TRt T,y dEy
+ (F(s) > (F(Zs)) D|(;42)=1=080 Soe ’ 0(t) j£[1 £ ¢y

Here 6(t) stands for the Hecke’s theta function:

—_r Ze/ / l/‘(”x +y(1)|2
0t) = Ze 3 Y )

hE2d

hence by the transformation formula it becomes

1

o(t) =4 *(Ny(z)

Ht,-_"‘ dle

j | MEV

L —n5e Y ]y(lj){2+27r£2ejRe(ﬂ‘-"V(r”x_,)
2 ity J

Since the summation can be changed over again as follows:

2002 = >3 4+ 3, 0%
D|(#)F0 D¥ sy DI(w)F0  {m, v}, uv+0
v1=0 vi=vae
it follows that
1
1 1 \\ 71
iz 2 I's—— o, _—
E(z,s) = Ny(2)°¢p(2s) + Ny(z)'=4 * <_(FT2>> (MJ.) £4(25 — 1)
1 1 .
_— - g Ty o ,v(l)u,(])lz
Ni 2, 2 (2m)? ST g2 SGwan ] —ejny,-<tjlﬂ g |z+t—) «
+Ny(2) (+ ) ( ) B 1 [re ;

#y#0

«(s~%) at,
ty

Xt

£

71472 N
where we put S{gyex) = _21 e;Re((pvw)Px;) for abbreviation. Further, one
=
should recall the integral expression of the modified Bessel function (see [10],
p. 85, for example):

2| & utoton = [ et

for any non-zero real numbers @, 5. Consequently, we obtain the explicit
expression of the Eisenstein series:

(13)  Elz5)=Ny(2)'¢(25)+ Ny(z)'~*4 7( ( 2)> (L) e pt2s—)

* We should remark that the symbol {, }’ has a slightly different meaning from {, },
i.e. {¢,v}Y is a class of pairs (¢,»)€0XD under the equivalence relation (g, v)~(ue,ve™) for
a unit &.
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S—

7 4T -8 77'-3 ! (271')23 T2 N” 2_eriS( voX)
v (7o) (Fog) W3 el T
My =0
Y1172 i

K

j=1 ej<s—_1_

el (pvo)? |y y; * .
)

Now it is not difficult to see that the right-hand-side of the expression
(13) defines a holomorphic function on the whole s-plane. This shows that
the holomorphic continuation of E(z,s) is accomplished. Furthermore, from
two well-known functional equations:

G(s)Er(s) = GA — s)E(1 — s),

where G(s) denotes the gamma-factor of the Dedekind zeta function, i.e.,

Gls) = ﬁ({%r(%»r’((2n>-*F(s>)*z,
and
Ku(v) = K_u(v),
we can easily derive the functional equation for the Eisenstein series E(z,s):
G(25)E(z,s) = G(2(1 — s))E(2,1 — s),

where the gamma-factor G(s) is the same one defined above.

§3. The Kronecker’s limit formula for the non-holomorphic
Eisenstein series

We are now ready to mention about the Kronecker’s limit formula. As
explained in §2, the Eisenstein series E(z,s) has a simple pole at s =1.
We here want to give the explicit form of the residue and the constant
term in the Laurent expansion of the Eisenstein series at s = 1. The residue
can be immediately obtained from the residue of the Dedekind zeta func-
tion, and there appear the function which is quite analogous to log|y(z)]
in the constant term.

3-1. As we have already had the expression (13), there remains no difficulty
in the calculation in the sequel.

The first and the third terms of the right-hand-side of the formula (13)
are both regular at s =1. Namely, in the neighbourhood of s=1, we
have
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(14) Ny(2)’¢r(2s) = Ny(z)5p(2) + O(]s — 1]),
(15)
T 4T, g=$ 271' 28 \T2 ND 274 .8( vwx) (J) %
2nit7ed (F(s ) (F(Zs > {u y}/ ‘N e ’ H K ( >Ze_,nl o)1 Y5y

e

K22
No [z ez“s(#"‘"’” H 'K, (2e,nl(;zym)(j>ly,)yj 24+ 0(s—1].

=2"1+8r2 417" 31 &
o

{u, v}y
2y 0

The second term in (13) has a simple pole at s =1, and the following
formulas are well-known or easily to be checked:

Ny(z)'=¢ =1 — logNy(z)- (s — 1) + O(]s — 1]?),

1
TF(S—*——)
— "1(1 — 2rlog2- (s — 1)) + O(|s — 1]?),

(M)T —(23_1> T2(1 — 2ry(s — 1)) + O(]s — 1[?),

1y = 271tTer2:R ] _
where w is the number of roots of the unity in F and R denotes the re-

lator of F. A, =i _ 2R 1Y ich i
gulator of F. A, lsgrlx(L‘F(s) Wi s—1> is the constant which is

not completely clarified yet in the general case. From these formulas the
second term becomes

1 .
-1 71:T ['(s — L) )
1-s g 2 2 2rl"(2 s —1) _
(16) Ny(z)-24 <T < ) €425 — 1)
_ 2" "R 1 271t 2 A, 2m!gnR B
=T wd s—1 T i i (logNy(z) + 2r,log2 — 2r)

+ O(]s —1]).

Combining these expansion formulas (14), (15) and (16) we obtain

2n=1ign R 1 wd

(z.5) =

(17) E(z,s) i =1 T g Er(2)Ny(z)
w/d A,

— log Ny(z) — 2r,log2 — 27, +

QT1+To=1pT P
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&

_1- 71+7 <
2Tty Ny [z o2 i S(wox) [ 2 Ke, (22jﬂl(#vw)(1)ly1)y1 2 ]
R 5y Ny j=1 5
#y %0
+ O(|s —1]).

For convenience’ sake, we formulate the result as follows:

TueOREM 3. For the non-holomorphic Eisenstein series of the Hilbert modular
group defined by (11), the jfollowing limit formula ts valid:

. _ PACEY S 4 1
lim{ Ez,s) — 208 1|

= 2"_;7_1?_ (etg — 27,log2 — 27, — logNy(2) + h(z)).

Here the constant a, ts given by

a0=2‘1im—ﬂ—é’p(s)~ 1 }9

so1( 2"1% e 2 R s—1

and the function h(z) on 7 = H}1xHp is defined by

_ wd
(18) ) = A L 2Ny(e)
1 + e
22ty Ny |2 271.8( w».vc)nl'[r2 ) &) TJ
R 2| Nal € L K;_,(Ze,nl(ﬂuw) ly)vs”
My 0

where z=(z;)€5F ; zj=a;+1iy; for 1<j<r, and 2z;= (Z; _%ﬁ Sfor
r1+7

rntl<j<r +r, and S(pvox) stands for 1212 e;Re((1va)Pxy).
i=

Now let us show that the function A(z) defined by (18) can be regarded
the generalization of log|7(z)] of the classical case. For this purpose, we
first return back to the properties of the Eisenstein series itself. The Eisen-
stein series E(z,s) has the following properties:

(19) E(6{z>,s) = E(z,s) for any ¢=I’ = SL(2,0),
(20) D,E(z,s) = e¥s(s — 1)E(z,s) for 1<j<r, + 1,

where Dj; is the Laplace-Beltrami operator of the j-th component space H;

of 27, i.e.,
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5y ), e;=1for 1<j<r, and

2
Dy = yf( aax2~ +
J

- 52 pH .3 _ i
D; =y} (4 52,97, + 3y§> Y; 9, e; =2 for r, + 1<j<r, + 7,

In fact, (19) follows immediately from the expressions (10) and (12), and the
property (20) follows from (10), (12) and the relations:

D;ys = els(s —1)y5 for 1<j=<r, +r,.

Combining these properties with the Laurent expansion of the Eisenstein
series:

El(z,5) = — 24+ blz) + Olls —1]),

we can derive

(21) b(a{z)) = blz) for any o<,
and

(22) D;b(z) =eta for 1<j=<r +r,.
If we use the relations

DjlogNy(z) = —e?} for 1<j<r, + 7,

the formula (22) can be stated as

(23) D;(b(z) + alogNy(z)) =0 for 1<j=<<r +r,.

Since Theorem 3 gives the explicit expression of the constant @ and the
function b(z), we can find the properties of the function #k(z).
Thus we can conclude that

THEOREM 4. The funciion hiz) defined by (18) in Theorem 3 satisfies the
Sollowing properties :

I. h(z) is a real-valued, real analytic function on 7 of 2r, + 3r, variables;
2,y; I=<j<r) and x;, &, y; i, +1=<j<r, +7r). And h(z) vanishes by any
wnvariant differential operator on 7 which is represented as a polynomial without
constant terms of the Laplace-Beltrami operators Dy’s of the component spaces of j:/

ri+7s

II. hiz) s a modular form with the automorphic factor J(o,z) = log II
. , . ) . . =t
(792 4+ 69|24+ |79 [2y%)% with respect to the discontinuous group I' = SL(2,0), i.e.,
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o) = Jlo,2) + hlo®) for amy o= (§ B)er.

We call the function A(z) the harmonic modular form on 27 for the
reason of these two properties. It should be remarked that the harmonic
modular form %(z) can be expressed without the aid of the modified Bessel
function if the number field F is totally real. Really, we know that
K 1 (v) = W/ _277_ e®, but K,(v) is not an elementary function. Also it should

be noted that the defining expression (18) of A(z) can be essentially regarded
as the Fourier expansion of one. In fact, because of the propety II, Ai(z)
is invariant by translations z; > z; + £ for all peo, hence i(z) has the
Fourier expansion of the series e¥5¢e®  as is readly derived from the very
expression (18).

3-2. We lastly consider the Dirichlet series associated with the harmo-
nic modular form %(z). In order to clarify the meaning of “‘associated” we
must start by recalling the Mellin transform in our case.

Let R, be the multiplicative group of all positive real numbers and YV
be the product group of 7, + 7, copies of R,, i.e.,

Y = {y —_ (y;); yj€R+, 1£]£7’1 -+ 7’2}.

Let U denote the group generated only by the fundamental units e, - - «,¢,
(r =7, +7,—1) of the number field F. The groups R, and U operate on
Y in natural way, i.e.,

R.3a:y = (y) —>ay = (Ya yy),
Use:y = (y) —>ey = ([eP]y)).
Then we can define the group 4 consisting of all R,- and U-invariant

characters of Y. Namely, 422 if and only if 2 is a continuous homomor-
phism of YV into {u=C; |u| =1} with the property:

(24) Aay) = Aey) = Ay) for any ae=R, and eU.

As is well-known (Hecke [2]), the group 4 is isomorphic to Z"; the product
group of » copies of the additive group Z of all rational integers. More
precisely, any character 2 in A4 is uniquely parametrized by an integral
vector m = (my, - - - ,m,)EZ" as follows:
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r
Y1+¥2 2 5 mgesk>
k=1

(25) Ay) = 2uly) = 1y, :

where ¢5*> is the element of the matrix

< -_
R Eritry L loglef]+ - log|&5"] !
1 =
ej1> ..... eil"‘)]‘e
e.fr> ..... e<rf . : :
ry+T
v 1 log|ef**™® |« . «log|elstm»

Furthermore, for any y = (y,)€Y, we denote by Ny the norm n_ﬁ:zyﬁf. Oof
course, the symbol ¢; is 1 or 2, according as 1=-j=<<r, or r, + léj;’srl + 73,
as before. In particular, for the property (24) of a4 the ideal character
Ap) is well-defined by a(g) = 2((|#])) for any ideal (g) of F, and this is
nothing but the Grissen-character defined by Hecke ([2]). We should also
note that N((|£9]) = | Ne].

Now we can say about the Mellin transform of the harmonic modular form
h(z) of (18). Let k,z) be the function excluding the constant term of k(z)
in the Fourier expansion, i.e.,

holz) = hlz) = 24 CADNY(2),

It should be remarked that we can let the point j = (§;) of .~ correspond
to any element y = (y,) of Y, by §; = iy, or (y, —yf) according as 1<<j<7,
or r,+1<j=<r +r. Hence we can regard the function

1

2 rv1+7s ¢

1 K, Qeml(pva)”lys)y;”
2

i=

Ny

- Totl
ho) = 250 5 |

R oy
2y F0

as the function on Y. By a simple calculation we can derive the expression:

1
2 r14, i

1L K, (2ejr](mvoe) )y, * .

Ny

j) = 2t
(26) hoG) = R o|(m+0USel N

Di(v)+0

Obviously, the function #,(§)i(y)Ny® is invariant under the operations of
U(seC), and so the following integral will be well-defined:

(27) Iis,2) = | hol&) i) Ny' d*,

Y/v
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r1+72

where the measure _H1 —Lj;/i is denoted by d*y in short. Really, the integral
=1 Y

(27) is absolutely converging in Re s >1. Thus the family of integrals

I(s,2); 24 and the harmonic modular form A(z) are reciprocally associated
with each other, essentially under Mellin transform and the inverse trans-
form. (See also Herrmann ([4)).)

In our case, there appears the Dirichlet series of the classical type, in
fact, by using the expression (26) it follows that for Re s >1,

1
Tot1,,2 (2 r1d7ape ;
15,0 =220 51 [T R, el (o)), LY,
R ool Nelo j=1Jo 2L Yi
ol(vd=0 2

i s+—>~2m p mke<k> d

Owing to the formula of the modified Bessel function ([10], p. 91, for
example):

SOK(2at)t’——:~_a-sp< ) < ;u)

for any ¢ >0 and Re s > |Re u|, we can derive

1

1 N
_ 2Ta¥lyy? [ My | Zridre ] &) -—ej(s+7>+w, e;s—ia;j ei(s+1)—ia;
Is, =225 g@ﬁ, Nol el (o)) r( . )r( Sy

’

here «; stands for ZnZ}mkef’”. Namely,

(28) L5, 2) = ~grtleis A0)Gls, AG(s + 1, DEels, Vs + 1,2,

where &u(s,2) is the zeta function with the Gréssen-character 2 = 2y :

Eols,2) = 23 Ap)|Ne|™, Re s>1,
Dl(&)=*0

and G(s,2) is its gamma-factor, i.e.,

B ; 71+7s .
G(s,2) = (d-g=2m.22ra)2 I (ST 2% )\ 11 s 1% ),
(s,2) = (4-x ) =1 ( 2 j=r1+1 (s 2 )

From the relations (27) and (28), we may say that

TueoREM 5. The harmonic modular form h(z) is associated with the family
of Dirichlet series Epls, (s +1,2); A€ A,
If we use the the transformation formula (the property II of Theorem
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4) for A(z) in the case of ¢ = (1 '—1>, then we can deduce the holomorphic

continuation of I(s,2) or {x(s,)¢x(s +1,2), and the functional equation

(29) I(s,2) =I(—s,2).
On the other hand, the functional equation (29) follows also from one for
Erls, 2):

(30) G(s, 2)p(s,2) = 20)G(1 — 5,2)Ex(1 — 5, 4).

Actually, if we start from the equations (30), we may obtain the property
II of Theorem 4, in principle, without any help of the Eisenstein series.
Moreover, the property I can be also proved directly by the method as in
§1, and consequently all the assertions of Theorem 4 can be directly
verified. This method is closely connected with Maass’ theory of non-
holomorphic automorphic functions.
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