The criterion afforded by the sign of C is sufficient for every case; and as it is simple and complete, and arises naturally in the process of solution, it ought, I think, to take the first place in teaching. The only other point to note is that if $b \sin A / a>1$ there is of course no angle B for which $\sin B=b \sin A / a$, and therefore no solution. This point also arises in the course of the actual calculations required.

Of course when the subject is being taught for the first time the usual geom rical discussion is quite in place. But I think it should be made clear that the ordinary process of calculation furnishes naturally all the information required.

R. F. Muirhead.

A method of calculating logarithms, using merely the ordinary laws of indices:-To determine logarithms to the

 base $1 \cdot 1$. -If $\mathrm{N}=a^{x}, x$ is the logarithm of N to the base a. Hence, if $\mathrm{N}=1 \cdot 1^{x}, x$ is the logarithm of N to the base $1 \cdot 1$, and, by plotting different values of x with the corresponding values of N , a logarithmic curve may be drawn. This curve will furnish an approximate logarithm of any number to the base $1 \cdot 1$.To plot the curve: $y=1 \cdot 1^{x}$.-The method of determining values of y to satisfy this equation is exceedingly simple, resolving itself into a series of multiplications by 11 . This may be readily done by putting down the last figure and taking the sums of the consecutive figures in pairs. This process may be carried to any required degree of accuracy.

y	x.
11	i
121	2
1331	3
14641	4
161051	5
177156	6

a method of calculating logarithis.

194872	7
214359	8
235795	9
259375	10
285313	11
313844	12
345228	13
379751	14
417726	15
459499	16
505449	17
555994	18
611593	19
672752	20
740027	21
814030	22
895433	23
984976	24
1083474	25

From this graph, $\log _{1 \cdot 1} 10$ is found to be approximately $24 \cdot 16$. This may be roughly verified by applying the method of differences to the last 2 values of y given above. In this way a value of $24 \cdot 153$ is obtained.

Instead of applying the method of differences, a much more accurate $\log _{1 \cdot 1} 10$ may be obtained by making use of $\log _{1 \cdot 1} 1.01$. Thus, if this be n (where n lies between 0 and 1), 9.84976×1.01 is the number whose logarithm is $24+n$. In this way the error will be considerably diminished.

To determine $\log _{1 \cdot 1} 1 \cdot 01$.-This is the reciprocal of $\log _{1_{101}} 1 \cdot 1$, which may be easily calculated by a method practically similar to that employed above for finding $\log _{1 \cdot 1} 10$, namely, by putting down the last 2 figures, and taking the sums of alternate figures in pairs.

mathematical noteso

101	1
10201	2
1030301	3
104060401	4
105101005	5
106152015	6
107213535	7
108285670	8
109368527	9
110462212	10

Taking differences between the last 2 values,

110462212	110000000	
-109368527	-109368527	
$=1093685$	$=$	631473

$1,0,9,3,6,8,5 / 631473$
84630
8072
416
88
1
$\therefore \quad \log _{101} 1 \cdot 1=9 \cdot 577381$.
Taking the reciprocal,

$$
\begin{gathered}
0 \cdot 1044127 \\
9 \cdot 577381 / 1 \\
0422619 \\
39524 \\
1215 \\
257 \\
65 \\
\log _{1 \cdot 1} 1 \cdot 01=0 \cdot 1044127 \text { (approximately). } \\
(88)
\end{gathered}
$$

A METHOD OF CALCULATING LOGARITHMS.

This value may be made still more accurate by using $\log _{1 \cdot 01} 1 \cdot 001$. This is obtained by inverting $\log _{1 \cdot 001} 1 \cdot 01$, which is calculated by precisely similar methods to the above.

1004006004	4
1005010010	5
1006015020	6
1007021035	7
1008028056	8
1009036084	9
1010045120	10
1010045120	-1009036084
-1009036084	963916
$=$1009036 955284	
$1,0,0,9,0,3,6 / 963916$	
55784	5332
287	
85	
4	

Inverting, we obtain

$$
\log _{1 \cdot 01} 1 \cdot 001=0 \cdot 1004492
$$

This may be used as follows for determining $\log _{1.1} 1 \cdot 01$

109368527	9
110462212	10
109477896	$9 \cdot 1004492$
109587374	$9 \cdot 2008984$
109696961	$9 \cdot 3013476$
109806658	$9 \cdot 4017968$

$\left\{\begin{array}{rl}109916465 & 9 \cdot 5022460 \\ 110026381\end{array}\right.$	$9 \cdot 6026952$
109916	
83535	$9 \cdot 5022460$
75999	$\cdot 075999 \times 1 \cdot 004492$
$1,0,9,9,1,6 / 83535$	
6594	
1098	$\log _{1 \cdot 01} 1 \cdot 1=9 \cdot 578585$

Inverting, we obtain

$$
0 \cdot 1043996=\log _{1 \cdot 1} 1 \cdot 01
$$

From $\log _{1 \cdot 01} 1 \cdot 001$ may also be determined $\log _{1 \cdot 1} 1 \cdot 001$,
for

$$
\begin{aligned}
& \log _{1 \cdot 1} 1 \cdot 001=\frac{\log _{1 \cdot 01} 1 \cdot 001}{\log _{1 \cdot 01} 1 \cdot 1} \\
= & 0 \cdot 1004492 \div 9 \cdot 578585
\end{aligned}
$$

substituting values already obtained.
Hence $\quad \log _{1 \cdot 1} 1 \cdot 001=0.0104869$
We may assume that $\log _{1 \cdot 1} 1 \cdot 0001=\frac{1}{10} \log _{1 \cdot 1} 1 \cdot 001$

$$
=0.0010487
$$

$$
\log _{1 \cdot 1} 1 \cdot 00001=\frac{1}{10} \log _{1 \cdot 1} 1 \cdot 0001
$$

$$
=0.0001049, \text { etc. }
$$

With these data we are enabled to determine $\log _{1 \cdot 1} 10$ with accuracy. The calculation is given in full below.
$\left\{\begin{array}{rl}984976 & 24 \cdot \\ 1083474 & 25 \cdot\end{array}\right.$
$\left\{\begin{array}{rl}994826 & 24 \cdot 1043996 \\ 1004774 & 24 \cdot 2087992 \\ 995821 & 24 \cdot 1148865 \\ 996817 & 24 \cdot 1253734 \\ 997814 & 24 \cdot 1358603\end{array}\right.$
998812
a method of calculating logarithms.

542451	$17 \cdot 7412841$
542993	$17 \cdot 7517710$
543536	$17 \cdot 7622579$
544080	$17 \cdot 7727448$
544624	$17 \cdot 7832317$
545169	$17 \cdot 7937186$
545714	$17 \cdot 8042055$
546260	178146924
546806	17.8251793
546315	$17 \cdot 8157411$
546370	$17 \cdot 8167898$
546425	$17 \cdot 8178385$
546480	$17 \cdot 8188872$
546535	$17 \cdot 8199359$
546590	$17 \cdot 8209846$
546645	$17 \cdot 8220333$
546700	$17 \cdot 8230820$
546755	$17 \cdot 8241307$
546705	$17 \cdot 8231869$
546710	$17 \cdot 8232918$
546715	$17 \cdot 8233967$
546720	$17 \cdot 8235016$
546725	$17 \cdot 8236065$
546730	$17 \cdot 8237114$
546735	$17 \cdot 8238163$
5467305	$17 \cdot 8237219$
5467310	$17 \cdot 8237324$
5467315	$17 \cdot 8237534$
5467320	
5	

Thus
$\log _{1 \cdot 1} 5 \cdot 46732=17 \cdot 8237534$.
Now dividing by $\log _{1 \cdot 1} 10$, we get

$$
\log _{10} 5 \cdot 46732=0.7377743
$$

Accurately (using tables), we have

$$
\log _{10} 5 \cdot 46732=0 \cdot 7377745
$$

Four-figure tables can be easily and expeditiously calculated in this way, the necessary apparatus consisting of $\log _{1 \cdot 1} 101, \log _{1 \cdot 1} 1 \cdot 001$, $\log _{1 \cdot 1} 1 \cdot 0001, \log _{1 \cdot 1} 10$.

For nearer approximations it would have been necessary to take more figures in the original block which gave the powers of $1 \cdot 1$.

The method of differences might have been used at various stages to shorten the work further without great loss of accuracy. Graphical interpolation after the $\log _{1 \cdot 1} 1.01$ stage would render this method more suitable for pedagogical purposes.

Finally, consider again the function $y=a^{x}$.
For an increment 001 in x, y has to be multiplied by

$$
\frac{a^{\cdot 001}-1}{\cdot 001} \times \cdot 001
$$

to get the necessary increment in the dependent variable.
It would be convenient therefore if $\frac{a^{.001}-1}{\cdot 001}$ were equal to unity.
By logarithms we find the necessary value of a is 2.718 .
This is therefore a convenient base for calculation of 4 -fig. logarithms. Moreover, for higher accuracy we might take as base $\mathrm{L} t(\mathrm{l}+h)^{\frac{\mathrm{I}}{h}}$ when $h=0$: for increment δx (very small) of x, y increases by $y \delta x$ approx.

Thus the connection between the foregoing method and the ordinary is exhibited; while the essential property of the exponential function, viz., that its rate of increase is equal to its own value, for any value of the independent variable, is seen to be intimately associated with both methods.

My thanks are due to L. B. Greaves, my pupil at the City of Cardiff High School, for his patience and skill in performing the calculations needed to illustrate this paper.

W. Vaughan Johnston.

