The criterion afforded by the sign of C is sufficient for every case; and as it is simple and complete, and arises naturally in the process of solution, it ought, I think, to take the first place in teaching. The only other point to note is that if $b\sin A/a > 1$ there is of course no angle B for which $\sin B = b\sin A/a$, and therefore no solution. This point also arises in the course of the actual calculations required.

Of course when the subject is being taught for the first time the usual geon rical discussion is quite in place. But I think it should be made clear that the ordinary process of calculation furnishes naturally all the information required.

R. F. MUIRHEAD.

A method of calculating logarithms, using merely the ordinary laws of indices.—To determine logarithms to the base $1 \cdot 1$.—If $N = a^x$, x is the logarithm of N to the base a. Hence, if $N = 1 \cdot 1^x$, x is the logarithm of N to the base $1 \cdot 1$, and, by plotting different values of x with the corresponding values of N, a logarithmic curve may be drawn. This curve will furnish an approximate logarithm of any number to the base $1 \cdot 1$.

To plot the curve: $y = 1 \cdot 1^x$.—The method of determining values of y to satisfy this equation is exceedingly simple, resolving itself into a series of multiplications by 11. This may be readily done by putting down the last figure and taking the sums of the consecutive figures in pairs. This process may be carried to any required degree of accuracy.

<i>y</i> .	x.
11	Ì
121	2
1331	3
14641	4
161051	5
177156	6

(86)

194872	7
214359	8
235795	9
259375	10
285313	11
313844	12
345228	13
379751	14
417726	15
459499	16
505449	17
555994	18
611593	19
672752	20
740027	21
814030	22
895433	23°
984976	24
1083474	25

From this graph, $\log_{1.1}10$ is found to be approximately 24.16. This may be roughly verified by applying the method of differences to the last 2 values of y given above. In this way a value of 24.153 is obtained.

Instead of applying the method of differences, a much more accurate $\log_{1.1}10$ may be obtained by making use of $\log_{1.1}1.01$. Thus, if this be *n* (where *n* lies between 0 and 1), 9.84976×1.01 is the number whose logarithm is 24 + n. In this way the error will be considerably diminished.

To determine $log_{1:1}1\cdot 01$.—This is the reciprocal of $log_{1:01}1\cdot 1$, which may be easily calculated by a method practically similar to that employed above for finding $log_{1:1}10$, namely, by putting down the last 2 figures, and taking the sums of alternate figures in pairs.

(87)

MATHEMATICAL NOTES.

101	1
10201	2
1030301	3
104060401	4
105101005	5
106152015	6
107213535	7
108285670	8
109368527	9
110462212	10

Taking differences between the last 2 values,

110462212	110000000
- 109368527	- 109368527
= 1093685	= 631473
577381	
1,0,9,3,6,8,5/631473	
84630	
8072	
416	
88	
1	
$\therefore \log_{100} 1.1 = 9.577381$	•
Taking the reciprocal,	
0.1044127	
9.577381/1.	
0422619	
39524	
1215	
257	
65	
$\log_{1.1} 1.01 = 0.1044127$	(approximately).
(88)	

A METHOD OF CALCULATING LOGARITHMS.

This value may be made still more accurate by using $\log_{101} 1.001$. This is obtained by inverting $\log_{1.001} 1.01$, which is calculated by precisely similar methods to the above.

1004006004	4
1005010010	5
1006015020	6
1007021035	7
1008028056	8
1009036084	9
1010045120	10
1010045120	101000000
- 1009036084	- 1009036084
= 1009036	= 963916
955284	
1,0,0,9,0,3,6/963916	
55784	
53 32	
287	
85	
4	

 $\log_{1.000} 1.01 = 9.955284.$

Inverting, we obtain

 $\log_{1:01} 1.001 = 0.1004492.$

This may be used as follows for determining $\log_{1.1} \cdot 01$

109368527	9
110462212	10
109477896	9.1004492
109587374	9.2008984
109696961	9.3013476
109806658	9.4017968

(89)

MATHEMATICAL NOTES.

(109916465	9.5022460
∫ 109916465 { 110026381	9.6026952
109916	
83535	
75999	9.5022460
1,0,9,9,1,6/83535	$\cdot 075999 imes 1 \cdot 004492$
6594	
1098	
109	$\log_{1.01} 1.1 = 9.578585$
10	
Inverting, we obtain	

 $0.1043996 = \log_{1.1} 1.01$.

From $\log_{101} 1.001$ may also be determined $\log_{11} 1.001$,

for

$$\log_{1.1} \cdot 001 = \frac{\log_{1.01} 1 \cdot 001}{\log_{1.01} 1 \cdot 1}.$$
$$= 0.1004492 \div 9.578585,$$

substituting values already obtained.

Hence $\log_{1.1} 1.001 = 0.0104869$

We may assume that $\log_{1:1} 1.0001 = \frac{1}{10} \log_{1:1} 1.001$ = 0.0010487 $\log_{1:1} 1.00001 = \frac{1}{10} \log_{1:1} 1.0001$ = 0.0001049, etc.

With these data we are enabled to determine $\log_{11} 10$ with accuracy. The calculation is given in full below.

\$ 984976	24.
{ 1083474	$25 \cdot$
994826	$24 \cdot 1043996$
{ 1004774	$24 \cdot 2087992$
995821	24 ·1148865
996817	$24 \cdot 1253734$
997814	24.1358603
998812	$24 \cdot 1463472$

(90)

999811	$24 \cdot 1568341$
1000811	$24 \cdot 1673210$
999911	$24 \cdot 1578828$
1000011	24.1589315
999921	$24 \cdot 1579877$
999931	$24 \cdot 1580926$
999941	$24 \cdot 1581975$
999951	24.1583024
999961	24.1584073
999971	24.1585122
999981	$24 \cdot 1586171$
999991	$24 \cdot 1587220$
999992	$24 \cdot 1587325$
999993	24.1587430
999994	$24 \cdot 1587535$
999995	24.1587640
999996	$24 \cdot 1587745$
999997	$24 \cdot 1587850$
999998	$24 \cdot 1587955$
999999	24-1588060
1000000	$24 \cdot 1588165$

Hence the accurate $\log_{11} 10 = 24.1588165$

By a precisely similar method we may find $\log_{11} n$. e.g., to determine \log_{11} 5.467321.

505449	17.
1 555994	18.
510503	17.1043996
515608	$17 \cdot 2087992$
520764	$17 \cdot 3131988$
525972	$17 \cdot 4175984$
531232	$17 \cdot 5219980$
536544	17.6263976
\$541909	$17 \cdot 7307972$
2547328	17.8351968

(91)

MATHEMATICAL NOTES.

542451	17.7412841
542993	17.7517710
543536	17.7622579
544080	17.7727448
544624	17.7832317
545169	17.7937186
545714	17.8042055
(546260	17 8146924
546806	17.8251793
546315	17.8157411
546370	17.8167898
546425	17.8178385
5464 80	$17 \cdot 8188872$
546535	17.8199359
546590	17.8209846
546645	17.8220333
§546700	$17 \cdot 8230820$
1546755	$17 \cdot 8241307$
546705	17.8231869
546710	17-8232918
546715	17.8233967
546720	17.8235016
546725	17.8236065
546730	17.8237114
546735	17.8238163
5467305	$17 \cdot 8237219$
5467310	17.8237324
5467315	17.8237429
5467320	17.8237534
$\log_{1.1} 5.46732 = 17.8237534.$	
dividing by $\log_{1.1} 10$, we get	
$\log_{10} 5.46732 = 0.7377743.$	

(92)

Thus Now

Accurately (using tables), we have

 $\log_{10} 5.46732 = 0.7377745.$

Four-figure tables can be easily and expeditiously calculated in this way, the necessary apparatus consisting of $\log_{11} 1 01$, $\log_{11} 1 001$, $\log_{11} 1 0001$, $\log_{11} 100$.

For nearer approximations it would have been necessary to take more figures in the original block which gave the powers of 1.1.

The method of differences might have been used at various stages to shorten the work further without great loss of accuracy. Graphical interpolation after the $\log_{1:1} 1.01$ stage would render this method more suitable for pedagogical purposes.

Finally, consider again the function $y = a^x$.

For an increment 001 in x, y has to be multiplied by

$$\frac{a^{\cdot 001} - 1}{\cdot 001} \times \cdot 001$$

to get the necessary increment in the dependent variable.

It would be convenient therefore if $\frac{a^{-001}-1}{\cdot 001}$ were equal to unity.

By logarithms we find the necessary value of a is 2.718.

This is therefore a convenient base for calculation of 4-fig. logarithms. Moreover, for higher accuracy we might take as base $Lt(1+h)^{\frac{1}{h}}$ when h=0: for increment δx (very small) of x, y increases by $y\delta x$ approx.

Thus the connection between the foregoing method and the ordinary is exhibited; while the essential property of the exponential function, viz., that its rate of increase is equal to its own value, for any value of the independent variable, is seen to be intimately associated with both methods.

My thanks are due to L. B. Greaves, my pupil at the City of Cardiff High School, for his patience and skill in performing the calculations needed to illustrate this paper.

W. VAUGHAN JOHNSTON.

(93)