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ABSTRACT: Bolted joints are critical for maintaining structural integrity and reliability. Accurate prediction of
parameters is essential for optimal performance. Traditional methods often fail to capture the non-linear behavior or
require significant computational resources, limiting accuracy and efficiency. This study addresses these limitations
by combining empirical data with a feed-forward neural network. Leveraging experimental data and systematic
preprocessing, the model effectively captures nonlinear relationships, including rescaling output variables to
address scale discrepancies, achieving 95% predictive accuracy. While limited dataset size restricts generalizability,
the findings demonstrate the potential of neural networks as a reliable, efficient alternative for bolted joint design.
Future work aims to expand datasets and explore hybrid modeling techniques to enhance applicability.
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1. Introduction
Bolted joints, the most versatile machinery element (Roloff et al., 2023), are essential in technical devices
and everyday applications, functioning as detachable connections between components (Kloos and
Thomala, 2007). These joints facilitate load transmission between connected components (VDI 2230,
2015) by creating a preload force, achieved through the application of torque to either the head of the bolt
or the nut (Oberg, 2013). In the design process of bolted joints subjected to tensile loads, the preload
force is a critical parameter influencing their functional behavior and reliability (Bickford, 1995). The
friction coefficients in the head and thread regions of the bolt are equally significant, as the majority of
the tightening torque is expended in overcoming friction in these areas (VDI 2230, 2024). This friction
not only contributes to the generation of preload force but also provides a self-locking effect, ensuring the
joint remains secure under working conditions. As external loads are applied, the joint transitions through
elastic and plastic deformation stages, potentially culminating in failure if critical load thresholds are
exceeded (Steinhilper et al., 2012). Poorly designed bolts may experience excessive stresses during
tightening, increasing the risk of joint failure, equipment malfunction, or operational downtime (Kloos
and Thomala, 2007). Thus, understanding the relationships between tightening variables like preload
force and functional behavior parameters namely load-bearing capacity, and friction coefficients
accurately and efficiently is essential for achieving a reliable design.

1.1. Related work
Bolted joint behavior has traditionally been analyzed using a variety of modeling approaches. Analytical,
numerical, empirical, and data-driven methods have all been extensively applied to investigate the
behavior of bolted joints. (VDI 2230, 2015; Chiang and Chiang, 2023), each offering distinct strengths
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and facing inherent limitations. This section provides an overview of these approaches, highlighting their
contributions and challenges, and identifies the research gap that motivates the proposed hybrid
methodology. Analytical methods approximate bolted joint behavior through simplified mechanical
representations, focusing on specific aspects of bolted joints. For instance, Lee et al. (2022) evaluates the
tightening torque-clamping force relationship and friction coefficients, validating theoretical calculations
through experimental measurements. Zeng et al. (2020) proposed a mathematical equation, derived from
mechanical behavior, to predict the load-bearing capacity of beam-to-column joints in slim-floor
composite frames. While analytical methods provide valuable insights into fundamental mechanics, they
often lack the ability to capture the complex, non-linear interactions inherent in bolted joints.
To address these limitations, numerical methods such as finite element analysis (FEA), enable detailed
representation of nonlinear material behavior, constraints, and complex geometries (VDI 2230, 2014).
They have been widely applied to study the mechanical behavior of bolted joints. Fukuoka and Takaki
(1998) focused on tension and torque characteristics during and after tightening through experimental
and numerical methods. Yu et al. (2015) explored how factors like friction, pitch, elastic modulus, and
strain-hardening impact the tightening torque and initial load in bolted connections, using FEA to model
these influences. Similarly, Liang et al. (2024) examined load capacity and fracture behavior in flange
bolts under various load cases, providing insights into joint performance under different conditions.
Although numerical approaches like FEA excel at modeling detailed mechanical behaviors, they often
focus on idealized conditions, demand significant computational resources and rely heavily on the
quality of the model and the expertise of the user to achieve accurate predictions (VDI 2230, 2014).
To bridge the gap between simulation and real-world performance, empirical methods such as Design of
Experiments (DoE) have been employed to systematically investigate factors influencing bolted joint
behavior. Nassar et al. (2005, 2007) studied the effects of friction coefficients, tightening speed, and
coating on the torque-tension relationship and wear patterns, while Holch et al. (2023) examined load-
bearing behavior in bolts and lockbolts under combined loading. While DoE offers a systematic approach
to studying the effects of multiple factors on bolted joint behavior, and capable of accounting for non-
linearities to some degree, its implementation is not without challenges. The method requires carefully
controlled experimental conditions to ensure repeatability and reliability of results (Chiang and Chiang,
2023). As the number of variables increases, the experimental design becomes increasingly complex,
often demanding significant time and resources to execute (Selvamuthu and Das, 2024). Additionally,
external factors can introduce variability, reducing the robustness of the findings. The dependency of
results on specific factors further restricts their applicability across different configurations (Wettstein
and Matthiesen, 2020). Although their widespread use, they face inherent challenges in accurately
predicting the functional behavior variables of bolted joints. Nonetheless, DoE remains a valuable
method when used with other approaches to validate findings and enhance model accuracy (Afifi
et al., 2024).
Furthermore, data-driven predictive modeling has emerged as a promising alternative to overcome
these limitations. By leveraging relationships between input features and output variables, data-driven
models can capture complex nonlinear behaviors and make predictions about unseen scenarios, enabling
more accurate and efficient predictions and optimizations of bolted joint performance (Montans et al.,
2019). For instance, Fernandez-Ceniceros et al. (2012) used a neural network ensemble with FEA data to
predict load capacity, while Zhong et al. (2021) combined FEA and neural networks for bearing capacity
optimization in aluminum joints. Fei et al. (2016) modeled bolt force in flanges, analyzing the effects of
bending and shear, and Coelho et al. (2024) used Machine Learning (ML) to classify and quantify torque
loss due to vibration. Other studies, such as those by Yildirim et al. (2019), Ren and Sun (2023), and
Li et al. (2024), employed neural networks and ML algorithms to predict load capacity and other
performance metrics in varied joint contexts, leveraging FEA and experimental data. Chen et al. (2020)
and Olejnik and Ayankoso (2023) further integrated optimization algorithms with neural networks for
enhanced predictive precision, and Atta et al. (2019) focused on predicting failure stages in bolted joints
with a neural network. This approach not only enhances the ability to predict critical parameters but also
offers significant advantages in terms of time efficiency, accuracy, and ease of implementation. Yet they
require high-quality datasets for accurate training and validation. Recent research highlights the potential
of combining empirical data with data-driven methods to address these challenges (Afifi et al., 2024).
This study aims to explore this synergy, offering a framework that integrates experimental data with a
feed-forward neural network model to enhance predictions of bolted joint performance.
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1.2. Problem formulation and task description
The reviewed studies illustrate the potential of data-driven modeling to advance the analysis of bolted
joints. While these approaches offer accurate predictions of critical parameters, their integration with
empirical data remains underexplored. A significant gap exists in methodologies that effectively combine
the strengths of empirical experimentation and data-driven techniques to simultaneously predict load
capacity and friction coefficients while capturing the nonlinear behavior of bolted joints.
This research aims to address this gap by leveraging the complementary advantages of empirical data and
data-driven predictive modeling to accurately and efficiently predict critical function behavior
parameters. It focuses on bolted joint behavior under tensile loading conditions under a torque-controlled
tightening process, employing a supervised feed-forward neural network trained on key parameters,
including bolt size, strength grade, tightening torque, head torque, thread torque, and preload force, this
effectively models nonlinear relationships between inputs and outputs in a computationally efficient
manner. This approach overcomes the limitations of traditional methods like analytical models, DoE, and
FEA, which are hindered by idealized assumptions, scalability issues, and high computational demands.
By integrating empirical data with predictive modeling, the study enhances accuracy, efficiency, and
reliability, contributing to practical design applications.

2. Feedforward neural network background
Data-driven predictive modeling aims to uncover relationships between input and output features,
enabling accurate predictions on unseen data (Montáns et al., 2019). Within this field, ML focuses
on developing algorithms capable of learning patterns from data to make informed predictions, with
supervised ML specifically predicting target variables by analyzing input-output pairs (Zhou, 2021;
LeCun et al., 2015). Regression, as a key type of supervised learning problem, focuses on estimating
numerical values based on input features (Bengio et al., 2016). Linear regression handles simple
relationships, whereas feed-forward neural networks handle complex patterns by processing
information in a unidirectional flow, mapping inputs to outputs without cycles (Yadav et al., 2015).
These networks feature a layered structure comprising an input layer, one or more hidden layers, and
an output layer (Zhou, 2021). Each layer consists of interconnected units called neurons, which
represent input and output features (Santry, 2024; Wythoff, 1993). The number of neurons in the
hidden layers is determined by the network design and task complexity (Bengio et al., 2016),
enabling the processing of signals as outputs from one layer become inputs for the next (Santry,
2024; Apicella et al., 2021). Each layer‘s output is computed as the weighted sum of inputs plus a
bias, with an activation function introducing non-linearity to enable complex mappings (Kuhn,
2013). Commonly used activation functions in neural networks include the sigmoid and Rectified
Linear Unit (ReLU), while weight initialization methods often involve random or Xavier
initialization (Santry, 2024).
In the context of optimization, the primary objective is to identify the optimal parameters of the
network that minimize the loss function, which is a metric used to quantify the cost between the
predicted values generated by the model and the actual target values (Montesinos Lopez et al., 2022).
Gradient descent is one of the most commonly used algorithms for optimization. It works by iteratively
updating the model‘s parameters in the direction opposite to the gradient until reaching a local or
global minimum (Ruder, 2016). Adam, a gradient-based algorithm for stochastic objective functions,
adapts the learning rate by computing individual scaling factors for different parameters based on
exponentially moving averages of the first and second moments of the gradients (Kingma and Ba,
2014). The Huber loss represents one of the frequently utilized loss functions (Sadouk et al., 2020).
The principal objective of training a neural network is to fit its predicted outputs with the target outputs
(Santry, 2024). The testing phase evaluates the trained model‘s accuracy by generating predictions
from the input data and calculating the error between the predicted and target outputs. (Santry, 2024;
Bengio et al., 2016). Overfitting arises when a model performs exceptionally well on the training
dataset but fails to generalize to unseen data, leading to poor performance on the test set. Conversely,
underfitting occurs when a model performs poorly even on the training data set, suggesting that it has
failed to capture the essential patterns in the data (Müller and Guido, 2016). Generalization is reached,
when the error has been reduced to an adequately low level, thereby indicating that the model has
acquired the capacity to make accurate predictions (Santry, 2024).
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3. Methodology
This section outlines the methodology for predicting key parameters in bolted joint design. Experimental
data was processed and essential features were selected. A feed-forward neural network was
implemented to model the complex relationships in bolted joint behavior. The fundamental methodology
is illustrated in Figure 1.

3.1. Data description and feature selection
To establish a rationale for the chosen data, it is essential to consider the factors influencing bolted joint
performance. The friction at the bolt surface and the load distribution are influenced by the bolt size, with
larger bolts promoting a more uniform load distribution and greater friction generation (VDI 2230, 2015).
Additionally, the strength grade of a bolt plays a crucial role in determining its load capacity and how
stress is distributed throughout the material (Kloos and Thomala, 2007). Furthermore, head torque and
thread torque are both directly proportional to the friction coefficients. The remaining tightening torque
contributes to the generation of preload force, with the applied torque magnitude directly affecting the
load introduced to the bolt (VDI 2230, 2024). Based on these considerations, the selected input
parameters are bolt size, strength grade, preload force, tightening torque, head torque, and thread torque,
while the output parameters are those influencing the functional behavior of the bolted joint, specifically
load capacity and head and thread friction coefficients.
The experimental data were obtained from two sets of controls with the described experimental setup
in Wettstein et al. (2020), each involving the continuous tightening of a bolted joint consisting of a
bolt, two connected plates, a washer, and a nut. The initial dataset was gathered for an M10 8.8 ISO
4014 bolted connection, as described by Wettstein and Matthiesen (2020). The second dataset
involved an M6 8.8 ISO 4017 bolted joint, obtained with the same methodology. Time series data
consisting of preload force, tightening torque, head torque, and thread torque were measured. For the
M6 bolt, a preload force of 8 kN was used, with 20 samples collected. The M10 model utilized a
preload force of 12.5 kN, with 9 samples available, while the M10 bolt with a preload force of 25 kN
included 5 samples. From these values, the friction coefficients of the head and threads and the
remaining load capacity were further empirically estimated. The set finally had 34 samples for training
and testing the neural network.

3.2. Data preprocessing
The data was presented in tabular format, representing time series measurements of the variables. The
dataset was divided into two subsets: a training (80%) and a test (20%) set. Input and output features were
subsequently extracted according to predefined feature specifications. Normalization was applied as a
scaling method to transform the input features, minimizing the influence of skewness and outliers while
ensuring that the data remained within an appropriate range for the model. The scale derived from the
training set was retained to ensure consistent application during subsequent stages of analysis. The
preprocessing procedures applied to the test set mirrored those of the training set, with a critical
distinction: any scaling of the test data was performed using the parameters obtained from the training
set. This approach ensured that the model operated on data with a consistent scale, thereby preserving the
validity of the training and evaluation processes.

Figure 1. Task Description
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3.3. Model architecture
The input layer contained six nodes, representing bolt size, strength grade, tightening torque, head
torque, thread torque, and preload force. The neural network included two hidden layers, with neuron
counts matching the input and output layers. The network‘s output layer has three nodes, corresponding
to the output features: load capacity, head friction coefficient, and thread friction coefficient (Figure 2).

A total of 136 models were trained throughout the process. Four representative models were selected to
illustrate the learning and optimization process. These models were evaluated with variations in key
hyperparameters, including the activation function, weight initialization method, number of epochs,
scaling method, units for preload force and load capacity, and the number of samples used (Table 1). The
activation function determined the scale of outputs, while the weight initialization method affected
training speed, convergence, and final accuracy. The number of epochs ensured sufficient training to
generalize without overfitting. The scaling method aligned the data within an optimal range, reducing
outliers and improving convergence. Choosing appropriate units for preload force and load capacity
ensured output compatibility, and a larger dataset size enhanced pattern recognition.

The initialization stage involved configuring all hyperparameters prior to the training process,
establishing the foundation for learning. These included the activation function, initialization method for
weights and biases, network width and depth, proportion of data used for training and testing, number of
epochs, batch size, loss function, optimization algorithm, and learning rate. The neural network structure
was created by defining the total number of layers and the number of nodes per layer.
The training process commenced following the initialization of the neural network. The training dataset
was loaded and shuffled to ensure varied data processing during each iteration, improving efficiency. The
loss function, optimization algorithm, and learning rate were then configured. Over a specified number of
epochs, the training loop iterated with a defined batch size, through the data. The network generated
outputs from the input data in each iteration, calculated the loss, and updated learnable parameters based
on the chosen optimization algorithm. Mean accuracy and loss values were computed and plotted after
each epoch to track progress and evaluate performance throughout training. This process is described in
Figure 3 by the blue and black path and by Algorithm 1.
The testing process involved loading the unshuffled test dataset for evaluation, limited to a single epoch
and batch due to the smaller size of the test set, ensuring computational efficiency. The neural network
computed outputs based on the input data and model accuracy was assessed for each data point, with the
mean accuracy calculated for the overall model accuracy. Predictions were deemed accurate if they
deviated by no more than 5% from the target values. To evaluate performance, error metrics such as

Load Capacity

Head Friction Coefficient

Thread Friction Coefficient

Preload Force

Tightening Torque

Head Torque

Thread Torque

Bolt Size

Strength Grade

Figure 2. Visualization of the Used Network Architecture and the Input and Output Features

Table 1. Hyperparameters of Chosen Models

Hyperparameters Model 1 Model 2 Model 3 Model 4

Activation Function Sigmoid ReLU Sigmoid Sigmoid
Number of Epochs 1000 1000 4800 4800
Unit [Preload/Load] N/N kN/kN kN/kN kN/MN

ICED25 3215



Mean Absolute Error (MAE), Mean Square Error (MSE), and Root Mean Square Error (RMSE) were
computed for each data point. A scatter plot was also generated, displaying predicted outputs against
target values, where accurate predictions aligned along a linear function through the origin. This process
is described in Figure 3 by the green and black path and by Algorithm 2.

The evaluation and hyperparameter tuning process involved analyzing the accuracy and loss curves
from training, as well as the error metrics and accuracy curves from testing, to assess the model‘s
alignment with the data. Hyperparameters were iteratively adjusted until satisfactory accuracy was
achieved. Once optimized, the trained model parameters were saved for future use.

4. Results
As the hyperparameters tuning process progressed, the accuracy of each model demonstrated an
incremental improvement, accompanied by an increase in the elapsed time required for completing all
steps, from preprocessing to training. The final accuracy attained for Model 4 was 95.24%, with a
generation time of 90 seconds (Table 2).
The models were trained using Adam with a learning rate of 0.01, aiming to optimize convergence speed
and minimize loss. The Huber loss function was applied to balance sensitivity to outliers and improve
stability. The training was conducted with a batch size of 4, enabling incremental updates to the model‘s
parameters. The Xavier weight initialization method was used to assign unique weights within a specific
range, influencing the learning process by optimizing training speed, convergence rate, final accuracy,
and overall model efficiency. Normalization was applied as a scaling method to minimize the influence

Algorithm 1 Training Framework
for epoch < number_o f _epochs do

for batch < batch_size do
optimizer.zero_grad()
predicted_out put ← model(batch_input)
loss ← loss_ f unction(predicted_out put,batch_out put)
Call loss.backward()
Call optimizer.step()

end for
end for

Algorithm 2 Testing Framework
With torch.no_grad
for batch < batch_size do

model.eval()
predicted_out put ← model(batch_input)

end for

Figure 3. Visualization of the Implemented Workflow
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of skewness and outliers, ensuring that input data remained within an appropriate range for the model.
This preprocessing step optimized the activation function‘s performance, facilitating faster convergence
and improving control over the data fed into the model. The bias was initialized to a constant value of
zero for each neuron. After the hyperparameters tuning, the training curves followed the typical pattern
for the loss and accuracy, with the loss decreasing logarithmically almost to zero and the accuracy
increasing exponentially to a maximum of around 100% over the epochs (Figure 4). The loss between the
predicted and actual values was nearly negligible for all metrics (MAE, MSE, RMSE), except one of the
head friction coefficient values, which exhibited a considerable deviation from the other values as shown
in Figure 5. Furthermore, in Figure 6 the predicted values for all output parameters aligned closely with
the reference line through the origin for the scatter plot of the predicted to the target values. The load
capacity and thread friction coefficients achieved 100% accuracy, while the head friction coefficients
reached 85.71%, with only one value showing a minimal deviation from the line. All other values are
within the 5% range of the blue line.

5. Discussion
This study achieves significant improvements in predicting load capacity and friction coefficients in
bolted joints by addressing challenges in model architecture and preprocessing. A primary challenge was
the scale discrepancy between the output variables, specifically load capacity and friction coefficients.

Table 2. Results of Chosen Models

Model 1 Model 2 Model 3 Model 4

Accuracy [%] 9.52 33.33 61.90 95.24
Elapsed Time [s] 8.89 9.15 34.86 90.11

(a) (b)

Figure 4. Results of Model 4: Training (a) Loss per Epoch (b) Accuracy per Epoch

(a) (b) (c)

Figure 5. Results of the Model 4: Loss (a) MAE Loss (b) MSE Loss (c) RMSE Loss
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Rescaling the load capacity to MN effectively aligned the scales, minimized noise in the loss function,
and enhanced the stability of the training process, which ultimately led to the accuracy achieved.
Furthermore, the adoption of the sigmoid activation function, appropriately matched to the range of the
output variables, facilitated balanced prediction accuracy across all parameters. These results underscore
the importance of systematic preprocessing and model optimization in developing robust predictive tools
for complex engineering systems.
The dataset used in this study, consisting of only 34 samples, presents limitations in terms of gener-
alizability and the stability of results across different bolt configurations. Since the model was trained
using only two bolt sizes and three preload force cases, its direct transferability to other configurations is
not ensured. While the model demonstrated high accuracy for certain cases, the limited diversity of the
dataset raises concerns about overfitting, and the performance should, therefore, be interpreted with
caution. To improve the generalizability of the model, future work will focus on expanding the data set to
include a wider variety of bolt configurations and operational conditions, ensuring that the model can
make reliable predictions for bolts in active use. Furthermore, we plan to explore techniques to generate
synthetic data and augment the dataset through rule-based formulations of bolt behavior like VDI 2230
(2015) or FEA (VDI 2230, 2014). This data-driven approach could prove valuable, as the acquisition of
empirical data is both costly and time-consuming.
Finally, we believe that the accessibility of the model‘s design enables users to achieve accurate
predictions without requiring advanced mechanical expertise. With the described methods in Bengio
et al. (2016) and Montesinos Lopez et al. (2022), the parameter evolution remains traceable,
incorporating knowledge of the initial parameters. Hence, a mathematical model is established for each
individual node, ensuring a structured representation. The final plausibility of the results can be verified
using standardized reference tables, like VDI 2230 (2015). This versatility, coupled with the model‘s
potential for time-efficient prediction of output variables, underscores its practical application.
Nevertheless, expanding the dataset remains a critical next step to improve prediction consistency,
generalizability, and robustness across a broader range of bolted joint configurations.

6. Conclusion
This study presented a hybrid approach integrating empirical data with a supervised feed-forward neural
network to predict critical performance metrics of bolted joints, specifically load capacity and head
and thread friction coefficients. The proposed methodology effectively addresses key limitations of
traditional approaches such as analytical simplifications, computational demands of numerical models,
and the scalability challenges of empirical methods. By leveraging empirical data and a computationally
efficient neural network architecture, the model captured the nonlinear relationships between input
parameters, such as tightening torque and preload force, and output parameters namely remaining load-
bearing capacity and friction coefficients with a predictive accuracy of 95.24%. The findings highlight
the potential of data-driven modeling as a transformative tool for bolted joint design, particularly in its
ability to combine experimental rigor with advanced predictive capabilities. However, limitations such as
the small dataset size and the reliance on simplified loading conditions pose challenges to the model‘s
generalizability across diverse scenarios. These limitations suggest the need for future research to expand
the dataset, incorporate varied load cases (e.g., shear and combined loading), and explore alternative
neural network architectures or hybrid machine learning models to enhance robustness and accuracy.

Target OutputTarget Output Target Output

Pr
ed

ic
te

d 
O

ut
pu

t

Accuracy: 100%Accuracy: 100% Accuracy: 85.71%

Model Accuracy: 95.24%

Load Capacity(a) (b) (c)Head Friction Coefficient Thread Friction Coefficient

Figure 6 Results of Model 4: Test (a) Scatter of the Load Capacity (b) Scatter of the Head Friction
Coefficients (c) Scatter of the Thread Friction Coefficients
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This research bridges empirical experimentation and predictive modeling, offering a novel approach to
bolted joint analysis. It integrates advanced computational techniques into engineering design, enabling
more reliable and efficient optimization of bolted joint performance.
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