BIRELATIVE K₂ OF GROUPS OF SQUARE-FREE ORDER

BRUCE A. MAGURN

ABSTRACT Birelative K_2 -groups are computed for the fiber squares needed to study K_2 and K_3 of $\mathbb{Z}G$ when G is a group of square-free order

0. Introduction. Suppose *R* is a ring with ideals *I* and *J*, with $I \cap J = 0$. The birelative K_2 -group $K_2(R; I, J)$ is an abelian group B_2 which fits in a *K*-theory exact sequence (see [3]):

$$K_3(R,I) \longrightarrow K_3(R/J,(I+J)/J) \longrightarrow B_2 \longrightarrow K_2(R,I) \longrightarrow K_2(R/J,(I+J)/J) \longrightarrow 0.$$

Here $I \cong (I + J)/J$; so B_2 measures the failure of excision for K_2 of an ideal.

Since $I \cap J = 0$, R embeds as a subring of $(R/I) \times (R/J)$. The relation between $K_n(R)$ and K_n of this bigger ring is displayed in a long exact Mayer-Vietoris sequence:

$$\cdots \longrightarrow K_{n+1}(R/I \times R/J) \longrightarrow K_{n+1}(R/(I+J)) \oplus B_n \longrightarrow K_n(R) \longrightarrow K_n(R/I \times R/J) \longrightarrow \cdots$$

under certain conditions on R, I and J (see [4], Theorem 2.1). Here B_n is the birelative $K_n(R; I, J)$.

This paper is a sequel to the paper [5], in which R. C. Laubenbacher and this author applied such Mayer-Vietoris sequences to obtain partial computations of $K_2(\mathbb{Z}G)$ and $K_3(\mathbb{Z}G)$ for dihedral groups G of square-free order. Here the birelative K_2 computations of [5] are extended to include those needed when G is any finite group of square-free order. These are the groups with presentation:

$$(a, b: a^m = 1, b^s = 1, bab^{-1} = a^q),$$

where |G| = ms is square-free (see [2], Section 9.4).

1. Specification of the B_2 s. For a group G with the above presentation,

$$\mathbb{Q}G = \mathbb{Q}[a] \oplus \mathbb{Q}[a]b \oplus \cdots \oplus \mathbb{Q}[a]b^{s-1}$$

with multiplication determined by

$$ba = a^q b$$
, $b^s = 1$.

If d is a positive divisor of m, and ζ_d is a primitive d-th root of unity, replacing a by ζ_d defines a surjective ring homomorphism

$$\psi_d: \mathbb{Q}G \longrightarrow \Sigma(d),$$

Received by the editors May 4, 1992

AMS subject classification 19C40, 19D99

[©] Canadian Mathematical Society 1993

where $\Sigma(d)$ is a Q-algebra with the same description as QG (above), but with ζ_d in place of *a*. As in [6], Section 7, there is a Q-algebra isomorphism:

$$\mathbb{Q}G\cong\bigoplus_{d\mid m}\Sigma(d),$$

which is ψ_d in each *d*-component.

If \mathcal{D} is a set of positive divisors of *m*, let $\mathcal{O}(\mathcal{D})$ denote the image of the projection:

$$\mathbb{Z}G \longrightarrow \bigoplus_{d \in \mathcal{D}} \Sigma(d)$$

to \mathcal{D} -components. Then $\mathcal{O}(\mathcal{D})$ is the twisted group ring

$$\mathbb{Z}[\alpha_{\mathcal{D}}] \circ \langle b
angle = \mathbb{Z}[\alpha_{\mathcal{D}}] \oplus \mathbb{Z}[\alpha_{\mathcal{D}}] b \oplus \cdots \oplus \mathbb{Z}[\alpha_{\mathcal{D}}] b^{s-1}$$

where the minimal polynomial of $\alpha_{\mathcal{D}}$ over \mathbb{Q} is

$$\prod_{d\in\mathcal{D}}\mathbf{\Phi}_d(x)$$

 $(\Phi_d(x)$ being the minimal polynomial of ζ_d over \mathbb{Q}), and where

$$b\alpha_{\mathcal{D}} = \alpha_{\mathcal{D}}^q b$$
 and $b^s = 1$.

The Mayer-Vietoris sequences needed to study $K_n(\mathbb{Z}G)$ are based on the fiber squares:

(1.1)
$$\begin{array}{ccc} \mathcal{O}(\mathcal{D} \cup p\mathcal{D}) & \xrightarrow{\pi_p \mathcal{D}} & \mathcal{O}(p\mathcal{D}) \\ \pi_{\mathcal{D}} \downarrow & & \downarrow \\ \mathcal{O}(\mathcal{D}) & \xrightarrow{\pi_{\mathcal{D}} \mathcal{D}} & \mathcal{O}(\mathcal{D})/p\mathcal{O}(\mathcal{D}) \end{array}$$

in which *p* is a prime factor of *m*, \mathcal{D} is a non-empty set of positive factors of m/p, $\pi_{\mathcal{D}}$ and $\pi_{p\mathcal{D}}$ are projections, and the right vertical map can be defined by commutativity of the square. In this paper the birelative groups $B_2(\mathcal{D}, p\mathcal{D}) := K_2(R; I, J)$ are computed, where $R = \mathcal{O}(\mathcal{D} \cup p\mathcal{D}), I = \ker \pi_{\mathcal{D}}$ and $J = \ker \pi_{p\mathcal{D}}$.

2. **Reduction to single divisors.** In [1] and [3] the birelative $K_2(R; I, J)$ was determined to be

$$I/I^2 \otimes_{R^e} J/J^2$$

where R^e is additively the same as $R \otimes_{\mathbb{Z}} R$, and its multiplication is extended \mathbb{Z} -bilinearly from

$$(x_1 \otimes y_1)(x_2 \otimes y_2) = (x_1 x_2 \otimes y_2 y_1)$$

for all $x_i, y_i \in R$. The R^e -module actions on J and I are

$$(x \otimes y) \cdot m = xmy, \quad m \cdot (x \otimes y) = ymx,$$

respectively. In [5] it is proved that:

THEOREM 2.1. In the notation used in the square (1.1), the projections $\mathcal{O}(\mathcal{D} \cup p\mathcal{D}) \rightarrow \mathcal{O}(d, pd)$ applied to I and J induce an isomorphism:

$$B_2(\mathcal{D}, p\mathcal{D}) \cong \bigoplus_{d \in \mathcal{D}} B_2(d, pd).$$

3. Generators and relations for $B_2(d, pd)$. It only remains to compute

$$B_2(d, pd) = I/I^2 \otimes_{R^e} J/J^2,$$

where I and J are the kernels indicated in the diagram with short exact rows and columns:

where $d \in \mathcal{D}$, the minimal polynomial of α over \mathbb{Q} is $\Phi_d(x)\Phi_{pd}(x)$, and $R = \mathbb{Z}[\alpha] \circ \langle b \rangle$.

The following facts were established in [5]: In $\mathbb{Z}[\alpha] \circ \langle b \rangle$, *I* (resp. *J*) is both a principal left and principal right ideal generated by $\Phi_d(\alpha)$ (resp. $\Phi_{pd}(\alpha)$). Then both $\Phi_d(\alpha)$ and *p* annihilate both I/I^2 and J/J^2 ; so the multiplication actions of $\mathbb{Z}[\alpha] \circ \langle b \rangle$ on these quotients factor through $\mathbb{F}_p[\zeta_d] \circ \langle b \rangle$. Further, with the notation

$$(x,y) := \left(x \cdot \overline{\Phi_d(\alpha)} \otimes y \cdot \overline{\Phi_{pd}(\alpha)}\right)$$

for $x, y \in \mathbb{F}_p[\zeta_d] \circ \langle b \rangle$, the \mathbb{F}_p -vector space $I/I^2 \otimes_{\mathbb{Z}} J/J^2$ has \mathbb{F}_p -basis:

$$\{(\zeta^i b^k, \zeta^j b^\ell) : 0 \le i, j < \varphi(d), 0 \le k, \ell < s\}$$

where $\zeta = \zeta_d$. The left and right actions of $\mathbb{F}_p[\zeta] \circ \langle b \rangle$ on I/I^2 and J/J^2 may differ due to noncommutativity of *G*:

$$ba = a^q b$$
 and $ab = ba'$

for positive integers q and r with $qr \equiv 1 \pmod{m}$. In detail, the quotients

$$\sigma(x) = \frac{\Phi_d(x^r)}{\Phi_d(x)} \text{ and } \tau(x) = \frac{\Phi_{pd}(x^r)}{\Phi_{pd}(x)}$$

are in $\mathbb{Z}[x]$, and the action of *b* satisfies:

$$\Phi_d(\alpha) \cdot b = b \cdot \Phi_d(\alpha^r) = b\sigma(\zeta) \cdot \Phi_d(\alpha),$$

$$\Phi_{pd}(\alpha) \cdot b = b \cdot \Phi_{pd}(\alpha^r) = b\tau(\zeta) \cdot \Phi_{pd}(\alpha).$$

Therefore, to pass from $I/I^2 \otimes_{\mathbb{Z}} J/J^2$ to $I/I^2 \otimes_{\mathbb{R}^e} J/J^2$, mod out the additional relators:

1. $(\zeta x, y) - (x, y\zeta)$ 2. $(x\zeta, y) - (x, \zeta y)$ 3. $(bx, y) - (x, yb\tau(\zeta))$ 4. $(xb\sigma(\zeta), y) - (x, by)$. With these it is easy to see that the \mathbb{F}_p -vector space $B_2(d, pd)$ is spanned by the elements: $(1, \zeta' b^{\ell})$ with $0 \le j < \varphi(d)$, and $0 \le \ell < s$.

4. A modulo *p* cyclotomic unit. In order to compute $B_2(d, pd)$ from its presentation, it is helpful to produce a certain unit in $\mathbb{F}_p[\zeta_d]$ related to the polynomials $\sigma(x)$ and $\tau(x)$ by a formula resembling Hilbert's Theorem 90. For this section, suppose *d* is any square-free integer with d > 1 and *p* is a prime not dividing *d*. Then $d = q_1q_2 \cdots q_n$ for *n* distinct primes q_i . For each *j* with $0 \le j \le n$, let D(j) denote the set of all products $x_1 \cdots x_j$ where x_1, \ldots, x_j are distinct primes chosen from $\{q_1, \ldots, q_n\}$. Here $D(0) = \{1\}$. Define the polynomials:

$$v_j(x) = \prod_{e \in D(j)} (x^{pd/e} - 1)$$

in $\mathbb{Z}[x]$.

LEMMA 4.1. In $\mathbb{Z}[x]$,

$$\Phi_{pd}(x)\Phi_d(x) = \frac{\prod_{j \text{ even }} v_j(x)}{\prod_{j \text{ odd }} v_j(x)}$$

PROOF. Suppose $f \in D(n - k)$ where $0 \le k \le n$; so d/f is a product of k primes. Then $\Phi_f(x)$ divides $x^{pd/e} - 1$ if and only if $\Phi_{pf}(x)$ divides $x^{pd/e} - 1$, and these are true if and only if e divides d/f. So the number of $e \in D(j)$ where these equivalent conditions hold is the binomial coefficient $\binom{k}{j}$. Thus there are $\binom{k}{j}$ occurrences of both $\Phi_f(x)$ and $\Phi_{pf}(x)$ in the factorization of $v_i(x)$ into irreducibles. Since

$$(1-1)^k = \sum_{j \text{ even}} {\binom{k}{j}} - \sum_{j \text{ odd}} {\binom{k}{j}}.$$

both $\Phi_f(x)$ and $\Phi_{pf}(x)$ cancel out completely for $k \ge 1$, leaving only the product $\Phi_{pd}(x)\Phi_d(x)$ for k = 0.

Now $v_l(\zeta_d)$ is a product of factors

$$\zeta_d^{pd/e} - 1 = \zeta_e^p - 1,$$

where $e \in D(j)$. So if j > 1, then e (= the order of ζ_e^p) is composite, and hence $v_j(\zeta_d)$ is a unit in $\mathbb{Z}[\zeta_d]$. On the other hand, if j = 1, then $e = q_i$ for some i, and $\zeta_e^p - 1$ divides q_i in $\mathbb{Z}[\zeta_d]$; so, since p does not divide d, $v_1(\zeta_d)$ is a unit in $\mathbb{F}_p[\zeta_d]$. Define:

$$u = \left[\prod_{\substack{j \text{ odd} \\ j \ge 1}} v_j(\zeta_d)\right]^{-1} \left[\prod_{\substack{j \text{ even} \\ j \ge 1}} v_j(\zeta_d)\right]$$

in $\mathbb{F}_p[\zeta_d]^*$.

PROPOSITION 4.2. Suppose q and r are positive integers with $qr \equiv 1 \pmod{pd}$, θ is the ring automorphism of $\mathbb{F}_p[\zeta_d]$ with $\theta(\zeta_d) = \zeta_d^r$, and

$$\sigma(x) = \frac{\Phi_d(x^r)}{\Phi_d(x)}, \quad \tau(x) = \frac{\Phi_{pd}(x^r)}{\Phi_{pd}(x)}$$

are expressed as polynomials in $\mathbb{Z}[x]$. Then in $\mathbb{F}_p[\zeta_d]$,

$$\sigma(\zeta_d)\tau(\zeta_d)=r\theta(u)u^{-1}.$$

PROOF.

$$\prod_{\substack{j \text{ odd}}} v_j(x^r) \prod_{\substack{j \text{ even} \\ j > 0}} v_j(x)\sigma(x)\tau(x) = \frac{x^{pd} - 1}{x^{pd} - 1} \prod_{\substack{j \text{ odd}}} v_j(x) \prod_{\substack{j \text{ even} \\ j > 0}} v_j(x^r),$$

and

$$\frac{x^{rpd}-1}{x^{pd}-1} = 1 + x^{pd} + \dots + x^{(r-1)pd}.$$

Evaluate at ζ_d and reduce mod p to get the desired equation.

5. Computations. Define *m*, *s* and *q* as in Section 1, *d*, *p*, *r* $\sigma(x)$, $\tau(x)$ and the pairing (x, y) as in Section 3, and *u* and θ as in Section 4. So *ms* is square-free, *p* is a prime factor of *m*, *d* divides m/p, and in the group *G*, $bab^{-1} = a^q$ and $b^s = 1$; so $q^s \equiv 1 \pmod{m}$. Similarly $b^{-1}ab = a^r$; so $r^s \equiv 1 \pmod{m}$, and $qr \equiv 1 \pmod{m}$.

In $(\mathbb{Z}/d\mathbb{Z})^*$, q and r represent inverse elements of order t dividing s.

THEOREM 5.1. The birelative K_2 -group $B_2(d, pd)$ is an \mathbb{F}_p -vector space.

a) If p does not divide $r^t - 1$, then $B_2(d, pd) = 0$.

b) If p divides $r^t - 1$, then $B_2(d, pd)$ has an \mathbb{F}_p -basis:

$$\{(1, u^{-1}\zeta^{j}b^{\ell}) : j \in J, \ell \in t\mathbb{Z}, 0 \le \ell < s\}$$

where J is any set consisting of one integer from each coset of $\langle r \rangle$ in $(\mathbb{Z}/d\mathbb{Z})^*$. The rank of $B_2(d, pd)$ in this case is $\varphi(d)s/t^2$.

PROOF. If $f(x) \in \mathbb{Z}[x]$ and $n \ge 0$, define $f_n(x)$ by:

$$f_n(x) = \begin{cases} f(x)f(x^r) \cdots f(x^{r^{n-1}}), & \text{if } k \ge 1\\ 1, & \text{if } k = 0 \end{cases}.$$

Then iterating relations 3 and 4 of Section 3, in $B_2(d, pd)$:

$$(b^{n}a^{l}b^{k},a^{l}b^{\ell}) = (a^{l}b^{k},a^{l}b^{\ell+n}\tau_{n}(\zeta)),$$
$$(a^{l}b^{k},b^{n}a^{l}b^{\ell}) = (a^{l}b^{k+n}\sigma_{n}(\zeta),a^{l}b^{\ell}).$$

Note that since $r^{l} \equiv 1 \pmod{d}$, b^{l} commutes with $\zeta (= \zeta_{d})$ in $\mathbb{Z}[\zeta] \circ \langle b \rangle$. Also note that from Proposition 4.2,

$$\sigma_t(\zeta)\tau_t(\zeta)=r^t.$$

So in $B_2(d, pd)$,

$$(1,\zeta^{j}b^{\ell}) = (b^{t}b^{-t},\zeta^{j}b^{\ell})$$

$$= (b^{-t},\zeta^{j}b^{\ell+t}\tau_{t}(\zeta))$$

$$= (b^{-t}b^{t}\sigma_{t}(\zeta),\zeta^{j}b^{\ell}\tau_{t}(\zeta))$$

$$= (\tau_{t}(\zeta)\sigma_{t}(\zeta),\zeta^{j}b^{\ell})$$

$$= (r^{t},\zeta^{j}b^{\ell})$$

$$= r^{t}(1,\zeta^{j}b^{\ell}).$$

So $(1 - r^{t})(1, \zeta^{j}b^{\ell}) = 0$ for all $j, \ell \in \mathbb{Z}$. Thus if p does not divide $r^{t} - 1$, then every generator $(1, \zeta^{j}b^{\ell})$ of $B_{2}(d, pd)$ vanishes, proving part (a).

By relations 1 and 2 of Section 3, in $B_2(d, pd)$, for any integers j and ℓ ,

$$(1, \zeta^{j} b^{\ell}) = (\zeta, \zeta^{j-1} b^{\ell})$$
$$= (1, \zeta^{j+q^{\ell}-1} b^{\ell})$$

So one can add to *j* any element of

$$d\mathbb{Z} + (q^{\ell} - 1)\mathbb{Z}$$

with no effect. In particular, if v is the greatest common divisor of d and $q^{\ell} - 1$, then

$$(\zeta^{\nu} - 1, \zeta^{j} b^{\ell}) = (1, \zeta^{j+\nu} b^{\ell}) - (1, \zeta^{j} b^{\ell})$$

= 0.

If $\ell \notin t\mathbb{Z}$, then *d* does not divide $q^{\ell} - 1$, and v < d. If d/v is composite, $\zeta^{v} - 1$ is a unit in $\mathbb{Z}[\zeta]$. If d/v is prime, $\zeta^{v} - 1$ divides that prime in $\mathbb{Z}[\zeta]$ and so becomes a unit in $\mathbb{F}_{p}[\zeta]$. Either way there exist $x, y \in \mathbb{Z}[\zeta]$ with

$$(\zeta^v - 1)x = 1 + py.$$

So in $B_2(d, pd)$,

$$(1,\zeta^{j}b^{\ell}) = \left((\zeta^{\nu}-1)x - py,\zeta^{j}b^{\ell}\right)$$
$$= (\zeta^{\nu}-1,x\zeta^{j}b^{\ell})$$
$$= 0.$$

Thus $B_2(d, pd)$ is spanned by the elements $(1, \zeta^j b^\ell)$ with $0 \le j < \varphi(d), 0 \le \ell < s$ and $\ell \in t\mathbb{Z}$. In detail,

$$(\zeta' b^k, \zeta' b^\ell) = \begin{cases} (1, \zeta'^{\iota_{l}q'} \tau_k(\zeta) b^{k+\ell}, & \text{if } k+\ell \in t\mathbb{Z} \\ 0, & \text{if } k+\ell \notin t\mathbb{Z}, \end{cases}$$

by the relations 1 and 3, and the fact that $b^{k+\ell}$ commutes with ζ if $k + \ell \in t\mathbb{Z}$.

Now if $\ell \in t\mathbb{Z}$ and $j \in \mathbb{Z}$, in $B_2(d, pd)$:

$$(1,\zeta^{j}b^{\ell}) = (b^{s},\zeta^{j}b^{\ell})$$
$$= (b^{s-1},\zeta^{j}b^{\ell+1}\tau(\zeta))$$
$$= (b^{s}\sigma(\zeta),\zeta^{jr}b^{\ell}\tau(\zeta))$$
$$= (1,\sigma(\zeta)\tau(\zeta)\zeta^{jr}b^{\ell}).$$

If $C = \langle b^t \rangle$, which is the subgroup of $\langle b \rangle$ consisting of those elements commuting with ζ , the group ring $\mathbb{F}_p[\zeta]C$ is the center of $\mathbb{F}_p[\zeta] \circ \langle b \rangle$. Then there is an \mathbb{F}_p -linear surjective map

$$f: \mathbb{F}_p[\zeta] C \longrightarrow B_2(d, pd),$$

with $f(\zeta^{j}b^{\ell}) = (1, \zeta^{j}b^{\ell})$, and the kernel of f contains the \mathbb{F}_{p} -linear span R_{1} of the elements:

$$(\zeta^{J} - \sigma(\zeta)\tau(\zeta)\zeta^{Jr})b^{\ell}$$

with $j \in \mathbb{Z}$, $\ell \in t\mathbb{Z}$.

CLAIM. The induced \mathbb{F}_p -linear map

$$\overline{f}: \mathbb{F}_p[\zeta]C/R_1 \to B_2(d, pd)$$

is an isomorphism.

To construct an inverse to \overline{f} , begin by considering the \mathbb{F}_p -subspace V of $I/I^2 \otimes_{\mathbb{Z}} J/J^2$ spanned by the elements $(1, \zeta' b^{\ell})$ for $0 \leq j < \varphi(d)$, $0 \leq \ell < s$ and $\ell \in t\mathbb{Z}$. This Vcontains the elements $(1, \zeta' b^{\ell})$ for all $j \in \mathbb{Z}$ and $\ell \in t\mathbb{Z}$, but those elements restricted as above are \mathbb{F}_p -linearly independent. Define

$$F_1: I/I^2 \otimes_{\mathbb{Z}} J/J^2 \to V$$

to be the \mathbb{F}_p -linear map with

$$F_1((\zeta^{\iota}b^k,\zeta^{\jmath}b^\ell)) = \begin{cases} (1,\zeta^{\jmath+\iota q^\ell}\tau_k(\zeta)b^{k+\ell}, & \text{if } k+\ell \in t\mathbb{Z} \\ 0 & \text{if } k+\ell \notin t\mathbb{Z}, \end{cases}$$

for $0 \le i, j < \varphi(d)$ and $0 \le k, \ell < s$.

This description of the effect of F_1 on $(\zeta^i b^k, \zeta^j b^\ell)$ holds even if we do not restrict the integers *i*, *j*, *k* and ℓ , except to require $k \ge 0$, so that $\tau_k(x)$ is defined. To see that *i* and *j* need not be restricted, note that the pairing (x, y) is bilinear and there is a ring automorphism of $\mathbb{Z}[\zeta]$ taking

$$\zeta \mapsto \zeta^{q'}.$$

To lift the restriction on *k*, note that the list

$$\tau(\zeta), \tau(\zeta^r), \tau(\zeta^{r^2}), \ldots$$

is periodic with a period of length s. So the product of any s consecutive terms is

$$\tau_s(\zeta) = \frac{\Phi_{pd}(\zeta^{r^s})}{\Phi_{pd}(\zeta)} = 1,$$

since $r^s \equiv 1 \pmod{d}$. So $\tau_v(\zeta) = \tau_w(\zeta)$ whenever $v \equiv w \pmod{s}$.

The map F_1 kills the relators of type 1, 2 and 3 from Section 3; but F_1 of the fourth type of relator is an \mathbb{F}_p -linear combination of elements:

$$(1,\zeta^{J}b^{\ell}) - (1,\sigma(\zeta)\tau(\zeta)\zeta^{Jr}b^{\ell})$$

where $j \in \mathbb{Z}$ and $\ell \in t\mathbb{Z}$. Define

$$F_2: V \longrightarrow \mathbb{F}_p[\zeta] C$$

to be the \mathbb{F}_p -linear map with

$$F_2((1,\zeta^j b^\ell)) = \zeta^j b^\ell$$

for $0 \le j < \varphi(d)$, $0 \le \ell < s$ and $\ell \in t\mathbb{Z}$; then the same formula holds for all $j \in \mathbb{Z}$ and $\ell \in t\mathbb{Z}$. Then define

$$F_3: \mathbb{F}_p[\zeta] C \longrightarrow \mathbb{F}_p[\zeta] C / R_1$$

to be the canonical map. The composite $F_3F_2F_1$ kills all the relators for $B_2(d, pd)$; so it induces an \mathbb{F}_p -linear map

$$g: B_2(d, pd) \longrightarrow \mathbb{F}_p[\zeta]C/R_1$$

taking $(1, \zeta' b^{\ell})$ to the coset of $\zeta' b^{\ell}$ for all $j \in \mathbb{Z}$ and $\ell \in t\mathbb{Z}$. Thus the composite $g\bar{f}$ is the identity on $\mathbb{F}_p[\zeta]C/R_1$. Since \bar{f} is surjective, $\bar{f}g$ is also the identity on $B_2(d, pd)$, proving the claim.

It only remains to compute $\mathbb{F}_p[\zeta]C/R_1$. Recall that R_1 is spanned by the elements:

$$[\zeta^{j} - \sigma(\zeta)\tau(\zeta)\theta(\zeta^{j})]b^{\ell}$$

with $j \in \mathbb{Z}$ and $\ell \in t\mathbb{Z}$. Define R_2 to be the \mathbb{F}_p -linear span of the elements:

$$[\zeta^{j} - r\theta(\zeta^{j})]b^{\ell}$$

for $j \in \mathbb{Z}$ and $\ell \in t\mathbb{Z}$. That is, if we extend θ to an automorphism of $\mathbb{F}_p[\zeta]C$ fixing the elements of C, R_2 is the image of the linear operator $1 - r\theta$. The unit u of Section 4 was chosen so that, by Proposition 4.2,

$$\sigma(\zeta)\tau(\zeta) = r\theta(u)u^{-1}.$$

Hence $uR_1 \subseteq R_2$ and $u^{-1}R_2 \subseteq R_1$. So left multiplication by u defines an \mathbb{F}_p -linear isomorphism:

$$\mathbb{F}_p[\zeta]C/R_1 \cong \mathbb{F}_p[\zeta]C/R_2.$$

376

LEMMA 5.2. If n is a square-free positive integer, the primitive n-th roots of unity form a \mathbb{Z} -basis of $\mathbb{Z}[\zeta_n]$.

PROOF. The multiplicativity of the Euler function φ has the following generalization: If U_n denotes the multiplicative group of primitive *n*-th roots of unity in \mathbb{C} , then for relatively prime positive integers *c* and *d*, $U_{cd} = U_c U_d$.

For a prime *p*,

$$U_p = \zeta_p \{1, \zeta_p, \zeta_p^2, \dots, \zeta_p^{p-2}\}$$

is a \mathbb{Z} -basis of $\mathbb{Z}[\zeta_p]$. Now the fact that U_n spans $\mathbb{Z}[\zeta_n]$ over \mathbb{Z} (for square-free *n*) follows by induction on *n*.

Define J to be a full set of representatives of the cosets of $\langle r \rangle$ in $(\mathbb{Z}/d\mathbb{Z})^*$. Then J has $\varphi(d)/t$ elements. The proof of Theorem 5.1, part (b), is completed if it is shown that

$$\{\overline{\zeta^j b^\ell} : j \in J, \ell \in t\mathbb{Z}, 0 \le \ell < s\}$$

is an \mathbb{F}_p -basis of $\mathbb{F}_p[\zeta]C/R_2$.

Modulo R_2 ,

$$\zeta^{j}b^{\ell} \equiv r\zeta^{rj}b^{\ell} \equiv rr\zeta^{rrj}b^{\ell} \equiv \cdots \equiv r^{\prime}\zeta^{r^{\prime-1}}b^{\ell}.$$

Since each power of r is nonzero mod p, each element

 $\overline{\zeta^{r^j}b^\ell}$

is a scalar multiple of $\overline{\zeta^{j}b^{\ell}}$ in $\mathbb{F}_{p}[\zeta]C/R_{2}$. So the proposed basis spans $\mathbb{F}_{p}[\zeta]C/R_{2}$.

To simplify notation, let K denote $(\mathbb{Z}/d\mathbb{Z})^*$, and let L denote the set of $\ell \in t\mathbb{Z}$ with $0 \leq \ell < s$. Suppose

$$\sum_{\substack{j \in J \\ \ell \in L}} c(j, \ell) \overline{\zeta^j b^\ell} = 0$$

for some coefficients $c(j, \ell) \in \mathbb{F}_p$. By Lemma 5.2,

$$\{\zeta^k b^\ell : k \in K, \ell \in L\}$$

is an \mathbb{F}_p -basis of $\mathbb{F}_p[\zeta]C$. So $1 - r\theta$ of this basis is a spanning set for R_2 . Thus there are $d(k, \ell) \in \mathbb{F}_p$ with

$$\sum_{\substack{j \in J \\ \ell \in L}} c(j, \ell) \zeta^j b^\ell = \sum_{\substack{k \in K \\ \ell \in L}} d(k, \ell) (1 - r\theta) \zeta^k b^\ell$$
$$= \sum_{\substack{k \in K \\ \ell \in L}} \left(d(k, \ell) - rd(qk, \ell) \right) \zeta^k b^\ell.$$

Comparing coefficients, if $k \notin J$,

$$d(k, \ell) = rd(qk, \ell),$$

so for each $j \in J$,

$$d(qj, \ell) = rd(q^2j, \ell) = r^2 d(q^3j, \ell) = \cdots = r^{J-1} d(j, \ell),$$

since $q^t \equiv 1 \pmod{d}$. And again comparing coefficients, for each $j \in J$,

$$c(j, \ell) = d(j, \ell) - rd(qj, \ell)$$
$$= d(j, \ell) - rr^{J-1}d(j, \ell)$$
$$= 0,$$

since in this part (b), we have assumed $r' \equiv 1 \pmod{p}$.

NOTE. When *pd* divides r - 1, so that t = 1, θ has no effect, and $\sigma(\zeta)$, $\tau(\zeta) = 1$, then $R_1 = R_2 = 0$ and there is no need for *u*. In this case $B_2(d, pd) \cong \mathbb{F}_p[\zeta] \circ \langle b \rangle$, with \mathbb{F}_p -basis:

$$\{(1,\zeta^{j}b^{\ell}): 0 \le j < \varphi(d), 0 \le \ell < s\}.$$

6. **Comments on computation of** $K_n(\mathbb{Z}G)$. For those groups *G* of square-free order with presentations

$$(a,b:a^m = 1,b^s = 1,bab^{-1} = a^q)$$

and those *d* dividing *m* where the order of q in $(\mathbb{Z}/d\mathbb{Z})^*$ is *s*, the K_3 of the rings O(d) and O(d)/p (where *pd* divides *m*) have been determined in [5]. In the special case of dihedral groups of square-free order (s = 2, q = m - 1) those computations, and birelative K_2 computations led to estimates on $K_3(\mathbb{Z}G)$ and $SK_2(\mathbb{Z}G)$ (see [5], Section 9). Now that the birelative K_2 computations have been extended to all groups of square-free order, Mayer-Vietoris sequences should lead to information on $K_3(\mathbb{Z}G)$ and $SK_2(\mathbb{Z}G)$ for a wider class of square-free order groups *G*.

Unfortunately, when the center of O(d) is totally imaginary, $K_3(O(d))$ has just enough copies of \mathbb{Z} to map onto the next terms

$$K_3(O(d)/p) \oplus B_2(d,pd)$$

in the Mayer-Vietoris sequence. So such information must await a closer analysis of the maps in the sequence. The determination of a basis for $B_2(d, pd)$ helps set the stage for this next step.

REFERENCES

- 1. D Guin-Waléry and J-L Loday, *Obstruction a l'excision en K-theorie algebrique* In Algebraic K-Theory, Lect Notes Math **854**, Springer-Verlag, 1981, 179–216
- 2. M Hall, The Theory of Groups, Macmillan, New York, 1959
- 3. F Keune, Double relative K-theory and the relative K₃, J Pure Appl Algebra 20(1981), 39-53

BIRELATIVE K_2

- **4.** R C Laubenbacher, *Generalized Mayer-Vietoris sequences in algebraic K-theory*, J Pure Appl Algebra **51**(1988), 175–192
- **5.** R C Laubenbacher and B A Magurn, SK_2 and K_3 of dihedral groups, Canad J Math (3) **44**(1992), 591–623
- 6. B A Magurn, SK₁ of dihedral groups, J Algebra (2) 51(1978), 399–415

Department of Mathematics and Statistics Miami University Oxford Ohio 45056 USA