BIRELATIVE K_{2} OF GROUPS OF SQUARE-FREE ORDER

BRUCE A. MAGURN

> ABSTRACT Birelative K_{2}-groups are computed for the fiber squares needed to study K_{2} and K_{3} of $\mathbb{Z} G$ when G is a group of square-free order

0 . Introduction. Suppose R is a ring with ideals I and J, with $I \cap J=0$. The birelative K_{2}-group $K_{2}(R ; I, J)$ is an abelian group B_{2} which fits in a K-theory exact sequence (see [3]):

$$
K_{3}(R, I) \rightarrow K_{3}(R / J,(I+J) / J) \rightarrow B_{2} \rightarrow K_{2}(R, I) \rightarrow K_{2}(R / J,(I+J) / J) \rightarrow 0
$$

Here $I \cong(I+J) / J$; so B_{2} measures the failure of excision for K_{2} of an ideal.
Since $I \cap J=0, R$ embeds as a subring of $(R / I) \times(R / J)$. The relation between $K_{n}(R)$ and K_{n} of this bigger rng is displayed in a long exact Mayer-Vietoris sequence:

$$
\cdots \rightarrow K_{n+1}(R / I \times R / J) \rightarrow K_{n+1}(R /(I+J)) \oplus B_{n} \rightarrow K_{n}(R) \rightarrow K_{n}(R / I \times R / J) \rightarrow \cdots
$$

under certain conditions on R, I and J (see [4], Theorem 2.1). Here B_{n} is the birelative $K_{n}(R ; I, J)$.

This paper is a sequel to the paper [5], in which R. C. Laubenbacher and this author applied such Mayer-Vietoris sequences to obtain partial computations of $K_{2}(\mathbb{Z} G)$ and $K_{3}(\mathbb{Z} G)$ for dihedral groups G of square-free order. Here the birelative K_{2} computations of [5] are extended to include those needed when G is any finite group of square-free order. These are the groups with presentation:

$$
\left(a, b: a^{m}=1, b^{s}=1, b a b^{-1}=a^{q}\right),
$$

where $|G|=m s$ is square-free (see [2], Section 9.4).

1. Specification of the $B_{2} \mathbf{s}$. For a group G with the above presentation,

$$
\mathbb{Q} G=\mathbb{Q}[a] \oplus \mathbb{Q}[a] b \oplus \cdots \oplus \mathbb{Q}[a] b^{s-1}
$$

with multiplication determined by

$$
b a=a^{q} b, \quad b^{s}=1 .
$$

If d is a positive divisor of m, and ζ_{d} is a primitive d-th root of unity, replacing a by ζ_{d} defines a surjective ring homomorphism

$$
\psi_{d}: \mathbb{Q} G \rightarrow \Sigma(d),
$$

where $\Sigma(d)$ is a \mathbb{Q}-algebra with the same description as $\mathbb{Q} G$ (above), but with ζ_{d} in place of a. As in [6], Section 7, there is a \mathbb{Q}-algebra isomorphism:

$$
\mathbb{Q} G \cong \bigoplus_{d \mid m} \Sigma(d)
$$

which is ψ_{d} in each d-component.
If \mathcal{D} is a set of positive divisors of m, let $O(\mathcal{D})$ denote the image of the projection:

$$
\mathbb{Z} G \rightarrow \bigoplus_{d \in \mathcal{D}} \Sigma(d)
$$

to \mathcal{D}-components. Then $O(\mathcal{D})$ is the twisted group ring

$$
\mathbb{Z}\left[\alpha_{\mathcal{D}}\right] \circ\langle b\rangle=\mathbb{Z}\left[\alpha_{\mathcal{D}}\right] \oplus \mathbb{Z}\left[\alpha_{\mathcal{D}}\right] b \oplus \cdots \oplus \mathbb{Z}\left[\alpha_{\mathcal{D}}\right] b^{s-1}
$$

where the minimal polynomial of $\alpha_{\mathcal{D}}$ over \mathbb{Q} is

$$
\prod_{d \in \mathcal{D}} \Phi_{d}(x)
$$

($\Phi_{d}(x)$ being the minimal polynomial of ζ_{d} over $\left.\mathbb{Q}\right)$, and where

$$
b \alpha_{\mathcal{D}}=\alpha_{\mathscr{D}}^{q} b \text { and } b^{s}=1
$$

The Mayer-Vietoris sequences needed to study $K_{n}(\mathbb{Z} G)$ are based on the fiber squares:

in which p is a prime factor of m, \mathcal{D} is a non-empty set of positive factors of $m / p, \pi_{\mathcal{D}}$ and $\pi_{p \mathcal{D}}$ are projections, and the right vertical map can be defined by commutativity of the square. In this paper the birelative groups $B_{2}(\mathcal{D}, p \mathcal{D}):=K_{2}(R ; I, J)$ are computed, where $R=\mathcal{O}(\mathcal{D} \cup p \mathcal{D}), I=\operatorname{ker} \pi_{\mathcal{D}}$ and $J=\operatorname{ker} \pi_{p \mathcal{D}}$.
2. Reduction to single divisors. In [1] and [3] the birelative $K_{2}(R ; I, J)$ was determined to be

$$
I / I^{2} \otimes_{R^{e}} J / J^{2}
$$

where R^{e} is additively the same as $R \otimes_{\mathbb{Z}} R$, and its multiplication is extended \mathbb{Z}-bilinearly from

$$
\left(x_{1} \otimes y_{1}\right)\left(x_{2} \otimes y_{2}\right)=\left(x_{1} x_{2} \otimes y_{2} y_{1}\right)
$$

for all $x_{t}, y_{t} \in R$. The R^{e}-module actions on J and I are

$$
(x \otimes y) \cdot m=x m y, \quad m \cdot(x \otimes y)=y m x,
$$

respectively. In [5] it is proved that:

THEOREM 2.1. In the notation used in the square (1.1), the projections $O(\mathcal{D} \cup p \mathcal{D}) \longrightarrow O(d, p d)$ applied to I and J induce an isomorphism:

$$
B_{2}(\mathcal{D}, p \mathcal{D}) \cong \bigoplus_{d \in \mathcal{D}} B_{2}(d, p d)
$$

3. Generators and relations for $B_{2}(d, p d)$. It only remains to compute

$$
B_{2}(d, p d)=I / I^{2} \otimes_{R^{e}} J / J^{2}
$$

where I and J are the kernels indicated in the diagram with short exact rows and columns:

where $d \in \mathcal{D}$, the minimal polynomial of α over \mathbb{Q} is $\Phi_{d}(x) \Phi_{p d}(x)$, and $R=\mathbb{Z}[\alpha] \circ\langle b\rangle$.
The following facts were established in [5]: In $\mathbb{Z}[\alpha] \circ\langle b\rangle, I$ (resp. J) is both a principal left and principal right ideal generated by $\Phi_{d}(\alpha)$ (resp. $\left.\Phi_{p d}(\alpha)\right)$. Then both $\Phi_{d}(\alpha)$ and p annihilate both I / I^{2} and J / J^{2}; so the multiplication actions of $\mathbb{Z}[\alpha] \circ\langle b\rangle$ on these quotients factor through $\mathbb{F}_{p}\left[\zeta_{d}\right] \circ\langle b\rangle$. Further, with the notation

$$
(x, y):=\left(x \cdot \overline{\Phi_{d}(\alpha)} \otimes y \cdot \overline{\Phi_{p d}(\alpha)}\right)
$$

for $x, y \in \mathbb{F}_{p}\left[\zeta_{d}\right] \circ\langle b\rangle$, the \mathbb{F}_{p}-vector space $I / I^{2} \otimes_{\mathbb{Z}} J / J^{2}$ has \mathbb{F}_{p}-basis:

$$
\left\{\left(\zeta^{i} b^{k}, \zeta^{j} b^{\ell}\right): 0 \leq i, j<\varphi(d), 0 \leq k, \ell<s\right\}
$$

where $\zeta=\zeta_{d}$. The left and right actions of $\mathbb{F}_{p}[\zeta] \circ\langle b\rangle$ on I / I^{2} and J / J^{2} may differ due to noncommutativity of G :

$$
b a=a^{q} b \text { and } a b=b a^{r}
$$

for positive integers q and r with $q r \equiv 1(\bmod m)$. In detail, the quotients

$$
\sigma(x)=\frac{\Phi_{d}\left(x^{r}\right)}{\Phi_{d}(x)} \text { and } \tau(x)=\frac{\Phi_{p d}\left(x^{r}\right)}{\Phi_{p d}(x)}
$$

are in $\mathbb{Z}[x]$, and the action of b satisfies:

$$
\begin{gathered}
\boldsymbol{\Phi}_{d}(\alpha) \cdot b=b \cdot \boldsymbol{\Phi}_{d}\left(\alpha^{r}\right)=b \sigma(\zeta) \cdot \boldsymbol{\Phi}_{d}(\alpha) \\
\boldsymbol{\Phi}_{p d}(\alpha) \cdot b=b \cdot \boldsymbol{\Phi}_{p d}\left(\alpha^{r}\right)=b \tau(\zeta) \cdot \boldsymbol{\Phi}_{p d}(\alpha)
\end{gathered}
$$

Therefore, to pass from $I / I^{2} \otimes_{\mathbb{Z}} J / J^{2}$ to $I / I^{2} \otimes_{R^{e}} J / J^{2}$, mod out the additional relators:

1. $(\zeta x, y)-(x, y \zeta)$
2. $(x \zeta, y)-(x, \zeta y)$
3. $(b x, y)-(x, y b \tau(\zeta))$
4. $(x b \sigma(\zeta), y)-(x, b y)$.

With these it is easy to see that the \mathbb{F}_{p}-vector space $B_{2}(d, p d)$ is spanned by the elements: ($1, \zeta^{J} b^{\ell}$) with $0 \leq j<\varphi(d)$, and $0 \leq \ell<s$.
4. A modulo p cyclotomic unit. In order to compute $B_{2}(d, p d)$ from its presentation, it is helpful to produce a certain unit in $\mathbb{F}_{p}\left[\zeta_{d}\right]$ related to the polynomials $\sigma(x)$ and $\tau(x)$ by a formula resembling Hilbert's Theorem 90 . For this section, suppose d is any square-free integer with $d>1$ and p is a prime not dividing d. Then $d=q_{1} q_{2} \cdots q_{n}$ for n distinct primes q_{l}. For each j with $0 \leq j \leq n$, let $D(j)$ denote the set of all products $x_{1} \cdots x_{J}$ where x_{1}, \ldots, x_{J} are distinct primes chosen from $\left\{q_{1}, \ldots, q_{n}\right\}$. Here $D(0)=\{1\}$. Define the polynomials:

$$
v_{J}(x)=\prod_{e \in D(J)}\left(x^{p d / e}-1\right)
$$

in $\mathbb{Z}[x]$.
LEmmA 4.1. In $\mathbb{Z}[x]$,

$$
\Phi_{p d}(x) \Phi_{d}(x)=\frac{\Pi_{\text {jeven }} v_{J}(x)}{\Pi_{j \text { odd }} v_{J}(x)}
$$

Proof. Suppose $f \in D(n-k)$ where $0 \leq k \leq n$; so d / f is a product of k primes. Then $\Phi_{f}(x)$ divides $x^{p d / e}-1$ if and only if $\Phi_{p f}(x)$ divides $x^{p d / e}-1$, and these are true if and only if e divides d / f. So the number of $e \in D(j)$ where these equivalent conditions hold is the binomial coefficient $\binom{k}{\jmath}$. Thus there are $\binom{k}{l}$ occurrences of both $\Phi_{f}(x)$ and $\Phi_{p f}(x)$ in the factorization of $v_{j}(x)$ into irreducibles. Since

$$
(1-1)^{k}=\sum_{j \text { even }}\binom{k}{j}-\sum_{j \text { odd }}\binom{k}{j}
$$

both $\Phi_{f}(x)$ and $\Phi_{p f}(x)$ cancel out completely for $k \geq 1$, leaving only the product $\Phi_{p d}(x) \Phi_{d}(x)$ for $k=0$.

Now $v_{J}\left(\zeta_{d}\right)$ is a product of factors

$$
\zeta_{d}^{p d / e}-1=\zeta_{e}^{p}-1
$$

where $e \in D(j)$. So if $j>1$, then $e\left(=\right.$ the order of $\left.\zeta_{e}^{p}\right)$ is composite, and hence $v_{j}\left(\zeta_{d}\right)$ is a unit in $\mathbb{Z}\left[\zeta_{d}\right]$. On the other hand, if $j=1$, then $e=q_{l}$ for some i, and $\zeta_{e}^{p}-1$ divides q_{t} in $\mathbb{Z}\left[\zeta_{d}\right]$; so, since p does not divide $d, v_{1}\left(\zeta_{d}\right)$ is a unit in $\mathbb{F}_{p}\left[\zeta_{d}\right]$. Define:

$$
u=\left[\prod_{\substack{\text { odd } \\ J \geq 1}} v_{J}\left(\zeta_{d}\right)\right]^{-1}\left[\prod_{\substack{\text { jeven } \\ J \geq 1}} v_{j}\left(\zeta_{d}\right)\right]
$$

in $\mathbb{F}_{p}\left[\zeta_{d}\right]^{*}$.

PROPOSITION 4.2. Suppose q and r are positive integers with $q r \equiv 1(\bmod p d), \theta$ is the ring automorphism of $\mathbb{F}_{p}\left[\zeta_{d}\right]$ with $\theta\left(\zeta_{d}\right)=\zeta_{d}^{r}$, and

$$
\sigma(x)=\frac{\Phi_{d}\left(x^{r}\right)}{\Phi_{d}(x)}, \quad \tau(x)=\frac{\Phi_{p d}\left(x^{r}\right)}{\Phi_{p d}(x)}
$$

are expressed as polynomials in $\mathbb{Z}[x]$. Then in $\mathbb{F}_{p}\left[\zeta_{d}\right]$,

$$
\sigma\left(\zeta_{d}\right) \tau\left(\zeta_{d}\right)=r \theta(u) u^{-1}
$$

PRoof.

$$
\prod_{j \text { odd }} v_{j}\left(x^{r}\right) \prod_{\substack{\text { jeven } \\ j>0}} v_{j}(x) \sigma(x) \tau(x)=\frac{x^{r p d}-1}{x^{p d}-1} \prod_{\text {oodd }} v_{J}(x) \prod_{\substack{\text { even } \\ j>0}} v_{J}\left(x^{r}\right),
$$

and

$$
\frac{x^{r p d}-1}{x^{p d}-1}=1+x^{p d}+\cdots+x^{(r-1) p d}
$$

Evaluate at ζ_{d} and reduce $\bmod p$ to get the desired equation.
5. Computations. Define m, s and q as in Section $1, d, p, r \sigma(x), \tau(x)$ and the pairing (x, y) as in Section 3, and u and θ as in Section 4. So $m s$ is square-free, p is a prime factor of m, d divides m / p, and in the group $G, b a b^{-1}=a^{q}$ and $b^{s}=1$; so $q^{s} \equiv 1(\bmod m)$. Similarly $b^{-1} a b=a^{r}$; so $r^{s} \equiv 1(\bmod m)$, and $q r \equiv 1(\bmod m)$.

In $(\mathbb{Z} / d \mathbb{Z})^{*}, q$ and r represent inverse elements of order t dividing s.
THEOREM 5.1. The birelative K_{2}-group $B_{2}(d, p d)$ is an \mathbb{F}_{p}-vector space.
a) If p does not divide $r^{t}-1$, then $B_{2}(d, p d)=0$.
b) If p divides $r^{t}-1$, then $B_{2}(d, p d)$ has an \mathbb{F}_{p}-basis:

$$
\left\{\left(1, u^{-1} \zeta^{\jmath} b^{\ell}\right): j \in J, \ell \in t \mathbb{Z}, 0 \leq \ell<s\right\}
$$

where J is any set consisting of one integer from each coset of $\langle r\rangle$ in $(\mathbb{Z} / d \mathbb{Z})^{*}$. The rank of $B_{2}(d, p d)$ in this case is $\varphi(d) s / t^{2}$.

Proof. If $f(x) \in \mathbb{Z}[x]$ and $n \geq 0$, define $f_{n}(x)$ by:

$$
f_{n}(x)=\left\{\begin{array}{ll}
f(x) f\left(x^{r}\right) \cdots f\left(x^{n^{n}}\right), & \text { if } k \geq 1 \\
1, & \text { if } k=0
\end{array} .\right.
$$

Then iterating relations 3 and 4 of Section 3 , in $B_{2}(d, p d)$:

$$
\begin{aligned}
& \left(b^{n} a^{l} b^{k}, a^{l} b^{\ell}\right)=\left(a^{l} b^{k}, a^{l} b^{\ell+n} \tau_{n}(\zeta)\right) \\
& \left(a^{l} b^{k}, b^{n} a^{l} b^{\ell}\right)=\left(a^{l} b^{k+n} \sigma_{n}(\zeta), a^{l} b^{\ell}\right)
\end{aligned}
$$

Note that since $r^{t} \equiv 1(\bmod d), b^{t}$ commutes with $\zeta\left(=\zeta_{d}\right)$ in $\mathbb{Z}[\zeta] \circ\langle b\rangle$. Also note that from Proposition 4.2,

$$
\sigma_{t}(\zeta) \tau_{t}(\zeta)=r^{t} .
$$

So in $B_{2}(d, p d)$,

$$
\begin{aligned}
\left(1, \zeta^{\zeta} b^{\ell}\right) & =\left(b^{t} b^{-t}, \zeta^{J} b^{\ell}\right) \\
& =\left(b^{-t}, \zeta^{\jmath} b^{\ell+t} \tau_{t}(\zeta)\right) \\
& =\left(b^{-t} b^{t} \sigma_{t}(\zeta), \zeta^{l} b^{\ell} \tau_{t}(\zeta)\right) \\
& =\left(\tau_{t}(\zeta) \sigma_{t}(\zeta), \zeta^{J} b^{\ell}\right) \\
& =\left(r^{t}, \zeta^{l} b^{\ell}\right) \\
& =r^{t}\left(1, \zeta^{J} b^{\ell}\right) .
\end{aligned}
$$

So $\left(1-r^{t}\right)\left(1, \zeta^{l} b^{\ell}\right)=0$ for all $j, \ell \in \mathbb{Z}$. Thus if p does not divide $r^{t}-1$, then every generator ($1, \zeta^{j} b^{\ell}$) of $B_{2}(d, p d)$ vanishes, proving part (a).

By relations 1 and 2 of Section 3, in $B_{2}(d, p d)$, for any integers j and ℓ,

$$
\begin{aligned}
\left(1, \zeta^{J} b^{\ell}\right) & =\left(\zeta, \zeta^{J-1} b^{\ell}\right) \\
& =\left(1, \zeta^{J+q^{\ell}-1} b^{\ell}\right)
\end{aligned}
$$

So one can add to j any element of

$$
d \mathbb{Z}+\left(q^{\ell}-1\right) \mathbb{Z}
$$

with no effect. In particular, if v is the greatest common divisor of d and $q^{\ell}-1$, then

$$
\begin{aligned}
\left(\zeta^{\nu}-1, \zeta^{\zeta} b^{\ell}\right) & =\left(1, \zeta^{\prime+\nu} b^{\ell}\right)-\left(1, \zeta^{\zeta} b^{\ell}\right) \\
& =0 .
\end{aligned}
$$

If $\ell \notin t \mathbb{Z}$, then d does not divide $q^{\ell}-1$, and $v<d$. If d / v is composite, $\zeta^{v}-1$ is a unit in $\mathbb{Z}[\zeta]$. If d / v is prime, $\zeta^{\nu}-1$ divides that prime in $\mathbb{Z}[\zeta]$ and so becomes a unit in $\mathbb{F}_{p}[\zeta]$. Either way there exist $x, y \in \mathbb{Z}[\zeta]$ with

$$
\left(\zeta^{v}-1\right) x=1+p y
$$

So in $B_{2}(d, p d)$,

$$
\begin{aligned}
\left(1, \zeta^{\zeta} b^{\ell}\right) & =\left(\left(\zeta^{\nu}-1\right) x-p y, \zeta^{l} b^{\ell}\right) \\
& =\left(\zeta^{v}-1, x \zeta^{\zeta} b^{\ell}\right) \\
& =0 .
\end{aligned}
$$

Thus $B_{2}(d, p d)$ is spanned by the elements $\left(1, \zeta^{j} b^{\ell}\right)$ with $0 \leq j<\varphi(d), 0 \leq \ell<s$ and $\ell \in t \mathbb{Z}$. In detail,

$$
\left(\zeta^{l} b^{k}, \zeta^{\zeta} b^{\ell}\right)= \begin{cases}\left(1, \zeta^{j+l q^{i}} \tau_{k}(\zeta) b^{k+\ell},\right. & \text { if } k+\ell \in t \mathbb{Z} \\ 0, & \text { if } k+\ell \notin t \mathbb{Z}\end{cases}
$$

by the relations 1 and 3 , and the fact that $b^{k+\ell}$ commutes with ζ if $k+\ell \in t \mathbb{Z}$.
Now if $\ell \in t \mathbb{Z}$ and $j \in \mathbb{Z}$, in $B_{2}(d, p d)$:

$$
\begin{aligned}
\left(1, \zeta^{l} b^{\ell}\right) & =\left(b^{s}, \zeta^{\zeta} b^{\ell}\right) \\
& =\left(b^{s-1}, \zeta^{l} b^{\ell+1} \tau(\zeta)\right) \\
& =\left(b^{s} \sigma(\zeta), \zeta^{r} b^{\ell} \tau(\zeta)\right) \\
& =\left(1, \sigma(\zeta) \tau(\zeta) \zeta^{j^{r}} b^{\ell}\right) .
\end{aligned}
$$

If $C=\left\langle b^{t}\right\rangle$, which is the subgroup of $\langle b\rangle$ consisting of those elements commuting with ζ, the group ring $\mathbb{F}_{p}[\zeta] C$ is the center of $\mathbb{F}_{p}[\zeta] \circ\langle b\rangle$. Then there is an \mathbb{F}_{p}-linear surjective map

$$
f: \mathbb{F}_{p}[\zeta] C \rightarrow B_{2}(d, p d),
$$

with $f\left(\zeta^{\prime} b^{\ell}\right)=\left(1, \zeta^{\zeta} b^{\ell}\right)$, and the kernel of f contains the \mathbb{F}_{p}-linear span R_{1} of the elements:

$$
\left(\zeta^{J}-\sigma(\zeta) \tau(\zeta) \zeta^{r}\right) b^{\ell}
$$

with $j \in \mathbb{Z}, \ell \in t \mathbb{Z}$.
CLAIM. The induced \mathbb{F}_{p}-linear map

$$
\bar{f}: \mathbb{F}_{p}[\zeta] C / R_{1} \rightarrow B_{2}(d, p d)
$$

is an isomorphism.
To construct an inverse to \bar{f}, begin by considering the \mathbb{F}_{p}-subspace V of $I / I^{2} \otimes_{Z} J / J^{2}$ spanned by the elements $\left(1, \zeta^{\jmath} b^{\ell}\right)$ for $0 \leq j<\varphi(d), 0 \leq \ell<s$ and $\ell \in t \mathbb{Z}$. This V contains the elements $\left(1, \zeta^{j} b^{\ell}\right)$ for all $j \in \mathbb{Z}$ and $\ell \in t \mathbb{Z}$, but those elements restricted as above are \mathbb{F}_{p}-linearly independent. Define

$$
F_{1}: I / I^{2} \otimes_{Z} J / J^{2} \rightarrow V
$$

to be the \mathbb{F}_{p}-linear map with

$$
F_{1}\left(\left(\zeta^{l} b^{k}, \zeta^{l} b^{\ell}\right)\right)= \begin{cases}\left(1, \zeta^{j+i q^{\ell}} \tau_{k}(\zeta) b^{k+\ell},\right. & \text { if } k+\ell \in t \mathbb{Z} \\ 0 & \text { if } k+\ell \notin t \mathbb{Z}\end{cases}
$$

for $0 \leq i, j<\varphi(d)$ and $0 \leq k, \ell<s$.
This description of the effect of F_{1} on $\left(\zeta^{l} b^{k}, \zeta^{\zeta} b^{\ell}\right)$ holds even if we do not restrict the integers i, j, k and ℓ, except to require $k \geq 0$, so that $\tau_{k}(x)$ is defined. To see that i and j need not be restricted, note that the pairing (x, y) is bilinear and there is a ring automorphism of $\mathbb{Z}[\zeta]$ taking

$$
\zeta \mapsto \zeta^{q^{e}} .
$$

To lift the restriction on k, note that the list

$$
\tau(\zeta), \tau\left(\zeta^{r}\right), \tau\left(\zeta^{r^{2}}\right), \ldots
$$

is periodic with a period of length s. So the product of any s consecutive terms is

$$
\tau_{s}(\zeta)=\frac{\Phi_{p d}\left(\zeta^{r^{s}}\right)}{\Phi_{p d}(\zeta)}=1
$$

since $r^{s} \equiv 1(\bmod d)$. So $\tau_{v}(\zeta)=\tau_{w}(\zeta)$ whenever $v \equiv w(\bmod s)$.
The map F_{1} kills the relators of type 1,2 and 3 from Section 3 ; but F_{1} of the fourth type of relator is an \mathbb{F}_{p}-linear combination of elements:

$$
\left(1, \zeta^{\zeta} b^{\ell}\right)-\left(1, \sigma(\zeta) \tau(\zeta) \zeta^{\dagger r} b^{\ell}\right)
$$

where $j \in \mathbb{Z}$ and $\ell \in t \mathbb{Z}$. Define

$$
F_{2}: V \rightarrow \mathbb{F}_{p}[\zeta] C
$$

to be the \mathbb{F}_{p}-linear map with

$$
F_{2}\left(\left(1, \zeta^{J} b^{\ell}\right)\right)=\zeta^{\zeta} b^{\ell}
$$

for $0 \leq j<\varphi(d), 0 \leq \ell<s$ and $\ell \in t \mathbb{Z}$; then the same formula holds for all $j \in \mathbb{Z}$ and $\ell \in t \mathbb{Z}$. Then define

$$
F_{3}: \mathbb{F}_{p}[\zeta] C \rightarrow \mathbb{F}_{p}[\zeta] C / R_{1}
$$

to be the canonical map. The composite $F_{3} F_{2} F_{1}$ kills all the relators for $B_{2}(d, p d)$; so it induces an \mathbb{F}_{p}-linear map

$$
g: B_{2}(d, p d) \rightarrow \mathbb{F}_{p}[\zeta] C / R_{1}
$$

taking $\left(1, \zeta^{J} b^{\ell}\right)$ to the coset of $\zeta^{J} b^{\ell}$ for all $j \in \mathbb{Z}$ and $\ell \in t \mathbb{Z}$. Thus the composite $g \bar{f}$ is the identity on $\mathbb{F}_{p}[\zeta] C / R_{1}$. Since \bar{f} is surjective, $\bar{f} g$ is also the identity on $B_{2}(d, p d)$, proving the claim.

It only remains to compute $\mathbb{F}_{p}[\zeta] C / R_{1}$. Recall that R_{1} is spanned by the elements:

$$
\left[\zeta^{J}-\sigma(\zeta) \tau(\zeta) \theta\left(\zeta^{J}\right)\right] b^{\ell}
$$

with $j \in \mathbb{Z}$ and $\ell \in t \mathbb{Z}$. Define R_{2} to be the \mathbb{F}_{p}-linear span of the elements:

$$
\left[\zeta^{\prime}-r \theta\left(\zeta^{J}\right)\right] b^{\ell}
$$

for $j \in \mathbb{Z}$ and $\ell \in t \mathbb{Z}$. That is, if we extend θ to an automorphism of $\mathbb{F}_{p}[\zeta] C$ fixing the elements of C, R_{2} is the image of of the linear operator $1-r \theta$. The unit u of Section 4 was chosen so that, by Proposition 4.2,

$$
\sigma(\zeta) \tau(\zeta)=r \theta(u) u^{-1} .
$$

Hence $u R_{1} \subseteq R_{2}$ and $u^{-1} R_{2} \subseteq R_{1}$. So left multiplication by u defines an \mathbb{F}_{p}-linear isomorphism:

$$
\mathbb{F}_{p}[\zeta] C / R_{1} \cong \mathbb{F}_{p}[\zeta] C / R_{2} .
$$

Lemma 5.2. If n is a square-free positive integer, the primitive n-th roots of unity form a \mathbb{Z}-basis of $\mathbb{Z}\left[\zeta_{n}\right]$.

Proof. The multiplicativity of the Euler function φ has the following generalization: If U_{n} denotes the multiplicative group of primitive n-th roots of unity in \mathbb{C}, then for relatively prime positive integers c and $d, U_{c d}=U_{c} U_{d}$.

For a prime p,

$$
U_{p}=\zeta_{p}\left\{1, \zeta_{p}, \zeta_{p}^{2}, \ldots, \zeta_{p}^{p-2}\right\}
$$

is a \mathbb{Z}-basis of $\mathbb{Z}\left[\zeta_{p}\right]$. Now the fact that U_{n} spans $\mathbb{Z}\left[\zeta_{n}\right]$ over \mathbb{Z} (for square-free n) follows by induction on n.

Define J to be a full set of representatives of the cosets of $\langle r\rangle$ in $(\mathbb{Z} / d \mathbb{Z})^{*}$. Then J has $\varphi(d) / t$ elements. The proof of Theorem 5.1, part (b), is completed if it is shown that

$$
\left\{\overline{\rho^{j b^{\ell}}}: j \in J, \ell \in t \mathbb{Z}, 0 \leq \ell<s\right\}
$$

is an \mathbb{F}_{p}-basis of $\mathbb{F}_{p}[\zeta] C / R_{2}$.
Modulo R_{2},

$$
\zeta^{j} b^{\ell} \equiv r \zeta^{r j} b^{\ell} \equiv r r \zeta^{r r j} b^{\ell} \equiv \cdots \equiv r^{t} \zeta^{r^{r-1}} b^{\ell} .
$$

Since each power of r is nonzero $\bmod p$, each element

$$
\overline{\zeta^{r_{j}} b^{\ell}}
$$

is a scalar multiple of $\overline{\zeta^{j} b^{\ell}}$ in $\mathbb{F}_{p}[\zeta] C / R_{2}$. So the proposed basis spans $\mathbb{F}_{p}[\zeta] C / R_{2}$.
To simplify notation, let K denote $(\mathbb{Z} / d \mathbb{Z})^{*}$, and let L denote the set of $\ell \in t \mathbb{Z}$ with $0 \leq \ell<s$. Suppose

$$
\sum_{\substack{j \in J \\ \ell \in L}} c(j, \ell) \overline{S^{j} b^{\ell}}=0
$$

for some coefficients $c(j, \ell) \in \mathbb{F}_{p}$. By Lemma 5.2,

$$
\left\{\zeta^{k} b^{\ell}: k \in K, \ell \in L\right\}
$$

is an \mathbb{F}_{p}-basis of $\mathbb{F}_{p}[\zeta] C$. So $1-r \theta$ of this basis is a spanning set for R_{2}. Thus there are $d(k, \ell) \in \mathbb{F}_{p}$ with

$$
\begin{aligned}
\sum_{\substack{j \in J \\
\ell \in L}} c(j, \ell) \zeta^{j} b^{\ell} & =\sum_{\substack{k \in K \\
\ell \in L}} d(k, \ell)(1-r \theta) \zeta^{k} b^{\ell} \\
& =\sum_{\substack{k \in K \\
\ell \in L}}(d(k, \ell)-r d(q k, \ell)) \zeta^{k} b^{\ell} .
\end{aligned}
$$

Comparing coefficients, if $k \notin J$,

$$
d(k, \ell)=r d(q k, \ell),
$$

so for each $j \in J$,

$$
d(q j, \ell)=r d\left(q^{2} j, \ell\right)=r^{2} d\left(q^{3} j, \ell\right)=\cdots=r^{t-1} d(j, \ell)
$$

since $q^{t} \equiv 1(\bmod d)$. And again comparing coefficients, for each $j \in J$,

$$
\begin{aligned}
c(j, \ell) & =d(j, \ell)-r d(q j, \ell) \\
& =d(j, \ell)-r r^{q-1} d(j, \ell) \\
& =0,
\end{aligned}
$$

since in this part (b), we have assumed $r^{t} \equiv 1(\bmod p)$.
Note. When $p d$ divides $r-1$, so that $t=1, \theta$ has no effect, and $\sigma(\zeta), \tau(\zeta)=1$, then $R_{1}=R_{2}=0$ and there is no need for u. In this case $B_{2}(d, p d) \cong \mathbb{F}_{p}[\zeta] \circ\langle b\rangle$, with \mathbb{F}_{p}-basis:

$$
\left\{\left(1, \zeta^{\prime} b^{\ell}\right): 0 \leq j<\varphi(d), 0 \leq \ell<s\right\} .
$$

6. Comments on computation of $K_{n}(\mathbb{Z} G)$. For those groups G of square-free order with presentations

$$
\left(a, b: a^{m}=1, b^{s}=1, b a b^{-1}=a^{q}\right)
$$

and those d dividing m where the order of q in $(\mathbb{Z} / d \mathbb{Z})^{*}$ is s, the K_{3} of the rings $O(d)$ and $O(d) / p$ (where $p d$ divides m) have been determined in [5]. In the special case of dihedral groups of square-free order $(s=2, q=m-1)$ those computations, and birelative K_{2} computations led to estimates on $K_{3}(\mathbb{Z} G)$ and $S K_{2}(\mathbb{Z} G)$ (see [5], Section 9). Now that the birelative K_{2} computations have been extended to all groups of square-free order, MayerVietoris sequences should lead to information on $K_{3}(\mathbb{Z} G)$ and $S K_{2}(\mathbb{Z} G)$ for a wider class of square-free order groups G.

Unfortunately, when the center of $O(d)$ is totally imaginary, $K_{3}(O(d))$ has just enough copies of \mathbb{Z} to map onto the next terms

$$
K_{3}(O(d) / p) \oplus B_{2}(d, p d)
$$

in the Mayer-Vietoris sequence. So such information must await a closer analysis of the maps in the sequence. The determination of a basis for $B_{2}(d, p d)$ helps set the stage for this next step.

References

1. D Guin-Waléry and J-L Loday, Obstruction a l'excisıon en K-theorte algebrique In Algebratc K-Theory, Lect Notes Math 854, Springer-Verlag, 1981, 179-216
2. M Hall, The Theory of Groups, Macmillan, New York, 1959
3. F Keune, Double relative K-theory and the relative K_{3}, J Pure Appl Algebrd 20(1981), 39-53
4. R C Laubenbacher, Generalized Mayer-Vietoris sequences in algebraic K-theory, J Pure Appl Algebra 51(1988), 175-192
5. R C Laubenbacher and B A Magurn, $S K_{2}$ and K_{3} of dihedral groups, Canad J Math (3) 44(1992), 591-623
6. B A Magurn, $S K_{1}$ of dihedral groups, J Algebra (2) 51(1978), 399-415

Department of Mathemattcs and Statistics
Mıamı University
Oxford Ohio 45056
USA

