DEFERRED CORRECTIONS FOR EQUATIONS OF THE SECOND KIND

LIN QUN

(Received 2 September 1980)
(Revised 14 November 1980)

Abstract

A deferred correction procedure for the approximate solution of the second-kind equation is introduced, compared with an extrapolation procedure, and illustrated for integral and differential equations.

1. Degenerate kernel method

Consider the second-kind equation

$$
\begin{equation*}
y=f+k y \tag{1}
\end{equation*}
$$

where f and y belong to a Banach space E, and k is a compact linear operator in E. It is assumed that 1 is not an eigenvalue of k, in which case a unique solution y exists for any $f \in E$. An example of such an equation is the integral equation

$$
\begin{equation*}
y(t)=f(t)+\int_{0}^{1} K(t, s) y(s) d s \tag{2}
\end{equation*}
$$

considered in the Banach space C of continuous functions.
The exact equation (1) is approximated by

$$
\begin{equation*}
y_{n}=p_{n} f+p_{n} k_{n} y_{n} \tag{3}
\end{equation*}
$$

where k_{n} is a bounded linear operator in E, and p_{n} is a bounded linear projection, with the property $\left\|k-p_{n} k_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. It then follows that the inverse $\left(I-p_{n} k_{n}\right)^{-1}$ exists as a bounded linear operator in E if n is sufficiently large. Moreover

$$
\left\|y-y_{n}\right\| \leqslant O\left(\left\|k y-p_{n} k_{n} y\right\|+\left\|f-p_{n} f\right\|\right)
$$

An example of (3) is the degenerate kernel method

$$
\begin{equation*}
y_{n}\left(t_{i}\right)=f\left(t_{i}\right)+\sum_{j=0}^{n} y_{n}\left(t_{j}\right) \sum_{k=0}^{n} K\left(t_{i}, t_{k}\right) \int_{0}^{1} e_{k} e_{j} d s, \quad i=0, \ldots, n \tag{4}
\end{equation*}
$$

where $t_{i}=i / n$, the basis e_{i} is a piecewise linear function which equals one at t_{i} and zero at $t_{j}(j \neq i)$, and

$$
\begin{equation*}
p_{n} f(t)=\sum_{i=0}^{n} f\left(t_{i}\right) e_{i}(t), \quad k_{n} y(t)=\int_{0}^{1} \sum_{k=0}^{n} K\left(t, t_{k}\right) e_{k}(s) y(s) d s \tag{5}
\end{equation*}
$$

Then, if $K \in C^{4}$, we have

$$
\begin{equation*}
\left\|k-p_{n} k_{n}\right\|=O\left(n^{-2}\right), \quad\left\|\left(I-p_{n}\right)\left(k-k_{n}\right)\right\|=O\left(n^{-4}\right) \tag{6}
\end{equation*}
$$

We consider here the natural iteration

$$
\begin{equation*}
\bar{y}_{n}=f+k_{n} y_{n} \tag{7}
\end{equation*}
$$

which has been observed in [4] and has the property $p_{n} \bar{y}_{n}=y_{n}$ as in [2], [3], [8]. Then introduce a correction term x_{n} defined from y_{n} by

$$
\begin{equation*}
x_{n}=p_{n} r_{n}+p_{n} k_{n} x_{n}, \quad r_{n}=k_{n} \bar{y}_{n}+k y_{n}+2 f-2 y_{n} \tag{8}
\end{equation*}
$$

It should be emphasized that for the degenerate kernel operator, (5),

$$
k_{n} \bar{y}_{n}(t)=k_{n} f(t)+\sum_{k=0}^{n} \sum_{j=0}^{n} K\left(t, t_{k}\right) \int_{0}^{1} K\left(s, t_{j}\right) e_{k}(s) d s \int_{0}^{1} e_{j} y_{n} d s
$$

Direct calculation leads to

Theorem 1. If y_{n}, \bar{y}_{n} and x_{n} satisfy (3), (7) and (8), then

$$
\left(I-p_{n} k_{n}\right)\left(y-\bar{y}_{n}-x_{n}\right)=\left(k-p_{n} k_{n}\right)\left(y-y_{n}\right)+\left(I-p_{n}\right)\left(k-k_{n}\right) y_{n}
$$

Corollary 2. for the degenerate kernel method (4) of integral equation (2) we have, if $K \in C^{4}$,

$$
\left\|y-\bar{y}_{n}-x_{n}\right\| \leqslant O\left(n^{-2}\left\|y-y_{n}\right\|\right)
$$

It is worth stating the following extrapolation result, which can be shown by a direct calculation.

Theorem 3. If $\bar{y}_{\boldsymbol{n}}$ satisfies (7), then

$$
\begin{aligned}
(I-k)\left(3 y-4 \bar{y}_{2 n}+\bar{y}_{n}\right)= & k\left(I-p_{n}\right)\left(\bar{y}_{2 n}-\bar{y}_{n}\right)+k\left(3 I-4 p_{2 n}+p_{n}\right) \bar{y}_{2 n} \\
& +\left(k-k_{n}\right)\left(y_{2 n}-y_{n}\right)+\left(3 k-4 k_{2 n}+k_{n}\right) y_{2 n} .
\end{aligned}
$$

Corollary 4. For the degenerate kernel method (4) we have, if $K(t, s) y(s) \in$ C^{4},

$$
\left\|3 y-4 \bar{y}_{2 n}+\bar{y}_{n}\right\|_{c}<O\left(n^{-4}\right)
$$

We remark that the general theory for the corrections and extrapolations due to Stetter [9], Pereyra [6] and Baker [1] are based on the asymptotic expansion argument which requires higher regularity on K and y.

2. Projection-type method

The usual projection-type method takes $k_{n}=k$ in (3). Then the theorems 1 and 3 reduce to

Theorem 5. If

$$
\begin{gather*}
y_{n}=p_{n} f+p_{n} k y_{n}, \quad \bar{y}_{n}=f+k y_{n}, \tag{9}\\
x_{n}=p_{n} k\left(\bar{y}_{n}-y_{n}\right)+p_{n} k x_{n}, \tag{10}
\end{gather*}
$$

then

$$
\left(I-p_{n} k\right)\left(y-\bar{y}_{n}-x_{n}\right)=\left(I-p_{n}\right) k\left(y-y_{n}\right) .
$$

Theorem 6 [5]. If y_{n} and \bar{y}_{n} satisfy (9), then $(I-k)\left(3 y-4 \bar{y}_{2 n}+\bar{y}_{n}\right)=$ $k\left(I-p_{n}\right) k\left(y_{2 n}-y_{n}\right)+k\left(3 I-4 p_{2 n}+p_{n}\right) \bar{y}_{2 n}$.

We call \bar{y}_{n} the iterated projection solution, which has been studied extensively and in depth in Sloan [7], Chandler [2], Chatelin [3], and particularly in [8].

To illustrate the applications of Theorems 5 and 6 we consider here the problem

$$
\begin{gather*}
-y^{\prime \prime}=f+a y \tag{11}\\
y(0)=y(1)=0 . \tag{12}
\end{gather*}
$$

Let \dot{S}_{n} be the piecewise linear function space satisfying (12) and y_{n} be the finite element solution in \dot{S}_{n} defined by

$$
\begin{equation*}
\left(y_{n}^{\prime}, w^{\prime}\right)=\left(f+a y_{n}, w\right) \text { for } w \in \dot{S}_{n} . \tag{13}
\end{equation*}
$$

Direct calculation shows

$$
y_{n}\left(t_{i}\right)=\int_{0}^{t_{1}} y_{n}^{\prime}(s)\left(1-t_{i}\right) d s-\int_{t_{i}}^{1} y_{n}^{\prime}(s) t_{i} d s=\int_{0}^{1} y_{n}^{\prime}(s) G^{\prime}\left(t_{i}, s\right) d s
$$

The Green function $G(t, s)$ of (11) and (12) at nodes $t_{i}(i=0, \ldots, n)$ form a basis in \dot{S}_{n}. Then (13) is equivalent to

$$
\begin{equation*}
y_{n}\left(t_{i}\right)=\int_{0}^{1}\left(f+a y_{n}\right) G\left(t_{i}, s\right) d s \tag{14}
\end{equation*}
$$

or (9), with

$$
k y=\int_{0}^{1} a(s) G(t, s) y(s) d s
$$

and p_{n} the interpolatory projection.

Let \bar{y}_{n} be the iterated finite element solution defined by

$$
\begin{equation*}
-\bar{y}_{n}^{\prime \prime}=f+a y_{n}, \quad \bar{y}_{n}(0)=\bar{y}_{n}(1)=0 . \tag{15}
\end{equation*}
$$

It follows from (14) that

$$
\bar{y}_{n}\left(t_{i}\right)=y_{n}\left(t_{i}\right) .
$$

Let x_{n} be the correction term defined from y_{n} by (10), or equivalently let x_{n} be the piecewise linear function that satisfies

$$
\begin{equation*}
\left(x_{n}^{\prime}, w^{\prime}\right)=\left(a\left(\bar{y}_{n}-y_{n}\right)+a x_{n}, w\right) \quad \text { for } w \in \dot{S}_{n} . \tag{16}
\end{equation*}
$$

Then Theorems 5 and 6 lead to
Corollary 7. If y_{n}, \bar{y}_{n} and x_{n} satisfy (13), (15) and (16), then

$$
\left\|y-\bar{y}_{n}-x_{n}\right\| \leqslant O\left(n^{-2}\left\|y-y_{n}\right\|\right) .
$$

Corollary 8. If y_{n} and \bar{y}_{n} satisfy (13) and (15), and $y \in C^{4}$, then

$$
\left\|3 y-4 \bar{y}_{2 n}+\bar{y}_{n}\right\| \leqslant O\left(n^{-4}\right) .
$$

References

[1] C. T. H. Baker, The numerical treatment of integral equations (Clarendon press, Oxford, 1978), Chapter 4.
[2] G. A. Chandler, Superconvergence of numerical solutions to second kind integral equations, (Ph. D. Thesis, ANU, Canberra, 1979).
[3] F. Chatelin, Linear spectral approximation in Banach spaces (in press), Chapter 3.
[4] Lin Qun, "Approximate method for operator equations", Acta Math. Sinica 9 (1959), 414.
[5] Lin Qun and Liu Jiaquan, "Extrapolation method for Fredholm integral equations with non-smooth kernels", to appear in Numer. Math.
[6] V. L. Pereyra, "On improving an approximate solution of a functional equation by deferred corrections", Numer. Math. 8 (1966), 376-391.
[7] I. H. Sloan, "Error analysis for a class of degenerate kernel methods", Numer. Math. 25 (1976), 231-238.
[8] I. H. Sloan, E. Noussair and B. J. Burn, "Projection method for equations of the second kind", J. Math. Anal. Appl. 69 (1979), 84-103.
[9] H. J. Stetter, "Asymptotic expansions for the error of discretization algorithms for nonlinear functional equations", Numer. Math. 7 (1965), 18-31.

Institute of Systems Science

Academia Sinica
Beijing
China

