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Eigenvalue Approach to Even Order System
Periodic Boundary Value Problems

Qingkai Kong and Min Wang

Abstract. We study an even order system boundary value problem with periodic boundary conditions.

By establishing the existence of a positive eigenvalue of an associated linear system Sturm–Liouville

problem, we obtain new conditions for the boundary value problem to have a positive solution. Our

major tools are the Krein–Rutman theorem for linear spectra and the fixed point index theory for

compact operators.

1 Introduction

In this paper, we consider the higher order system periodic boundary value problem

(BVP)

(AD2 + B)nu = W (t) f (t, u), t ∈ (0, ω),(1.1)

u(k)(0) = u(k)(ω), k = 0, 1, . . . , 2n − 1,(1.2)

with n ∈ N, D =
d
dt

, u = (u1, . . . , um)T ∈ R
m
+ (where R+ = [0,∞)); A =

diag(a1, . . . , am) and B = diag(b1, . . . , bm) with ai = ±1 and bi > 0, i = 1, . . . ,m;

W = (wi j)m×m ∈ C([0, ω],R
m×m
+ ) such that min1≤i≤m wi j(t) 6≡ 0 on [0, ω] for all

j = 1, . . . ,m; and f = ( f1, . . . , fm)T ∈ C([0, ω] × R
m
+ ,R

m
+ ).

The existence of positive solutions for BVPs has been a focus of research for several

decades. The main approaches are based on the fixed point theory on cones, the

upper and lower solution method, and the variational method. See, for example,

[3–5,8,10,12–14,18] for recent development in this area. Periodic BVPs have special

importance in theory and applications, and many results have been obtained on the

existence, multiplicity, and nonexistence of positive solutions. For the work on scalar

periodic BVPs, see [1, 6, 7, 11, 16, 19–22, 25, 26, 28, 30] and the references therein.

Systems of second order BVPs have also been investigated by researchers. For the

existence of solutions, see Mawhin and Willem [23], O’Regan and Wang [24], Wang

[27], and Zhao and Wu [31].

Recently, the authors investigated the BVP (1.1), (1.2) in [17]. A series of criteria

on the existence, multiplicity, and nonexistence of positive solutions of BVP (1.1),

(1.2) were obtained. In particular, Theorem 2.2 in [17] showed that BVP (1.1), (1.2)

has at least one positive solution if for certain positive numbers α and β, either of the

following holds:
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• F̂0 < β−1 and F̂∞ > (αβ)−1,
• F̂0 > (αβ)−1 and F̂∞ < β−1,

where

(1.3) F̂0 = lim inf
‖x‖→0

min
i∈{1,...,m}

t∈[0,ω]

fi(t, x)/‖x‖,

F̂0
= lim sup

‖x‖→0

max
i∈{1,...,m}

t∈[0,ω]

fi(t, x)/‖x‖,

F̂∞ = lim inf
‖x‖→∞

min
i∈{1,...,m}

t∈[0,ω]

fi(t, x)/‖x‖,

F̂∞
= lim sup

‖x‖→∞
max

i∈{1,...,m}
t∈[0,ω]

fi(t, x)/‖x‖.

However, when one of F̂0, F̂0, F̂∞, F̂∞ is between β−1 and (αβ)−1, Theorem 2.2

fails to apply. For second order scalar BVPs, an important approach to the existence

of solutions or positive solutions is to utilize certain eigenvalues of associated linear

Sturm–Liouville problems (SLP); see, for example, [4,15]. This method has been ap-

plied by the authors to the scalar BVP (1.1), (1.2) with n = 2; see [16, Theorem 2.11].

In this paper, we first define a linear system SLP as the SLP associated with BVP

(1.1), (1.2) and show that it has a positive eigenvalue, and then use this eigenvalue

to establish new conditions for BVP (1.1), (1.2) to have a positive solution. Our

major tools are the Krein–Rutman theorem for spectra of linear operators and the

fixed point index theory for compact operators. Examples are given to show that our

results in certain sense improve the results in the literature including those in [17] by

the authors.

This paper is organized as follows: after this introduction, our main results, to-

gether with two examples, are stated in Section 2. All proofs are given in Section 3.

In Section 4, we extend our results to a class of generalized systems of periodic BVP.

2 Main Results

BVP (1.1), (1.2) can be written componentwise as

(aiD
2 + bi)

nui =

m
∑

j=1

wi j(t) f j(t, u1, . . . , um), t ∈ (0, ω),

u(k)
i (0) = u(k)

i (ω), i = 1, . . . ,m, k = 0, 1, . . . , 2n − 1.

Throughout this paper, we assume that

(H1) For fixed 1 ≤ i ≤ m, the scalar BVP

aiu
′ ′
i + biui = 0, t ∈ (0, ω),

ui(0) = ui(ω), u ′
i (0) = u ′

i (ω),

has a Green’s function G[1]
i (t, s);
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(H2) G[1]
i (t, s) > 0 for 0 ≤ t, s ≤ ω, i = 1, . . . ,m.

We denote

(2.1) Li = min
t,s∈[0,ω]

G[1]
i (t, s) and Ui = max

t,s∈[0,ω]
G[1]

i (t, s).

Remark 2.1 When ai = −1, let

gi(t) =
e
√

bit + e
√

bi (ω−t)

2
√

bi(e
√

biω − 1)
, t ∈ [0, ω].

Then

(2.2) G[1]
i (t, s) =

{

gi(t − s) 0 ≤ s ≤ t ≤ ω,

gi(s − t) 0 ≤ t ≤ s ≤ ω,

and Li = gi(ω/2), Ui = gi(0).

When ai = 1 and 0 < bi < π2ω−2, k = 1, 2, . . . , let

gi(t) =
sin(

√
bit) + sin(

√
bi(ω − t))

2
√

bi(1 − cos(
√

biω))
, t ∈ [0, ω].

Then

G[1]
i (t, s) =

{

gi(t − s) 0 ≤ s ≤ t ≤ ω,

gi(s − t), 0 ≤ t ≤ s ≤ ω,

and Li = gi(0), Ui = gi(ω/2).

Definition 2.2 A function u = (u1, . . . , um)T ∈ C([0, ω],R
m) is said to be a posi-

tive solution of BVP (1.1), (1.2) if ui ∈ C2n−1[0, ω]∩C2n(0, ω), u satisfies BVP (1.1),

(1.2), ui(t) ≥ 0 on [0, ω], i = 1, . . . ,m, and
∑m

i=1 ui(t) > 0 on [0, ω].

For any u ∈ C([0, ω],R
m), define ‖u‖ = maxt∈[0,ω]

∑m
i=1 |ui(t)|. To present

our main results we need the following SLP associated with BVP (1.1), (1.2), which

consists of the equation

(2.3) (AD2 + B)nu = λW T(t)u, t ∈ (0, ω),

and the boundary condition (BC) (1.2), where W T
= (wT

i j)m×m is the transpose of

W , i.e., wT
i j = w ji , i, j = 1, . . . ,m.

The first result is about the existence of a desired eigenvalue of SLP (2.3), (1.2).

Theorem 2.3 SLP (2.3), (1.2) has a positive eigenvalue λ̄ with a positive eigenfunction

v(t).
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In the sequel we will use the following notation for limits where x is restricted to

R
m
+ :

F0 = lim inf
‖x‖→0

min
i∈{1,...,m}

t∈[0,ω]

fi(t, x)/xi ,

F0
= lim sup

‖x‖→0

max
i∈{1,...,m}

t∈[0,ω]

fi(t, x)/xi ,

F∞ = lim inf
‖x‖→∞

min
i∈{1,...,m}

t∈[0,ω]

fi(t, x)/xi ,

F∞
= lim sup

‖x‖→∞
max

i∈{1,...,m}
t∈[0,ω]

fi(t, x)/xi .

Our major result is given below.

Theorem 2.4 BVP (1.1), (1.2) has at least one positive solution if either F0 < λ̄ <
F∞ or F∞ < λ̄ < F0.

To derive some explicit conditions for BVP (1.1), (1.2) to have a positive solution,

we introduce the following notation: with G[1]
i (t, s) as the Green’s function defined

in (H1) and Li ,Ui given by (2.1), we define

(2.4) G[l]
i (t, s) =

∫ ω

0

G[1]
i (t, τ )G[l−1]

i (τ , s) dτ , l = 2, . . . , n,

and G = diag(G1, . . . ,Gm) with Gi = G[n]
i , i = 1, . . . ,m. Let

(2.5) L∗ = min
i∈{1,...,m}

{ωn−1Ln
i }, U ∗

= max
i∈{1,...,m}

{ωn−1U n
i },

and

α = L∗/U ∗,(2.6)

β∗
= max

j∈{1,...,m}
t∈[0,ω]

∫ ω

0

m
∑

i=1

Gi(t, s)wi j(s) ds,(2.7)

β∗ = min
j∈{1,...,m}

t∈[0,ω]

∫ ω

0

m
∑

i=1

Gi(t, s)wi j(s) ds.(2.8)

Clearly, 0 < α < 1 and β∗ < β∗. Now we have an estimate for λ̄.

Lemma 2.5 For any positive eigenvalue λ̄ of SLP (2.3), (1.2) with a positive eigen-

function, we have that (β∗)−1 ≤ λ̄ ≤ (αβ∗)−1.

Combining Theorem 2.4 and Lemma 2.5, we obtain the following result immedi-

ately.
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Corollary 2.6 BVP (1.1), (1.2) has at least one positive solution if either of the follow-

ing holds:

(i) F0 < (β∗)−1 and F∞ > (αβ∗)−1;

(ii) F∞ < (β∗)−1 and F0 > (αβ∗)−1.

Example 1 Consider the BVP

(2.9)
Au ′ ′ + Bu = W f (u),

u(0) = u(1), u ′(0) = u ′(1),

where A =
( −1 0

0 1

)

, B =
(

5 0
0 3

)

, W =
(

1 4
2 1

)

, and f =
( f1

f2

)

with fi(x1, x2) =

xi[1 + c(tan−1(x1 + x2) − π/4)], i = 1, 2, for 0 < |c| < 4/π. Then BVP (2.9) has at

least one positive solution.

In fact, it is easy to see that λ̄ = 1 is a positive eigenvalue of the following SLP

associated with BVP (2.9)

Au ′ ′ + Bu = λW Tu,

u(0) = u(1), u ′(0) = u ′(1),

with an eigenfunction v(t) ≡ (1, 2)T , F0 = F0
= 1−cπ/4 and F∞ = F∞

= 1+cπ/4.

Thus, 0 < F∞ < 1 < F0 for −4/π < c < 0 and 0 < F0 < 1 < F∞ for 0 < c < 4/π.

Then the conclusion follows from Theorem 2.4.

Note that in this example, when c → 0, all F0, F0, F∞, F∞ → λ̄. Then Theorem

2.2 in [17] and other existing results in the literature fail to apply.

Example 2 Consider the BVP

(2.10)
−u ′ ′ + Bu = W f (u),

u(0) = u(1), u ′(0) = u ′(1),

where B =
(

4 0
0 1

)

, W =
(

1 3
2 1

)

, and f =
( f1

f2

)

with

fi(x1, x2) = xi

(

( (1 + e)2

4e
− c1

)

e−x1−x2 + c2

)

, i = 1, 2.

Then BVP (2.10) has at least one positive solution when 0 < c1 < c2 < 1/4.

In fact, from (2.2) and by a simple computation, we have L∗ = e/[2(e2 − 1)],

U ∗
= (1 + e)/[2(e − 1)] and

∫ 1

0
Gi(t, s) = b−1

i , i = 1, 2. By (2.6), (2.7), (2.8),

α = e/(1+e)2 and β∗
= β∗ = 4. Therefore, (β∗)−1

= 1/4, (αβ∗)−1
= (1+e)2/(4e).

It is clear that F0 = (1 + e)2/(4e)− c1 + c2 and F∞
= c2. Then the conclusion follows

from Corollary 2.6 (ii).

Note that in this example, for F̂0, F̂0, F̂∞, F̂∞ defined in (1.3), we have F̂0 = 0,

F̂0
= (1 + e)2/(4e) − c1 + c2, F̂∞ = 0, and F̂∞

= c2. It is easy to see that [17,

Theorem 2.2] fails to apply.

Remark 2.7 Results on the existence of more than one positive solution can also be

obtained by combining our Theorem 2.3 and the Theorem 2.1 in [17]. We omit the

details.

https://doi.org/10.4153/CMB-2011-138-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-138-3


Eigenvalue Approach to System Periodic BVPs 107

3 Proofs

The first lemma concerns the Green’s function used to deal with BVP (1.1), (1.2). See

[17, Lemma 4.2] for the proof.

Lemma 3.1 Let G[n]
i (t, s) be defined by (2.4). Then G[n]

i (t, s) is the Green’s function

of the BVP

(aiD
2 + bi)

nui = 0, t ∈ (0, ω),(3.1)

u(k)
i (0) = u(k)

i (ω), k = 0, 1, . . . , 2n − 1.(3.2)

Hence G = diag(G1, . . . ,Gm) with Gi = G[n]
i , i = 1, . . . ,m, is the Green’s function of

the BVP consisting of the equation

(3.3) (AD2 + B)nu = 0

and BC (1.2).

Moreover, 0 < ωn−1Ln
i ≤ Gi(t, s) ≤ ωn−1U n

i , where Li and Ui are defined by (2.1).

Let X be a Banach space and T : X → X a linear operator. We recall that µ is an

eigenvalue of T with a corresponding eigenfunction u if u is a nontrivial solution of

the equation Tu = µu. The radius of the spectrum of T, denoted by r(T), is given

by the well-known spectral formula r(T) = limk→∞ ‖Tk‖1/k. Recall also that a cone

P ⊂ X is a called total cone if X = P − P.

We refer the reader to [2, Theorem 19.2] or [29, Proposition 7.26] for the follow-

ing well-known Krein–Rutman Theorem.

Lemma 3.2 Assume that P is a total cone in X. Let T : X → X be a completely con-

tinuous linear operator with T(P) ⊂ P and r(T) ∈ (0,∞). Then r(T) is an eigenvalue

of T with an eigenfunction in P.

In the following, let X = C([0, ω],R
m), and for each u = (u1, . . . , um)T ∈ X,

define

‖u‖ = max
t∈[0,ω]

m
∑

i=1

|ui(t)|.

It is known that (X, ‖ · ‖) is a Banach space. Define a cone P in X and an operator

T : X → X by

P = {u = (u1, . . . , um)T ∈ X | ui(t) ≥ 0 on [0, ω], i = 1, . . . ,m}

(Tu)(t) =

∫ ω

0

G(t, s)W T(s)u(s) ds, t ∈ [0, ω],

where G(t, s) is the Green’s function of BVP (3.3), (1.2).

Clearly, P is a total cone in X. By a standard argument we can show that T : X → X

is a completely continuous linear operator. We omit the details. Now we are ready to

prove Theorem 2.3.
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Proof of Theorem 2.3 We observe that λ is an eigenvalue of SLP (2.3), (1.2) if and

only if µ = 1/λ is an eigenvalue of the operator T. Moreover, up to a constant

multiple, the eigenfunction of SLP (2.3), (1.2) is the same as that of T associated

with µ.

Let K be a subcone of P given by

K =

{

u = (u1, . . . , um)T ∈ P
∣

∣

∣

m
∑

i=1

ui(t) ≥ α‖u‖ on [0, ω]
}

.

Then T(P) ⊂ K. In fact, for any u ∈ P and for i = 1, . . . ,m, we have (Tu)i(t) ≥ 0

on [0, ω]. By (2.5) and (2.6)

min
t∈[0,ω]

(Tu)i(t) = min
t∈[0,ω]

∫ ω

0

Gi(t, s)

m
∑

j=1

wT
i j(s)u j(s) ds

≥ L∗

∫ ω

0

m
∑

j=1

wT
i j(s)u j(s) ds = αU ∗

∫ ω

0

m
∑

j=1

wT
i j(s)u j(s) ds

≥ α max
t∈[0,ω]

∫ ω

0

Gi(t, s)

m
∑

j=1

wT
i j(s)u j(s) ds = α max

t∈[0,ω]
(Tu)i(t).

Hence

min
t∈[0,ω]

m
∑

i=1

(Tu)i(t) ≥
m
∑

i=1

min
t∈[0,ω]

(Tu)i(t) ≥ α

m
∑

i=1

max
t∈[0,ω]

(Tu)i(t)

≥ α max
t∈[0,ω]

m
∑

i=1

(Tu)i(t) = α‖Tu‖.

Therefore, T(P) ⊂ K ⊂ P.

To prove Theorem 2.3, by Lemma 3.2 we only need to show that r(T) ∈ (0,∞),

and hence r(T) is an eigenvalue of T with an eigenfunction in P and then in K. As

a result, λ = 1/r(T) is such an eigenvalue of SLP (2.3), (1.2). By the spectral theory

in Banach spaces (see, for example, [29]), we have r(T) < ∞. Now we show that

r(T) > 0. Let wT
i (t) = min1≤ j≤m{wT

i j(t)} = min1≤ j≤m{w ji(t)}, t ∈ [0, ω]. From

the assumption, wT
i (t) 6≡ 0 on [0, ω] for i = 1, . . . ,m. Let u ∈ K, t ∈ [0, ω], and

i = 1, . . . ,m. By (2.5)

(Tu)i(t) =

∫ ω

0

Gi(t, s)

m
∑

j=1

wT
i j(s)u j(s) ds

≥ L∗

∫ ω

0

wT
i (s)

m
∑

j=1

u j(s) ds ≥ αL∗
(

∫ ω

0

wT
i (s) ds

)

‖u‖.
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Hence

(T2u)i(t) = [T(Tu)]i(t) =

∫ ω

0

Gi(t, s)

m
∑

j=1

wT
i j(s)(Tu) j(s)d s

≥ L∗

∫ ω

0

wT
i (s)

m
∑

j=1

(Tu) j(s) ds

≥ αL2
∗

(

∫ ω

0

wT
i (s) ds

)(

m
∑

j=1

∫ ω

0

wT
j (s) ds

)

‖u‖.

By induction, for l = 1, 2, . . . ,

(T lu)i(t) ≥ αLl
∗

(

∫ ω

0

wT
i (s) ds

)(

m
∑

j=1

∫ ω

0

wT
j (s) ds

) l−1

‖u‖.

It follows that

‖T lu‖ ≥
m
∑

i=1

(T lu)i(t) ≥ α
(

L∗

m
∑

i=1

∫ ω

0

wT
i (s) ds

) l

‖u‖.

Therefore,

‖T l‖ = max
u 6=0

‖T lu‖
‖u‖ ≥ α

(

L∗

m
∑

i=1

∫ ω

0

wT
i (s) ds

) l

.

Consequently,

r(T) = lim
l→∞

‖T l‖1/l ≥ L∗

m
∑

i=1

∫ ω

0

wT
i (s) ds > 0.

To prove Theorem 2.4, define a map Γ : K → X as

(Γu)(t) =

∫ ω

0

G(t, s)W (s) f (s, u(s)) ds, t ∈ [0, ω].

Clearly, u(t) is a solution of BVP (1.1), (1.2) if and only if u is a fixed point of Γ. It is

easy to show Γ is completely continuous and Γ(K) ⊂ K. For r > 0, define

Kr = {u ∈ K | ‖u‖ < r} and ∂Kr = {u ∈ K | ‖u‖ = r}.

Let i(Γ,Kr,K) be the fixed point index of Γ on Kr with respect to K. The following is

a well-known result on fixed-point index; see [2, 9, 27].

Lemma 3.3 Assume that Γ : Kr → K is a completely continuous map such that Γu 6=
u for u ∈ ∂Kr.
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(i) If ‖Γu‖ ≥ ‖u‖ for u ∈ ∂Kr, then i(Γ,Kr,K) = 0.

(ii) If ‖Γu‖ ≤ ‖u‖ for u ∈ ∂Kr, then i(Γ,Kr,K) = 1.

Our proof of Theorem 2.4 is based on the next lemma, which is established using

Lemma 3.3.

Lemma 3.4 Let λ̄ be a positive eigenvalue of SLP (2.3), (1.2) with a positive eigen-

function.

(i) If F0 > λ̄, then i(Γ,Kr,K) = 0 for sufficiently small r > 0.

(ii) If F0 < λ̄, then i(Γ,Kr,K) = 1 for sufficiently small r > 0.

(iii) If F∞ > λ̄, then i(Γ,Kr,K) = 0 for sufficiently large r > 0.

(iv) If F∞ < λ̄, then i(Γ,Kr,K) = 1 for sufficiently large r > 0.

Proof For the purpose of brevity, we only give proofs for parts (i) and (ii). The

proofs for the rest are similar and are hence omitted.

(i) Let l1 : R
m
+ → R

m
+ be defined by l1(u(t)) = (‖u‖p, . . . , ‖u‖p)T with 0 < p < 1.

Define Γ1 : X → X by (Γ1u)(t) =
∫ ω

0
G(t, s)W (s)l1(u(s)) ds. Similar to Γ, Γ1 is

completely continuous and Γ1(K) ⊂ K.

It is clear that
∫ ω

0

∑m
i, j=1 wi j(s) ds > 0. Let

r1 =

(

L∗

∫ ω

0

m
∑

i, j=1

wi j(s) ds
) 1/(1−p)

,

where L∗ is given by (2.5). Then for any u ∈ ∂Kr with r < r1 and t ∈ [0, ω]

‖Γ1u‖ ≥
m
∑

i=1

(Γ1u)i(t) =

m
∑

i=1

∫ ω

0

Gi(t, s)
(

m
∑

j=1

wi j(s)
)

rp ds

≥ rpL∗

∫ ω

0

m
∑

i, j=1

wi j(s) ds = rpr
p−1
1 > r = ‖u‖.

Thus i(Γ1,Kr,K) = 0.

Since F0 > λ̄, there exists 0 < r2 ≤ r1 such that for x ∈ R
m
+ with ‖x‖ < r2 and

t ∈ [0, ω],

(3.4) fi(t, x) > λ̄xi and ‖x‖p > λ̄xi , i = 1, . . . ,m.

Define a homotopy operator H1 : [0, 1] × K → K by

H1(θ, u) = (1 − θ)Γu + θΓ1u.

Then H1(θ, · ) is completely continuous for 0 ≤ θ ≤ 1. We claim that H1(θ, u) 6= u

for all 0 ≤ θ ≤ 1 and u ∈ ∂Kr with r < r2. In fact, assume that there exist θ1 ∈ [0, 1]

and u ∈ ∂Kr with H1(θ1, u) = u. Then u(t) satisfies the equation

(AD2 + B)nu = (1 − θ1)W (t) f (t, u) + θ1W (t)l1(u), t ∈ (0, ω),

https://doi.org/10.4153/CMB-2011-138-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-138-3


Eigenvalue Approach to System Periodic BVPs 111

and BC (1.2). Let v(t) be the eigenfunction of SLP (2.3), (1.2) associated with λ̄.

Then

(3.5)

∫ ω

0

vT(t)(AD2 + B)nu(t) dt

=

∫ ω

0

vT(t)[(1 − θ1)W (t) f (t, u(t)) + θ1W (t)l1(u(t))] dt.

Integrating by parts 2n times and using BC (1.2), we obtain that

(3.6)

∫ ω

0

vT(t)(AD2 + B)nu(t) dt =

∫ ω

0

uT(t)(AD2 + B)nv(t) dt

= λ̄

∫ ω

0

uT(t)W T(t)v(t) dt

= λ̄

∫ ω

0

vT(t)W (t)u(t) dt.

Therefore by (3.4), (3.5), and (3.6)

λ̄

∫ ω

0

vT(t)W (t)u(t) dt

=

∫ ω

0

vT(t)[(1 − θ1)W (t) f (t, u(t)) + θ1W (s)l1(u(t))] dt

=

∫ ω

0

[(1 − θ1)(vT(t)W (t) f (t, u(t)) + θ1vT(t)W (t)l1(u(t))] dt

> (1 − θ1)

∫ ω

0

λ̄vT(t)W (t)u(t) dt + θ1

∫ ω

0

λ̄vT(t)W (t)u(t) dt

= λ̄

∫ ω

0

vT(t)W (t)u(t) dt.

Note that
∫ ω

0
vT(t)W (t)u(t) dt > 0 from the assumption of W and due to the fact

that u, v ∈ K, we have reached a contradiction. This shows that

i(Γ,Kr,K) = i(H1(0, · ),Kr,K) = i(H1(1, · ),Kr,K) = i(Γ1,Kr,K) = 0.

(ii) Let l2 : R
m
+ → R

m
+ be defined by l2(u) = (u

q
1, . . . , u

q
m)T with q > 1. Define

Γ2 : X → X by

(Γ2u)(t) =

∫ ω

0

G(t, s)W (s)l2(u(s)) ds.

Similar to Γ, Γ2 is completely continuous and Γ2(K) ⊂ K.
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Let r3 = (U ∗ ∫ ω

0
max1≤ j≤m

∑m
i=1 wi j(s) ds)1/(1−q), where U ∗ is given by (2.5).

Then for any u ∈ ∂Kr with r < r3

‖Γ2u‖ = max
t∈[0,ω]

m
∑

i=1

(Γ2u)i(t) = max
t∈[0,ω]

m
∑

i=1

∫ ω

0

Gi(t, s)
(

m
∑

j=1

wi j(s)u
q
j(s)

)

ds

≤ U ∗
∫ ω

0

m
∑

j=1

(

m
∑

i=1

wi j(s)
)

u
q
j (s) ds

≤ U ∗
∫ ω

0

max
1≤ j≤m

m
∑

i=1

wi j(s)
(

m
∑

j=1

u j(s)
) q

ds

≤ rqU ∗
∫ ω

0

max
1≤ j≤m

m
∑

i=1

wi j(s) ds = rqr
q−1
3 < r = ‖u‖.

Therefore, i(Γ2,Kr,K) = 1.

Since F0 < λ̄, there exists 0 < r4 ≤ r3 such that for x ∈ R
m
+ with ‖x‖ < r4 and

t ∈ [0, ω],

fi(t, x) < λ̄xi and x
q
i < λ̄xi , i = 1, . . . ,m.

Define a homotopy operator H2 : [0, 1] × K → K by

H2(θ, u) = (1 − θ)Γu + θΓ2u.

Then H2(θ, · ) is completely continuous for 0 ≤ θ ≤ 1. With a similar argument to

H1(θ, · ) we can show that H2(θ, u) 6= u for all 0 ≤ θ ≤ 1 and u ∈ ∂Kr with r < r4.

We omit the details. This shows that

i(Γ,Kr,K) = i(H2(0, · ),Kr,K) = i(H2(1, ·),Kr,K) = i(Γ2,Kr,K) = 1.

Proof of Theorem 2.4 Assume F0 < λ̄ < F∞. Then by Lemma 3.4, (ii) and (iii),

there exist 0 < r̃1 < r̃2 < ∞ such that (Γ,Kr̃1
,K) = 1 and (Γ,Kr̃2

,K) = 0. Hence Γ

has a fixed point u ∈ Kr̃2
\ Kr̃1

. Therefore, u(t) is a positive solution of the BVP (1.1),

(1.2).

Assume F∞ < λ̄ < F0. Then by Lemma 3.4, (i) and (iv), there exist 0 < r̃3 <
r̃4 < ∞ such that (Γ,Kr̃3

,K) = 0 and (Γ,Kr̃4
,K) = 1. Hence Γ has a fixed point

u ∈ Kr̃4
\ Kr̃3

. Therefore, u(t) is a positive solution of the BVP (1.1), (1.2).

Proof of Lemma 2.5 For the eigenfunction v(t) = (v1, . . . , vm)T(t) of SLP (2.3),

(1.2) associated with λ̄, we have

v(t) = λ̄

∫ ω

0

G(t, s)W T(s)v(s) ds, t ∈ [0, ω].
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Thus for any t ∈ [0, ω]

(3.7)

m
∑

i=1

vi(t) = λ̄

m
∑

i=1

∫ ω

0

Gi(t, s)

m
∑

j=1

wT
i j(s)v j(s) ds

= λ̄
m
∑

j=1

∫ ω

0

(

m
∑

i=1

Gi(t, s)wT
i j(s)

)

v j(s) ds

≤ λ̄

∫ ω

0

(

max
j∈{1,...,m}

t∈[0,ω]

m
∑

i=1

Gi(t, s)wT
i j(s)

)(

m
∑

j=1

v j(s)
)

ds

≤ λ̄β∗‖v‖,

which implies that λ̄ ≥ (β∗)−1.

Note that v ∈ K; we have that
∑m

i=1 vi(t) ≥ α‖v‖ on [0, ω]. Then from (3.7) we

see that for t ∈ [0, ω]

m
∑

i=1

vi(t) ≥ λ̄

∫ ω

0

(

min
j∈{1,...,m},t∈[0,ω]

m
∑

i=1

Gi(t, s)wT
i j(s)

)(

m
∑

j=1

v j(s)
)

ds

≥ λ̄β∗α‖v‖,

which implies that λ̄ ≤ (αβ∗)−1.

4 Generalized System of Periodic BVPs

In the last section we consider the BVP consisting of the equation

(4.1) (AD2 + B̃)n y = W̃ (t) f̃ (t, y), t ∈ (0, ω),

and the BC

(4.2) y(k)(0) = y(k)(ω), k = 0, 1, . . . , 2n − 1.

Here we assume the following

(i) A = ±I;

(ii) B̃ is a positive definitive m × m matrix, i.e., there exists an m × m invertible

matrix S such that S−1B̃S = diag(b1, . . . , bm) with bi > 0, i = 1, . . . ,m;

(iii) S−1W̃ S ∈ C([0, ω],R
m×m
+ );

(iv) S−1 f̃ = S−1( f̃1, . . . , f̃m)T ∈ C([0, ω] × S(R
m
+ ),R

m
+ ), where

S(R
m
+ ) = {x ∈ R

m
+ | Sx ∈ R

m
+ }.

Let B = S−1B̃S, W = S−1W̃ S, and f (t, u) = S−1 f̃ (t, Su). Then the corresponding

BVP (1.1), (1.2) is called the transformed problem of BVP (4.1), (4.2). By a simple

computation, we can obtain the result below.
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Lemma 4.1 y is a solution of BVP (4.1), (4.2) if and only if u = S−1 y is a solution of

the transformed problem (1.1), (1.2).

In addition to the conditions (i)–(iv), with W = S−1W̃ S = (wi j)m×m we further

assume that min1≤i≤m wi j(t) 6≡ 0 on [0, ω] for all j = 1, . . . ,m. Then all assump-

tions for BVP (1.1), (1.2) are satisfied by the transformed problem of BVP (4.1), (1.2).

Let (H1) and (H2) hold for the transformed problem of BVP (4.1), (4.2). We use the

following notation for limits where S−1x is restricted to R
m
+ :

F̃0 = lim inf
‖x‖→0

min
i∈{1,...,m}

t∈[0,ω]

(S−1 f̃ )i(t, x)/(S−1x)i ,

F̃0
= lim sup

‖x‖→0

max
i∈{1,...,m}

t∈[0,ω]

(S−1 f̃ )i(t, x)/(S−1x)i ,

F̃∞ = lim inf
‖x‖→∞

min
i∈{1,...,m}

t∈[0,ω]

(S−1 f̃ )i(t, x)/(S−1x)i ,

F̃∞
= lim sup

‖x‖→∞
max

i∈{1,...,m}
t∈[0,ω]

(S−1 f̃ )i(t, x)/(S−1x)i .

Applying the results in Section 2 to the transformed problem, we obtain results

on existence of a nontrivial solution of BVP (4.1), (4.2) using a positive eigenvalue of

the corresponding transformed SLP (2.3), (1.2).

Theorem 4.2 Let λ̄ be a positive eigenvalue of the transformed SLP (2.3), (1.2) with

a positive eigenfunction. Then BVP (4.1), (4.2) has at least one nontrivial solution if

either F̃0 < λ̄ < F̃∞ or F̃∞ < λ̄ < F̃0.

Corollary 2.6 can also be extended to BVP (3.1), (3.2) in the same way. We omit

the details.
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