BULL: AUSTRAL. MATH. SOC. Vol. 71 (2005) [61-67]

EQUICONTINUITY OF A GRAPH MAP

TAIXIANG SUN, YONGPING ZHANG AND XIAOYAN ZHANG

Let G be a graph, and $f: G \longrightarrow G$ be a continuous map with periodic points. In this paper we show that the following five statements are equivalent.

- (1) f is equicontinuous.
- (2) There exists some positive integer N such that f^N is uniformly convergent.
- (3) f is S-equicontinuous for some positive integer sequence $S = \{n_1 < n_2 < \cdots\}.$
- (4) $\Omega(x, f) = \omega(x, f)$ for every $x \in G$.
- (5) $\sigma: \underline{\lim}\{X, f\} \longrightarrow \underline{\lim}\{X, f\}$ is a periodic map.

1. INTRODUCTION

Let N (respectively \mathbb{Z}^+) denote the set of positive integers (respectively nonnegative integers). Write $\mathbb{N}_n = \{1, 2, ..., n\}$ and $\mathbb{Z}_n = \{0, 1, ..., n\}$ for any $n \in \mathbb{N}$. For any compact metric space (X, d), let $C^0(X)$ be the set of all continuous maps from X to X. Suppose $f \in C^0(X)$, $x \in X$ and r > 0, write $B(x, r) = B(x, r, d) = \{y \in X : d(y, x) < r\}$, $O(x, f) = \{f^n(x) : n \in \mathbb{Z}^+\}$, $\omega(x, f) = \bigcap_{n=0}^{\infty} \overline{O(f^n(x), f)}$ and $\Omega(x, f) = \{y :$ there exist sequences $\{x_i\}$ in X and $\{n_i\}$ in N such that $x_i \longrightarrow x, n_i \rightarrow \infty$ and $f^{n_i}(x_i) \longrightarrow y\}$. O(x, f) and $\omega(x, f)$ are called the orbit and the ω -limit set of x under f, respectively. For $n \in \mathbb{N}$, a point $x \in X$ is called a periodic point of f with period n (or an n-periodic point of f) if $f^n(x) = x$ and $f^k(x) \neq x$ for each $k \in [0, n) \cap \mathbb{N}$. x is called a fixed point of f if f(x) = x. If $x \in \omega(x, f)$, then x is called a recurrent point of f. Denote by F(f), $P_n(f)$ and R(f) the set of all fixed points, n-periodic points and recurrent points of f, respectively. Write $P(f) = \bigcup_{n=1}^{\infty} P_n(f)$. We use int A, ∂A , \overline{A} and #A to denote the interior, boundary, the closure and the cardinality of a subset A of X, respectively. We also need the following definitions.

DEFINITION 1: Let $S = \{n_1 < n_2 < \cdots\}$ be a subsequence of N. $f \in C^0(X)$ is said to be S-equicontinuous if for any $\varepsilon > 0$, there exists $\delta = \delta(\varepsilon)$ such that

Received 23rd August, 2004

This project was supported by NNSF of China (10361001, 10461001) and NSF of Guangxi (0447004).

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/05 \$A2.00+0.00.

 $d(f^{n_k}(x), f^{n_k}(y)) < \varepsilon$ whenever $x, y \in X$ with $d(x, y) < \delta$ and $k \in \mathbb{N}$. If $S = \mathbb{N}$, then f is said to be equicontinuous.

DEFINITION 2: Let $f \in C^0(X)$ and $x \in X$. If there exists $y \in X$ such that $\lim_{n \to \infty} f^n(x) = y$, then f is said to be convergent at x. If there exists $N \in \mathbb{N}$ such that $X = F(f^N)$, then f is said to be a periodic map.

Let $\{X_i\}_{i=1}^{\infty}$ be a sequence of spaces, and $\{f_i\}_{i=1}^{\infty}$ a sequence of maps $f_i : X_{i+1} \longrightarrow X_i$, then the inverse limit of $\{X_i, f_i\}_{i=1}^{\infty}$, denoted by $\lim_{i \to 1} \{X_i, f_i\}$, is the subspace of the Cartesian product space $\prod_{i=1}^{\infty} X_i$ given by $\lim_{i \to 1} \{X_i, f_i\} = \{(x_1, x_2, \ldots) : f_i(x_{i+1}) = x_i \text{ for all} i \in \mathbb{N}\}$. When all the spaces X_i are the same space X and all the maps f_i are same map f, we denote the inverse limit by $\lim_{i \to 1} \{X, f\}$ (see [10]).

Define $\sigma: \varprojlim \{X, f\} \longrightarrow \varprojlim \{X, f\}$ by

$$\sigma:((x_0,x_1,\ldots))=(x_1,x_2,\ldots),$$

which is called the one-sided shift map.

It is interesting to find some properties equivalent to equicontinuity ([1]). In [3], Blanchard, Host and Maass discussed topological complexity, and showed that a continuous surjection f of a compact metric space X is equicontinuous if and only if any finite open cover of X under f has bounded complexity.

On 1-dimentional spaces, one has some still finer results [4, 5, 6, 7, 13]. Sun in [11, 12] obtained necessary and sufficient conditions for equicontinuity of tree maps and σ -maps. In [8], Gu obtained necessary and sufficient conditions for equicontinuity of figure-eight map with a periodic point. Recently, Mai in [9] obtained the following theorem.

THEOREM A. Let G be a graph and $f \in C^0(G)$ with $P(f) \neq \emptyset$. Then f is equicontinuous if and only if there exists $N \in \mathbb{N}$ such that $\bigcap_{n=1}^{\infty} f^n(G) = F(f^N)$.

By a graph we mean a compact connected one-dimensional polyhedron. In this paper we shall find some new equivalent conditions of equicontinuous graph maps. Our main result is the following theorem:

THEOREM 2. Let G be a graph and $f \in C^0(G)$ with $P(f) \neq \emptyset$. Then the following five statements are equivalent.

- (1) f is equicontinuous.
- (2) There exists $N \in \mathbb{N}$ such that f^N is uniformly convergent.
- (3) f is S-equicontinuous for some subsequence $S = \{n_1 < n_2 < \cdots\}$ of N.
- (4) $\Omega(x, f) = \omega(x, f)$ for every $x \in G$.
- (5) $\sigma: \underline{\lim}\{X, f\} \longrightarrow \underline{\lim}\{X, f\}$ is a periodic map.

2. Equicontinuity and uniform convergence in $C^0(X)$

In this section we shall discuss the relation between equicontinuity and uniform convergence of continuous self-maps of a compact metric space.

THEOREM 1. Let X is a compact metric space and $f \in C^0(X)$. Then the following three statements are equivalent:

(1) f is uniformly convergent;

PROOF: It is easy to see that $\Omega(x, f) \cup \omega(x, f) \subset \bigcap_{n=1}^{\infty} f^n(X)$ for every $x \in X$.

(2) \Rightarrow (1) Suppose $\bigcap_{n=1}^{\infty} f^n(X) = F(f)$ and f is equicontinuous. Let $x \in X$ and $a, b \in \omega(x, f)$, then $a, b \in F(f)$. Since f is equicontinuous, for any $\varepsilon > 0$, there exists $\delta > 0$ such that $f^n(B(u, \delta)) \subset B(f^n(u), \varepsilon/3)$ for every $u \in X$ and every $n \in \mathbb{N}$. Take $m \in \mathbb{N}$ such that $f^m(x) \in B(a, \delta)$, then $b \in \omega(x, f) = \omega(f^m(x), f) \subset B(a, \varepsilon)$. That is, $\{a\} = \omega(x, f)$, which implies that f is convergent at x.

Choose $\{x_1, x_2, \ldots, x_k\} \subset X$ such that $\bigcup_{i=1}^k B(x_i, \delta) = X$. Then there exists $N \in \mathbb{N}$ such that

$$d(f^n(x_i), f^m(x_i)) < \varepsilon/3$$
 for every $i \in \mathbf{N}_k$ and any $n > m > N$

For any $x \in X$, let $x \in B(x_i, \delta)$ for some $i \in \mathbf{N}_k$, then when n > m > N, we have

$$d\big(f^n(x), f^m(x)\big) < d\big(f^n(x), f^n(x_i)\big) + d\big(f^n(x_i), f^m(x_i)\big) + d\big(f^m(x), f^m(x_i)\big) < \varepsilon.$$

This implies f is uniformly convergent.

 $(2) \Rightarrow (3)$: See [1].

 $(1)\Rightarrow(2)$: Let $g(x) = \lim_{n\to\infty} f^n(x)$, then g(x) is continuous. For any $\varepsilon > 0$, there exist $N \in \mathbb{N}$ and $\delta > 0$ such that

$$d(f^n(x), g(x)) < \varepsilon/3$$
 for every $n > N$ and every $x \in X$,

and

$$g(B(x,\delta)) \subset B(g(x),\varepsilon/3)$$
 for every $x \in X$

and

$$f^i(B(x,\delta)) \subset B(f^i(x),\varepsilon)$$
 for every $i \in \mathbb{N}_N$ and every $x \in X$.

Thus we have

$$f^n(B(x,\delta)) \subset B(f^n(x),\varepsilon)$$
 for any $n \in \mathbb{N}$.

This implies f is equicontinuous.

Let $x \in \bigcap_{n=1}^{\infty} f^n(X)$, it follows from [9] that $x \in R(f)$. Then $x \in \omega(x, f) = \{x\}$, which implies $\bigcap_{n=1}^{\infty} f^n(X) = F(f)$.

 $(3)\Rightarrow(2)$ It only needs to be shown that f is equicontinuous. For given $x \in X$, let $x_n \to x$, $k_n \to \infty$, $f^{k_n}(x_n) \to a$ and $f^{k_n}(x) \to b$, then $a \in \Omega(x, f) = \omega(x, f)$ and $a, b \in F(f)$. Hence there exists $t_n \to \infty$ such that $t_n - k_n > n$ and $f^{t_n - k_n}(f^{k_n}(x)) = f^{t_n}(x) \to a$, which implies $a \in \omega(b, f) = \{b\}$. That is, f is equicontinuous.

3. Proof of Theorem 2

Let G be a graph. For every $x \in G$, there exist a positive number $\varepsilon > 0$ and some n-star $X_n = \{z : z^n \in [0, 1], z \text{ is a complex number}\}$ ([2]) such that for every $0 < \delta \leq \varepsilon$, there exists a homeomorphism $f : \overline{B(x, \delta)} \longrightarrow X_n$, such $B(x, \delta)$ are said to be a n-starneighbourhoods of x. Write V(x) = n. If $V(x) \ge 3$, we call x a branched point of G. Let T ([2]) be a subtree of G and $a, b \in T$, we use $[a, b]_T$ (or $[b, a]_T$) to denote the smallest connected subset of T containing a, b. Write $[a, b]_T = [a, b]_T - \{b\}, (a, b)_T = [a, b]_T - \{a\}$.

In what follows we let $B(G) = \{x_1, x_2, \ldots, x_l\}$ be the set of all branched points of G, and G - B(G) have p connected components. Put $u = V(x_1) + V(x_2) + \cdots + V(x_l) + 4p$ and M = u!. Let $S = \{n_1 < n_2 < \cdots\}$ be a subsequence of N.

LEMMA 1. Let $f \in C^0(G)$ and $m \in \mathbb{N}$, then

- (1) f is equicontinuous if and only if f^m is equicontinuous, and
- (2) if f is S-equicontinuous, then $g = f^m$ is S_1 equicontinuous for some subsequence S_1 of N.

PROOF: (1) See [9].

(2) Let f be S-equicontinuous. Then by choosing a subsequence we can assume that there exists $r \in \mathbb{Z}_{m-1}$ such that $n_i = s_i m + r$ for any $i \in \mathbb{N}$. Since G is compact, for any $\varepsilon > 0$, there exists $\delta_1 > 0$ such that

$$d(f^{i}(u), f^{i}(v)) < \varepsilon$$
 whenever $d(u, v) < \delta_{1}$ and $i \in \mathbb{Z}_{m}$.

Since f is S-equicontinuous, there exists δ such that

$$d(f^{s_im+r}(u), f^{s_im+r}(v)) < \delta_1$$
 whenever $d(u, v) < \delta$ and $i \in \mathbb{N}$.

Hence

$$dig(g^{s_i+1}(u),g^{s_i+1}(v)ig)$$

This implies that g is $S_1 = \{s_1 + 1, s_2 + 1, ...\}$ -equicontinuous.

LEMMA 2. Let $f \in C^0(G)$, and $X = \bigcap_{n=1}^{\infty} f^n(G)$. If one of following two conditions holds,

D

- (1) f is S-equicontinuous, or
- (2) $\Omega(x, f) = \omega(x, f)$ for every $x \in X$;

then for any given $m \in \mathbb{N}$, $X \subset \omega(f^m|_X)$.

PROOF: Let $g = f^m$. Since X is compact, we have g(X) = X and X is a connected closed subset of G. For given $y_0 \in X$, there exist points y_1, y_2, \ldots in X such that $g(y_n) = y_{n-1}$ for every $n \in \mathbb{N}$.

(1) If f is S-equicontinuous, then by Lemma 1 there exists a subsequence $S_1 = \{s_1 < s_2 < \cdots\}$ of N such that g is S_1 - equicontinuous. Therefore for any $\varepsilon > 0$, there exists $\delta > 0$ such that $d(g^{s_k}(u), g^{s_k}(v)) < \varepsilon$ whenever $d(u, v) < \delta$ and $k \in \mathbb{N}$. Since X is compact, there exists a subsequence $0 < k_1 < k_2 < \cdots$ of N and $y \in X$ such that $y_{s_{k_j}} \longrightarrow y$. Then $d(g^{s_{k_j}}(y_{s_{k_j}}), g^{s_{k_j}}(y)) = d(y_0, g^{s_{k_j}}(y)) < \varepsilon$ for some $s_{k_j} \in \mathbb{N}$. Thus $y_0 \in \omega(y, g)$.

(2) If $\Omega(x, f) = \omega(x, f)$ for every $x \in X$, then by choosing subsequence we can assume that there exists a subsequence $0 < k_1 < k_2 < \cdots$ of N and $y \in X$ such that $y_{k_j} \longrightarrow y$ since X is compact. Thus $y_0 \in \Omega(y, f) = \omega(y, f) = \bigcup_{i=0}^{m-1} \omega(f^i(y), g)$.

LEMMA 3. Let $f \in C^0(G)$ with $P(f) \neq \emptyset$ and $X = \bigcap_{n=1}^{\infty} f^n(G)$. If one of following two conditions holds,

- (1) f is S-equicontinuous; or
- (2) $\Omega(x, f) = \omega(x, f)$ for every $x \in X$;

then $X = F(f^{\tau M})$. Where τ is the smallest period of the periodic points of f.

PROOF: Let $g = f^{\tau}$. Obviously $F(g^M) \subset X$. Now we show $X \subset F(g^M)$.

Assume on the contrary that $X - F(g^M) \neq \emptyset$. Take $p \in F(g)$ and let K be the connected component of $F(g^M)$ containing p, then K is a closed subset of X, g(K) = K and $\partial K \cap \partial (X - K) \neq \emptyset$.

CLAIM 1. $g(\partial K \cap \partial (X - K)) \subset \partial K \cap \partial (X - K).$

PROOF OF CLAIM 1: Assume on the contrary that there exists $a \in \partial K \cap \partial (X-K)$ such that $g(a) \notin \partial K \cap \partial (X-K)$. Then we can choose a neighbourhood U of a such that $U \cap (X-K) \neq \emptyset$ and $g(U \cap (X-K)) \subset K$. Thus $U \cap (X-K) \notin \omega(g|_X)$ since g(K) = K, which contradicts Lemma 2. Claim 1 is proven.

Take $a_0 \in \partial K \cap \partial (X - K)$. Let s be the period of a_0 under g and V_i be a k_i -starneighbourhood of $g^i(a_0)(i \in \mathbb{Z}_{s-1})$. We can assume $k_0 = \min\{k_i : i \in \mathbb{Z}_{s-1}\}$. Choose $0 < \delta_1 < \delta_2 < \cdots < \delta_{k_0+2}$ such that

$$g^{s}(B(a_{0},\delta_{i})) \subset B(a_{0},\delta_{i+1}) \subset V_{0} \quad (i \in \mathbf{N}_{k_{0}+1}).$$

CLAIM 2. If there exist $y \in B(a_0, \delta_{k_0+1})$ and $k \in \mathbb{N}$ such that $\{g^{is}(y) : i \in \mathbb{Z}_k\}$ $\subset B(a_0, \delta_{k_0+1})$ and $y, g^{ks}(y)$ is contained in same connected component L of $B(a_0, \delta_{k_0+1})$ $-\{a_0\}$, then $g^{ks}(y) \in (a_0, y]_L$. PROOF OF CLAIM 2: Suppose that $y_0 = y \in (a_0, g^{ks}(y))_L$. Then there exist points y_1, y_2, \ldots in L such that $y_n \in (a_0, y_{n-1})_L$ and $g^{ks}(y_n) = y_{n-1}$ $(n \in \mathbb{N})$. Let $y_n \to v \in F(g^{ks})$, then $y_0 \in \Omega(v, f) - \omega(v, f)$ and $d(g^{ksn}(y_n), g^{ksn}(v)) = d(y_0, v) > 0$ for any $n \in \mathbb{N}$, which implies that g^{ks} is not S-equicontinuous for any subsequence S of N. A contradiction. Claim 2 is proven.

CLAIM 3. Let $y \in B(a_0, \delta_1)$, then $O(y, g^s) \subset B(a_0, \delta_{k_0+1})$.

PROOF OF CLAIM 3: Assume on the contrary that $O(y, g^s) \not\subset B(a_0, \delta_{k_0+1})$. Let B_1 be the connected component of $B(a_0, \delta_{k_0+1}) - \{a_0\}$ containing y and $r_1 = \min\{i : g^{is}(y) \notin B_1\}$. It follows from Claim 2 that $\{y, \ldots, g^{(r_1-1)s}(y)\} \subset B(a_0, \delta_1)$. Let B_2 be the connected component of $B(a_0, \delta_{k_0+1}) - \{a_0\}$ containing $g^{r_1s}(y)$ and $r_2 = \min\{i : g^{is}(y) \notin B_2 \cup B_1\}$. Again it follows from Claim 2 that $\{y, \ldots, g^{(r_2-1)s}(y)\} \subset B(a_0, \delta_2)$. Continuing on, we inductively define $0 = r_0 < r_1 \leq r_2 \leq \cdots \leq r_{k_0}$ and the connected components $B_1, B_2, \ldots, B_{k_0}$ of $B(a_0, \delta_{k_0+1}) - \{a_0\}$ such that

(i)
$$r_j = \min\{i : g^{is}(y) \notin \bigcup_{\lambda=1}^j B_\lambda\}$$
 for every $j \in \mathbf{N}_{k_0}$;

(ii) B_j be the connected component of $B(a_0, \delta_{k_0+1}) - \{a_0\}$ containing $g^{r_{j-1}s}(y)$ for every $j \in \mathbf{N}_{k_0}$;

(iii)
$$\{y, \ldots, g^{(r_j-1)s}(y)\} \subset B(a_0, \delta_j)$$
 for every $j \in \mathbf{N}_{k_0}$.

Hence $g^{r_{k_0}s}(y) \in B(a_0, \delta_{k_0+1})$ since $g^s(B(a_0, \delta_{k_0})) \subset B(a_0, \delta_{k_0+1})$, which contradicts the definition of r_{k_0} . Hence $O(x, g^s) \subset B(a_0, \delta_{k_0+1})$. Claim 3 is proven.

CLAIM 4.
$$\omega(B(a_0, \delta_1) \cap (X - K), g) \subset F(g^M)$$

PROOF OF CLAIM 4: Let $y \in B(a_0, \delta_1) \cap (X - K)$, it follows from Claim 3 that $O(y, g^s) \subset B(a_0, \delta_{k_0+1})$.

If $g^{is}(y) \in K$ for some $i \in \mathbb{N}$, then $\omega(y, g^s) \subset F(g^M)$ and $\omega(g^i(y), g^s) = g^i(\omega(y, g^s)) \subset g^i(F(g^M)) \subset F(g^M)$, which implies $\omega(y, g) \subset F(g^M)$.

If $O(y, g^s) \cap K = \emptyset$, then it follows from Claim 2 that $\#(\omega(y, g^s)) = r \leq k_0$ and $\omega(y, g^s) \subset F(g^{sr})$. Thus $\omega(y, g^s) \subset F(g^M)$ and $\omega(y, g) \subset F(g^M)$. Claim 4 is proven.

Let $y \in B(a_0, \delta_1) \cap (X - K)$, it follows from Lemma 2 that there exists $x \in X$ such that $y \in \omega(x, g)$. Choose $m \in \mathbb{N}$ such that $g^m(x) \in B(a_0, \delta_1) \cap (X - K)$, then $y \in \omega(x, g) = \omega(g^m(x), g)$. By Claim 4 we have $y \in F(g^M)$. Hence $B(a_0, \delta_1) \cap (X - K)$ $\subset F(g^M)$, which implies $B(a_0, \delta_0) \cap (X - K) \subset K$, a contradiction. Lemma 3 is proven.

PROOF OF THEOREM 2. (1) \Leftrightarrow (2) is from Theorem A, Theorem 1 and Lemma 1. (1) \Leftrightarrow (3,4) is from [1, Theorem 2.3], Theorem A and Lemma 3.

(1) \Rightarrow (5) Suppose f is equicontinuous. It follows from Theorem A that $\bigcap_{n=1}^{\infty} f^n(G) = F(f^N)$ for some $N \in \mathbb{N}$. Let $x = (x_0, x_1, \ldots) \in \lim_{n \to \infty} \{X, f\}$, then for given $i \in \mathbb{Z}^+$, we have $x_i = f^n(x_{i+n})$ for all $n \in \mathbb{N}$. Thus $x_i \in \bigcap_{n=1}^{\infty} f^n(G) = F(f^N)$, which implies $\sigma^N(x) = x$ for all $x = (x_0, x_1, \ldots) \in \lim_{n \to \infty} \{X, f\}$.

 $(5)\Rightarrow(1)$ Suppose there exists $K \in \mathbb{N}$ such that $\sigma^{K}(x) = x$ for all $x \in \varprojlim \{X, f\}$. Let $y \in X = \bigcap_{n=1}^{\infty} f^{n}(G)$. Since f(X) = X, there exist points $y_{1} = y, y_{2}, \ldots$ in X such that $f(y_{i+1}) = y_{i}$ for all $i \in \mathbb{N}$, thus $x = (y_{1}, y_{2}, \ldots) \in \varprojlim \{X, f\}, \sigma^{K}(x) = x$, which implies $y \in F(f^{K})$. By Theorem A we know that f is equicontinuous since $\bigcap_{n=1}^{\infty} f^{n}(G) \subset F(f^{K})$.

References

- E. Akin, J. Auslander and K. Berg, 'When is transitive map chaotic?', in *Convergence in Ergodic Theory and Probability* (Walter de Gruyter and Co., Berlin, New York, 1996), pp. 25-40.
- [2] L. Alseda and J.M. Moreno, 'Linear orderings and the full periodicity kernel for the *n*-star', J. Math. Anal. Appl. 180 (1993), 599-616.
- F. Blanchard, B. Host and A. Maass, 'Topological complexity', Ergodic Theory Dynamical Systems 20 (2000), 641-662.
- [4] A.M. Blokh, 'The set of all iterates is nowhere dense in C([0, 1], [0, 1])', Trans. Amer. Math. Soc. 333 (992), 787-798.
- [5] W. Boyce, 'Γ-compact maps on an interval and fixed points', Trans. Amer. Math. Soc. 160 (1971), 87-102.
- [6] A.M. Bruckner and T. Hu, 'Equicontinuity of iterates of an interval map', Tamkang J. Math. 21 (1990), 287-294.
- J. Cano, 'Common fixed points for a class of commuting mappings on an interval', Trans. Amer. Math. Soc. 86 (1982), 336-338.
- [8] R. Gu, 'Equicontinuity of maps on figure-eight space', Southeast Asian Bull. Math. 25 (2001), 413-419.
- J. Mai, 'The structure of equicontinuous maps', Trans. Amer. Math. Soc. 355 (2003), 4125-4136.
- [10] S.B. Nadler, Continuum theory, Pure and Appl. Math. 158 (Marcle Dekker, Inc., New York, 1992).
- [11] T. Sun, 'Equicontinuity of σ -maps', Pure Appl. Math. (Xi'an) 16 (2000), 9-14.
- [12] T. Sun, 'Equicontinuity of tree maps', J. Math. Study 34 (2001), 125-130.
- [13] A. Valaristos, 'Equicontinuity of iterates of circle maps', Internat. J. Math. Math. Sci. 21 (1998), 453-458.

Department of Mathematics Guangxi University Nanning Guangxi 530004 People's Republic of China e-mail: stxhql@gxu.edu.cn