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MEROMORPHIC STARLIKE UNIVALENT FUNCTIONS

V.V. ANH AND P.D. TUAN

Let 8 be the class of functions w(z) regular in \z\ < 1

and satisfying w(0) = 0 , \w(z)I < 1 in \z\ < 1 . We

denote by V(A,B) , -1 S B < A < 1 , the class of functions

p(z) = l+pjZ+... regular in \z\ < 1 and such that

p(z) = [ l+Aw(z)]A 1+Bw(z)] for some w(z) e B . This paper

establishes sharp lower and upper bounds on \z\ = v < 1 for

the functional

where p(z) varies in V(A,B) . The results are then used

to study certain geometric properties of the corresponding

class of meromorphic starlike univalent functions

l*(A,B) =

j/Ya; = J + aQ + a2z + ... ; - zf'(z)/f(z) e ?(A,B) , |a| < l\ .

1. Introduction

Let 8 be the class of functions w(z) regular in the unit disc

A = {z ; \z\ < 1} and satisfying the conditions w(0) = 0 , \w(z)\ < 1

in A . We denote by P(A,B) , -1 < B < A £ 1 , the class of functions

2
p(z) = 1 + pjZ + pgz +

defined by
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(1.1)
• • "

for some w(z) e 8 . The definition of this class is a generalisation of

2
the classical result that any regular function p(z) = 1 + p.z + p^z + ..

such that Re{p(z)} > 0 in A can be written in the form

P(Z) - f^fir - w(z) e 8 •w(z)

In [ 2] , Janowski introduced the following general class of starlike

univalent functions:

S*(A,B) = if(z) = z + a2z
2 + ... : zf'(z)/f(z) e V(A,Bl, z e A} .

Given particular values for A } B , S (A,B) reduces to known subclasses

of starlike functions such as (see [ 2] )

S* = S*(l - 2a, -1) , S*(M) = S*(l,l/M - 1) ̂

A

In this paper we study the meromorphic counterpart of S (A,B) ,

namely, the class

I (A,B) = lf(z) = ± + aQ + a2z + ... ; -zf'(z)/f(z) e V(A,B), z e AV .

Replacing A > B by appropriate values, we obtain special cases

corresponding to those for S (A, B) ; in particular,

£a = I f3-2O.-2J = jf (z) = l/Z+ao+aiz+... • Re\-
 T

f(B) j > a, 0 < a< 1 , z e

= l/z+a0+a2z+...;

1

= lf(z) = l/z+aQ+a1z+. + M W, Af >j,

zf'(z)
f(z) < a,
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The classes J , £ [ a] and £ (M) were investigated by Poiranerenke [ 5],

Padmanabhan [4] and Wiatrowski [6] respectively.

Karunakaran [ 3] recently considered ][ (A,B) where A , B are

restricted by the conditions -1<B<0JB<A<-B. These conditions

are not general enough to cover such cases as J (M) in which B > 0 for

•g- < M < 1, and £- . defined above. This paper deals with £ (A,B) where

A j B vary in the complete range -1 < B < A < 1 .

Problems over £ (A3B) such as distortion bounds, radius of

convexity may be transformed into the extremal problems

(1.2) min min ReW p(z) - r \ \
p(z)e?(AB) \z\=r<l l piZJ > '

max max Re\y p(z) -
(1.3) PCz)ePCAJB) \z\=r<l l

where y £ 1 . Problems (1.2) and (1.3), which are of interest in their

own right, will be solved in Section 2. The results obtained will then be

used to derive the radius of convexity for £ (A3B) and the distortion

bounds for 2, an& I [ aI •

2. The extremal problems

From the definition of VCA,B) we have that

for every p(z) e V(AjB) . Thus, an application of the Subordination

Principle yields that the image of \z\ < r under every p(z) e ?(A,B)

is contained in the disc

(2.1) \p(z) - a\ < d ,

where
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a =
1 - ABr

- B2r2
d = (A-B)r

- B2r2 '

From (2.1) and (2.2), it follows immediately that if p(z) e ?(A,B) , then,

on |z| = r < 1 ,

(2.3) - Ar < Re{p(z)} < \p(z)\ < Y^T% •

The bounds are attained for the function p(z) = (1+Az)/(1+Bz) .

The basic tool which we rely upon to handle problems (1.2) and (1.3)

over V(A,B) is the following inequality known as Dieudonne's Lemma (see

Duren [ /, p. 25] ).

LEMMA 2.1. If w(z) e 8 , then for \z\ < 1 ,

(2.4) \z»>(z) -w(z)\<-

THEOREM 2.2. If p(z) e ?(A,B) , -(1+B)/(A-B) < y < 1 , then on

\z\ = v < 1 ,

-[ U-2y)A-B]r+yA2r2

(1+Ar) (1+Br)

—
A-B

(L1K1)
k-(l-ABv2)\, R9 > R-

where = (1+Ar)/(1+Br) , Lj = (1+A) (1-Ar ) ,

= y(A-B)(l-r2) + (1+B)(l-Br2) . The result is sharp.

Proof. From the representation (1.1) of pCz) we deduce that

1 + Aw(z) ,. Dt zw'(z)
pCz) _ Y BwCz) [l+Aw(z)\[l+BwCz)] '

Applying Dieudonne's Lemma to the second term of the right hand side we

find
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~j±§ + ̂ « y(A-B)+B]p(z)

( 2 5 ) _ vZ\Bp(z)-A\2 - \l-p(z)\2 _

(A-B)(l-r2)\p(z)\

Put p(z) = Re , where R e [a - d y a + d] with a , d given by (2.2)

and denote the right-hand side of (2.5) by S(R ,Q) , then

S(R j 6 ; = _ A±B_ + J_{ t (y(A_B)+B)R + A _ 2U-ABT2)

A-B A-B R 1-r

, A2 2 , , J, 2
(2.6) +hLJ>.L+l=B*.R1.

1-r R 1-r

Now,
35 sin6
89 A-B

where

T(R) ,

2
T(R) = 2 1~ABp _ i _ [y(A-B)+B]R

1-r R

p
> 2 1~ABv _ [1 + R\ a s ^ j and Y $ 1 .

1-r ^R >

Denote the right-hand side by F(R) ; then dF/dR = 1/R - 1 . Since

R e [a - d, a + d] a n d a - d < l 3 a + d > l , t h e minimum o f FCR) i s

at ta ined a t e i ther R = a - d or R = a + d . Now,

(1-A2)(1-Br)2+(1-B2)(1-Ar)2} > Q

(1-r2) (1-Ar) (1-Br)

Also,

F(a+d) =
1-r 1+Ar 1+Br
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= r
2 1(1-A2)(1+Br)2+(1-B2)(l+Ar)2] > Q

(1-r2) (l+Ar) (1+Br)

Thus T(R) > 0 . And so, the minimum of S(R,Q) on the disc

|pC3j-a| £ d is attained when 6 = 0 and R e [a-d^a+d] . Setting

6 = 0 in (2.6) we get

S(R,0) =-*+*-+ J-{[y(A-B)+B+^4-] R + (k+l=iji
AB AB 1r 1 r

4 ^
A-B A-B 1-r 1- r R 1-r

which yields

B 4 / ̂
dR A-B 1-r 1-r Rd

In the above expression we have that

2 2
y(A-B) + B + 2~B r0 * y(A-B) + B + 1 s 0

1- r*

if Y ̂  -(1+B)/(A-B) . Thus for -d+B)/(A-B) S y <, 1 , the minimum of

S(R}0) occurs at R = Rj if Rj e [a-d,a+d] , its value being

S(R1J0) = - ̂  + =- [ (L^J* - (l-ABr2)] .

A-B (A-B) (1-r ) 1

We next want to show that i?, > a-d . Indeed, for y in the range

-(1+B)/(A-B) < y <. 1 3 we have

(1+A) (1-Ar2) > 1-Ar
2

y(A-B)(l-r2)+(l+B)(l-Br2) 1-Br2

if and only if 1-Br > y(l-r ) , that is, if and only if

1 > (B-y)r2/(l-y) , which is always true as (B-y)/(l-y) < 1 for y

Consequently,

R2 1ZA^>1ZAL> (UAr}2 m (a_d)2 _

1-Br 1-Br 1-Br
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In other words, i?7 > a-d . However, Rj is not always less than a+d

For Ft. 2 a+d = Re, , the minimum of S(R,0) occurs at R = R2 , its

value being

2r2- Y - [ d-2y)A-B] r + yA2r
-

The result is sharp for the function P-,(z) = (1+Az)/'(1+Bz) for

Rj S Rg and the function P2C3j = [ 1+Aw^(z)\ /[ 1+Bwg(z)\ for R^ > R^

where w^fz) = z(z-Cr,)/(l-Ccp) with e« being determined from the

equation Re{[ 1+Aw2(z)]/[ 1+Bw^(z)\ } = R1 at z = r .

THEOREM 2.3. 1/ p(z) e PC^BJ , y < 1 , then on \z\ = r < 1

Y v- [ Ci-2YM-g] r + yA2r2

(1-Ar)(1-Br)

A-B (A-B)(l-r2)

R3 ~ R4 >

3 R, ± R, 3
4 3

where = (1-Ar)/(1-Br) , L2 = (1-A) (1+Ar
2) ,

= (1-B)(l+Br2) - y(A-B)(l-r2) . The result is sharp.

Proof. The same argument as in the proof of Theorem 2.2 yields

{27) / r
2\Bp(z)-A\2 - \1-P(z)\2 _

(A-B)(l-r2)\p(z)\

Put pdsi = a+u+iv and denote the right-hand side of (2.7) by S(u,v)

then

(2.8) S(u,v) =-*+*- (a+u)

R
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so that

A-B R

where

T(u,v) = 2A(a+u) 1-B2r2

t~?
-, r,2 2

[2R3+(d2-u2-v2)R]

> 2(a+u)[A + 1~B r
0 (a-d)2] .

1-r2

Now,

1-r
(a_d)2 a A

(1+B)(l-Ar)2 + (A-B)(1-ABr2)

(1-Br)2

> 0 .

Hence T(u,v) > 0 and the maximum of S(u,v) on the disc |pf2>l-a| < d

i s a t t a ined when v = 0 and u e [-d,d] . Putt ing v = 0 in (2.8) gives

S(u,O) = - — + ^-A
A-B A-B

iJL. + [ y(A_B)+B _
1-r a+u 1-r

4
1-r

which yields

dS(u,O) _

du
-[ y(A-B) (1-r2)-(1-B) (1+Br2)+(1-A) (1+Ar2)-

(A-B) (1-r)

Now (1-B)(1+Br2) - y(A-B)(1-r2) > 0 if and only if

(a+u)'

Y <
1-B 1+Br

.2 'A-B 1- r

Since 1-B > A-B and (1+Br )/(l-r ) > 1 , the restriction y ̂  1 shows

that the above condition is satisfied. Hence with y ̂  1 , we see that

dS(u3O)/du vanishes at uQ = (L^/Y.^) -a . Thus the maximum of S(u,

occurs at u = UQ if u« e [ -d3 d\ , its value being

0)

A-B (A-B) (1-r)
[ 1-ABr2 -
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Now, an easy calculation shows that

(1-A) (1+Ar2) < 1+Ar
2

(l-B)(l+Br2)-y(A-B)(l-r2) 1+Br2

if and only if y(l-r ) < 1+Br , which holds for y < 1 . Hence

(a+uJ2 4U 4
1+Br

that is, it- < d . However, it is not necessary that u- > -d . For

UQ i -d , that is, R~ $ J?. , the maximum of S(u,0) occurs at u~ = -d ,

j n) - Y + I (l-2y)A-B] r + yA2r2
(-d,0) - (l-Ar)UBr)

its value being

The result is sharp for the function pj (z) = (1+Az)/(1+Bz) for

R3 5 R4 and the function pJz) = [l+AwJz)\ A 1+BwJz)] for R4 <. R

where W-(z) = z(z-aj/(l-a^) with c, such that

Re{[l+Aw3(z)]A.l+Bw,(z)\ } = R, at z = -r .

3. The class I (A,B)

This section establishes the radius of convexity and the bounds for

\f(z)\ for I (A,B) . The bounds for \f'(z)\ over I*(A,B) are not

known. However, we shall determine these bounds for two special cases of

I (A,B) , namely, £Q and £*[a] .

THEOREM 3.1. The radius of convexity of I (A,B) is given by the
smallest root in (0,1] of

(i) A2r + (A+B)r +1=0, for R£ Z RJ ,

(ii) (4A2+3A+B)r4 - 2[ 2(1+A)2+A-B]r2 + 4+3A+B = 0 , for R2 Z R2 ,

i?2 j flg being as given in Theorem 2.2 with y = 1 .
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Proof. For f(z) e \ (A,B) , we deduce

(3.1) -I1+^p[^ =P(3) - %!$-* p(z)z?(A,B).

The resul t now follows from Theorem 2.2 with y = 1 and is sharp for the

functions f-,(z) for i?2 ^ R-, and fn^z^ f o r Rj - R% • where fj(z) ,

fn(z) a r e given by
zfUz)

Ji '

p~(z) j Pp(z) being extremal for Theorem 2.2.

As a special case of Theorem 3.1, we determine the radius of

convexity of the class 1 r \ °f functions f(z) = l/z+a.Q+a.,z+... for

which

lZ£fejJ +l\<o.,0<a<l,zeh.

COROLLARY 3.2. The radius of convexity of l(a) is

a = {[2+5o.+2a2-2(l+a)(l+a2)3s]/a(4a+3)YS .

"-(a.)

z e A ,

Proof. For f(z) € 1/ i we may write

where p(z) s a t i s f i e s the condition

\p(z) - j | < a , 0 < a < 2 , z £ 4 ,

Put w(z) = [p(z)-l]/a j then w(z) e B and p(z) = l+ow(z) . Hence

p(z) e P(a.jO) . Theorem 3.1 with A = a , B = 0 gives, for R* < i?o 3

the radius of convexity of f(z) to be the smallest root in (0,1] of

the equation

a(4a+3)r4 - 2(2+5a+2a2)r2 + 4+3a = 0 .

It is clear that the only root in (0, 1) of this equation is 0 . Now,

the condition i?2 £ i?̂  with A = a , B = 0 , y = 1 is equivalent to

- a(2+a)r + 2ar2 + a2r3 < 0 ,
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which always holds for 0 < a < 1 , 0 < r < 1 . Hence the case Rg

does not exist for the class L( \ • T n e Pr°of is therefore completed.

To obtain bounds for \f(z)| over £ (A,B), we observe that

f(z) £ I (A,B) if and only if l/f(z) e S (A,B) . Hence an application

of Theorem 4 of [ 2] gives

COROLLARY 3.3. Let f(z) e i*(A,B) ; then on \z\ = r < 1 ,

T1(H**)12-A)'B ± \f(z)\ , r-Jr;-5r/s-^;/B , if B * o ,

r~2exp(-Ar) < \f(z)\ ^ r 1exp(Ar)

The function f(z) defined by

_ zf'(z) 1+Az
f(z) 1+Bz

if B = 0 .

s e A

shows that the bounds are sharp.

l'Cs-'l for two subclasses of V*(A.B)

(l-2a,-l) and \ [ a] = I fa,-a,) .

We next derive bounds for

namely, J

THEOREM 3.4 Let f(z) e f , 6 = l-2a ; then on \z\ = r < 1

\f'(*)

-2,. 2,-1
r (1-r ) a = 0 ,

4r

1<
r

where 4/5 < an < 1 :
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y Cl = 0 ,

exp{ tan
1-a

ri 0 < a < h ,

) / (1-r2 )\k

< a < 1

The results are sharp.

Proof. From the expression

log (z2f'(z)) = log \z2f'(z)\ + ±aig{z2f'(z)} ,

we derive

2 i } \ 2 \

This together with (3.1) give, for f(z) e ) ,

(3.2) log ]z2f'(z)\ = i-Re{p(z) -ZK^L) , p(z) e

The condition R1 < Ro of Theorem 2.2 with A = l-2a , B = -1 , y = 1

is equivalent to

(3.3) F(a) E -2r(l+r)a2+(r2+5r+2)a-2(l+r) < 0 .

Now, FrW = -2(l+r) < 0 J Ffi; = rCJZ-r; > O , F^/5; = -2(6r> -9r+5)/25<0

for 0 < r < 1 . Hence F(a) has a zero in [4/S3D . It may be

checked that this is the only zero, denoted by (X- , less than 1 of

F(a) . Thus for a £ aQ , we have F(a) £ 0 for 0 < r < 1 . And so

the case does not exist for 0 < a < a.g when we consider the

class £ . Theorem 2.2 with A = l-2a , B = -1 , y = 1 applied to

(3.2) yields
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Hence

" f
o o t

With the substitution w = [ (l-8t )/(l-t )] , the integration may be

carried out to give the upper bound for |/'fjsj| . To obtain the lower

bound for \f(z)\ , we note first of all that the condition R^ 5 R^ of

Theorem 2.3 with A = l-2a , B = -1 , y = 1 is equivalent to the

inequality

2 + (l+2a)r + (l-2a)r3 s: 0 ,

which always holds for 0 < r < 1 , 0 < a < 1 . Hence there is only one

case, R. <. R- , for the upper bound of Re{p(z)-zp '(z)/p(z)} with

p(z) e ?a . This result applied to (3.2) gives

2 l o g \z2f'(z)\ > - 2 2 2 2 2 h\ - a-

dr 1-a (1-a)(1-r )

Hence

log \z2f'(z)\ >. J-F{Z^
l-a}0 1-t*

0

., B . n 2. 2a P t(2a+8t2)dt
.4) = log (1r ) ^ •=

2a P

i-a}0 a-t

It follows at once from (3.4) that, for a = 0 , \f'(z)\ Z 1/r - 1 . For

2 2 H
0 < a < 1 , with the substitution u = [ (l+&t )/(l-t )] and carrying out

the integration, we get the lower bound for \f'(z)\ .

The upper bound for \f(z)\ is attained for the function f(z)

defined by

https://doi.org/10.1017/S0004972700002112 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700002112


408
V. V. Anh and P. D. Tuan

while the lower bound for \f'(z) | occurs for the function f(z)

defined by

zf'(z) „ ,_.

where p^Cz) , p~(z) are extremal for Theorems 2.2 and 2.3 respectively.

Padmanabhan [ 4] in his work on S [ a] and 2, [ al derived the radius

of convexity of £ [ a] , while the distortion theorem for this class was
not given. Here we prove

THEOREM 3 . 5 . If f(z) e l*[a] > then on \z\ = r < 1

The results are sharp.

Proof. Denote by P[ a] the class of functions p(z) = l+p-z+...

which satisfy the condition

l ^ f ^ j l < a , 0 < a * 1 3 a e & ,

- v*
that i s , P [a] = P(a,-a) . For f(z) e I [ a] , we may write

(3.5) r i - log \z2f'(z)\ = 1 - Re{p(z) - 3P \(z) }
O27 p\Z J

as in the proof of Theorem 3.4, where now p(z) e P[ a] . The condition

Rj S .ffg of Theorem 2.2 with A=a,B=-a3y=l is equivalent to

-2C1+O.) (1-ar ) <, 0 , w h i c h i s a l w a y s t r u e f o r 0 < r < l , 0 < a . < , l .

Hence the case i?« S /?- does not exist for p(z) e ?[ a] . Consequently,

an application of Theorem 2.2 to (3.5) yields

3r 1-r

And so.

https://doi.org/10.1017/S0004972700002112 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700002112


409
Meromorphic starlike univalent functions

log \z2f'(z)\ < f i°*^* -alog (1-r2) ,
h 1-t2

p On

that is, l/'feJl ̂  2° (1-r ) . Similarly, we can show that the case

R3 < R4 of Theorem 2.3 does not exist for p(z) e P[a] and the lower

bound for |/'("zj| can be derived from Theorem 2.3 with A = a , B = -a ,

Y = 1 and (3.5).

The upper bound for f'(z) is attained for the function f(z)

defined by

-ffl-',<•>
while its lower bound is attained for the function f(z) defined by

zf'(z)

p . C s J , p^(z) b e i n g e x t r e m a l f o r T h e o r e m s 2 . 2 a n d 2 . 3 r e s p e c t i v e l y .
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