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Abstract

Reacting systems with Arrhenius chemistry can exhibit multiple steady states for
vy > 4(1 + B)/B where vy is activation energy and 8 is the heat of reaction. We give a
detailed analysis of the extremely rapid jump which takes place as catalyst activity
slowly decays through criticality. Previous analyses are asymptotic in the limit y — o0;
here we relax the large y assumption and only require that passage through criticality is
slow.

1. Introduction

An intriguing feature of certain chemically reacting systems is a multiplicity of
steady and stable oscillatory states. Oscillatory states are exemplified by the now
famous Belusov-Zhabotinskii reaction. Multiple steady states are known to
occur in systems obeying Arrhenius chemistry with large enough activation
energy [3] and in isothermal systems with Langmuir-Hinshelwood kinetics [2).

Many solid-catalysed reactions are of the Langmuir-Hinshelwood (also
termed substrate inhibited) type which results from a nonlinear relationship
between reactant concentrations in the gas phase and in the sorbed form on the
catalyst surface. Existence, uniqueness and stability have been discussed by De
Vera and Varma [5] and we have recently investigated the dynamics of the jump
or exchange of steady states which takes place when one of the parameters of
the system passes through a critical value [6].
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Multiplicity in systems with Arrhenius chemistry has been of interest for some
time (see Aris [3]) and a good deal of work has been done in the context of
combustion theory. For example, Lifian and Williams [16, 17] have determined
ignition time for a combustible material exposed to constant energy flux and a
sudden change in surface temperature. The analysis was asymptotic in the limit
of large activation energy, y. In the same limit, y — oo, Kapila and Matkowsky
[11] have obtained asymptotic solutions to the steady reaction-diffusion problem
in nonisothermal porous catalyst pellets of slab and cylindrical geometries.
Analytical expressions were obtained for all three branches of the S-curve
characterising the response of the system.

Large activation energy asymptotics date from at least 1939 when Frank-
Kamenetskii {7] used the concept, and it has since been discussed by Williams
[20] and applied to flame phenomena [4, 15]. The dynamics of such systems on
passage of a parameter through critical have begun to be analyzed only recently.
The earliest work appears to be that of Kassoy [12] who gave a transient analysis
of spatially homogeneous gaseous explosions in the subcritical, nearcritical and
supercritical regions. For such lumped systems governed by nonlinear ordinary
differential equations, the response caused by slow variation of a parameter
through criticality has been treated by Haberman [8]. Very recently, Kapila [9]
and Kassoy and Poland [13, 14] have examined the dynamics of ignition in
distributed parameter systems and Kapila [10] has reported on the transition
from the extinguished to the ignited state as the reaction rate parameter is slowly
varied through critical in both lumped and distributed systems. All of these
analyses are asymptotic in the limit ¥y — 00. From a practical viewpoint, such a
limit is not nearly as relevant to chemical reactors as it is to combustion
phenomena, although y — oo does allow one to get at higher order terms in the
asymptotic expansions rather more easily.

In the current work, we analyse the dynamics of the response of a lumped
parameter system when the catalyst activity slowly passes through a critical
value but we relax the requirement that y is large. We ask only that the rate of
catalyst deactivation be sufficiently slow.

2. System equations

For the first-order reaction 4 — B in an adiabatic constant-flow stirred-tank
reactor fed with product-free reactant at concentration C, and temperature T,
the species and heat balance equations are

VdC,/dt = F(Cy — C,) — VkoaC, exp[ ER™(T3' — T)], (2.1a)

https://doi.org/10.1017/50334270000000230 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000000230

280 D. D. Do and R. H. Weiland [3]

V dCy/dt' = —FCy + VkoaC, exp| ER™(T5' — T7)], (2.1b)
VeC, dT/dt' = pC,F(T, — T) + (-AH )VkoaC, exp[ ER™(T5' — T7)],
(2.1¢)

where T is temperature, C, and Cy are the reactant and product concentrations
respectively, ¢’ is time, a is catalyst activity, E is activation energy, (-AH) is the
heat of reaction, V is reactor volume, F is feed rate, p is density and C, is

specific heat. We introduce the following nondimensional parameters and varia-
bles:

t = ko, H=F/(Vk), vy=E/(RTy), B=(-AH)/(pC,).
so that (2.1) becomes

A, = H(1 — A) — ad exp[y(1 — 87Y)], (2.2a)
B, = -HB + ad exp[y(1 ~ 07")], (2.2b)
6, = H(1 - 8) + Bad exp[y(l - 0")]. (2.2¢)

The parameter H is the space velocity through the reactor and is essentially the
inverse of the holdup time.

There are two types of self-poisoning: in the first the catalyst is deactivated by
the reactant irreversibly bonding with active sites (parallel poisoning) while in
the second, the product is responsible for loss-of-activity (series poisoning). We
shall restrict our attention to series poisoning for which the nondimensional
deactivation kinetics are

—a, = eaB exp[ 8(1 - §7)], (2.2d)

where 8 = E,/(RT,) is the activation energy associated with the poisoning
process and ¢ = k,C,/k is a small parameter measuring deactivation rate
(constant k) relative to reaction rate.

The reactor is taken to be filled initially with only inert material at unit
temperature but to contain fully active catalyst:

A(0) = B(0) =0, (22¢)
8(0) = a(0) = 1. (2.2f)
It can easily be shown that species concentrations and temperature are interre-
lated quite independently from reaction order, activation energy and any consid-

eration of poisoning. This allows us to write the system equations solely in terms
of temperature and catalyst activity:

6= H(1 —6) +a[(1 + B— 8) — Bexp(-Hi)] exp[y(l - 0“)], (2.3a)
a, = —¢B™'a(8 — 1) exp[8(1 — 871)], (2.3b)
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subject to (2.2f). We are interested in the dynamic behaviour of # as a slowly
passes through a critical value, a.. In the transition analysis we will take § =0
but we will not impose any special restriction on vy except that it be sufficiently
large for multiple solutions to exist. This is in sharp distinction to previous work
on Arrhenius systems in which solutions were obtained only asymptotically in
the limit y — o0. We obtain leading order solutions valid in the limit ¢ >0, in
which ¢ measures the rate of deactivation compared to the main reaction rate.
The slow variation of a is characterized by a slow time 7, in which

T=7¢t, e<1, (24)
so that (2.3) transforms to
e, = H(1 - 8)+a[(1+ B—0)— Bexp(-Hr/e)] exp[y(l - 0“')],

(2.5a)
a, = -af~(6 — 1) exp[ 8(1 — 7). (2.5b)

Initial conditions are
a(0)=1, 6(0)=46", (2.5¢)

where # * is the only real root of g(d, 1, t — o) = 0 and
g(0,a,1)= H(1 — 8) + a[(1 + B — 0) — B exp(-Hi)] exp[y(1 — 671)].
(2.5d)

Thus, § * represents the quasi-steady state attained immediately following reac-
tor startup. We note that in the limit y — oo, # * becomes

8" ~(1+ B)— HBexp[-vyB/ (1 + B)] + ..., (2.5¢)

and that the last term is transcendentally small.

3. Outer solutions

There are several regions which need to be considered separately. Away from
criticality, 7 is adequate to describe the slowly changing behaviour (except in the
startup period when ¢ is appropriate). As criticality is approached, the solution
develops on a faster time scale; however this time fails to describe the dynamics
of approach to the new steady state and an even faster time is needed. Here we
examine the outer region, away from criticality.

We take advantage of the smallness of ¢ and assume asymptotic solutions of
the form

0(r; €) = 8y(7) + €8,(1) + O(&?), (3.1a)
a(7; €) = ay(1) + ea,(t) + O(&?). (3.1b)
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At leading order the equations are

H(1 — 85) + ag(1 + B — 8,) exp[ v(1 — 65")] =0, (322)
da
TTO = a,B7'(1 — 6y) exp[ (1 — 65") ], (3.2b)
from which
ay = {H(f, — Dexo[v(6;' — 1)1}/ (1 + B —8y. (3.3)

Using (3.3) in (3.2b), we obtain the dynamic equation for temperature §, on the
slowly varying manifold:

b, 03(1 + B — 6)(8, — 1)" exp[ (1 — 65")] aer

0 _ = G(8,). (3.4)
dr _ 2+ B) y(1 + B)
B(B+Y)[og B+,Y 00+ ,B+Y }
The formal ordering which results from (3.1) is invalid when
o3 -Y2*rB) g  YAEB) _ o), (3.5)

B+y ° B+y
since then edf,/ dr is not O(¢). The solutions 8* and 8, of (3.5) with ¢ = O are

e _Y(B+2 Y(B+2Y v+ 8]

’ _5(B+Y)+[7(B+Y) OB+ y | (3.62)
_y(BH2Y [(B+2V (1 +B]

0*_2(/3+7) [4(.3+7) B+vy | (3.6b)

termed upper and lower branch points, respectively, and we see that a necessary
condition for multiplicity is

y > 4(1 + B)/B. 3.7
For non-first-order reaction, necessary conditions have been obtained by van
den Bosch and Luss [19] and Tsotsis and Schmitz {18]. We note that in the limit
Y — oo expressions equivalent to (3.6) are

g  ~(1+ B) — (1 + B /y + (B*+4B% - 48 — 2)/ (28y") + O(y™),
(3.8a)

0, ~1+y '+ (B*+4B+2)/(28y) + O(y?). (3.8b)

Thus, by comparing (2.5¢) with (3.8) we see that §* >60* >4, > 1 and the
necessary condition for multiplicity is always satisfied for y — oo.

Only the upper branch point 8* is of interest here since for extinction 4, is
unattainable by slowly decreasing a (see Figure 1). The other solution 8, varies
smoothly from the initial quasi-steady level 8 * to 8* and then jumps (discon-
tinuously on the 7-scale) to another quasisteady state 8, shown in Figure 1. The
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Figure 1. Solution trajectory in the phase plane.

other branch point, 8,, could be reached only by increasing a along the branch
containing # and it is noted that 8 is not a branch point.

The jump can be understood by linearized stability theory which in terms of
the deviation variable

w = 0 - 00, (3'9)
gives
% = ag_(o%oo)_w + O(w?), (3.10a)
as the equation governing stability. Here
3g(8o, ap, ) ___H(B+Y) 02 — Y(2+B)0 +Y(]+B)
a9 021+ B—-6)l > B+y ° Bty
(3.10b)

The solution 6§, represents the entire solution given by the whole of the curve in
Figure 1. The eigenvalue of (3.10a) is dg/df; we have asymptotic stability in the
limit # — oo if dg/38 < O, instability if it is positive and neutral stability if it is
zero. In the precritical period, 8, € (8 *, 8*) for which the eigenvalue is negative.
As 6, — 0*, 9g/d0 passes through zero and becomes positive as §, passes
through #*. It remains positive along the middle branch of the curve where
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8, € (8%, 8,); the whole of this branch is globally unstable. Stability is regained
on passage through #, and the entire lower branch is stable. Since dg/98 is
purely real, the new state @ is approached monotonically and not through a limit
cycle.

The solution of (3.4) with initial condition (2.5¢) is implicit (8, & (8*, 8))

il e Y2+ B) . v+ B)
e”““‘*”ﬂﬁ (ﬁ+wx+(ﬁ+w}“

(1 + B — x)(x — 1)*x?

>

r=BBE [
(.11)

and since the time characteristic of the jump is too fast to permit a detectable
change in a at leading order, the new steady state # is the only real solution
(other than 6*) of

(1+p8-19) exp[y(l - 0_")] _ (1+B— 6% exp[y(1—06*")]

, (312
(1-8) (1-6%) G12

from (3.3). The branching time 7, is given by (3.11) with 8, replaced by #* as the
lower limit of integration.

The behaviour of the upper and lower branches is needed for subsequent
matching. At this juncture we put § = 0 to keep the analysis tractable and find
that for, (1 — 75) > 0—,

8y ~ 0% + a(8*)(7o — 7)"/* + O(1y — 7) (3.13a)
while for (1 — 75) > 0 +
8~ 0 —G(8)(r — 19) + O(r — 1), (3.13b)

where G(0) is as defined in (3.4) but with § = 0 and

2(1 + B~ 0%)8*(0* — 1)
B{O*[v*+2v(1 + B)] — Y1 + B)}

a¥(6*) = (3.13c)

4. Transition

The time appropriate to the initial stages of the jump is assumed to be of the
form
T — 15 — p(E)
¢t = __0__(_ , 4.1)
v(e)
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in which »(e) > ¢ and p(e) is a time shift which could be found from higher
order matching [6]. We examine the dynamics locally in the vicinity of the
critical point (8%, a*) using the following local expansions:
6 = 0* + 0,(e)0,() + 0o(0)), (4.2a)
a=a*+ w,(e)a;(§) + o(w). (4.2b)
When the expansions (4.2) are used in (2.5) rewritten in terms of the new time ¢,
a balance of the principal terms results from the choice

v(e) = €273, 0,(e) = '3, w,(e) = /3, (4.3)
and the leading order equations are
dé, _,[d%* 2 og*
71;7 = 5( YE 01 + (—aa—)al, (443.)
da,
d—§ = —[(0* - 1)/,B]a‘, (44b)
with a* given by
a* = {H(O* — 1) exp[y(8*' = 1)]}/ (1 + B — 6%). (4.5
The notation g* indicates that the derivatives are evaluated at §* a* with
t = oo.
The solution of (4.4b) is

a, = —({H(O‘ ~1)? exp[y(ﬂ;’ - 1)]}/(1 +8 - o*))g, (4.6)

in which the constant of integration has been absorbed into the time shift p(e).
When this result is used in (4.4a), we obtain an equation which can be put ito
Riccati form through the transformation

__1fda%
T=— 2( 297 )f, (4.7a)
* H(0* — 1) exp[y(8*' — 1
K=4 dg*/da ( )" exp[ ¥( _ )] (4.7b)
(3%* /90?)? B(1+ B — 6%
The resulting equation is
df
d—T' + 02 = —KT, (4.8)
which can be solved through the transformation
0, = d(ln V)/dT. (4.9)
Putting n = K''/T we obtain the well-known Airy equation
d*v
ey +qV =0, (4.10)
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whose solution can be written in terms of the modified Bessel functions [1]:
2
C("Tl)l/zKl/s[ 3("’7)3/2] forn <0,
Cvm 1/2 2 2
31/2 [Jx/a(§n3/2) +J_,/3(§n3/2)] forn > 0.

Thus, @ has the following asymptotic forms in the limits { — o0 and { —» —oo0,
respectively:

(4.11)

28(1 + B — 6%)6** ]wg—.
H(6* — 1)’{0*[ v + 2v(1 + B)] — ¥*(1 + B))
+0({?) as{— oo, (4.12a)

and

0~ 0* + 81/3C[

0 ~8* + £/3C

H0* — 1P{0*[v* + 2v(1 + B)] — ¥%(1 + B)) '/6(_“./2
28(1 + B — 6%)6%

+0(¢) as{— —oo. (4.12b)

It is the form (4.12b) which, when written in terms of (7 — 7;), matches the

asymptotic form of the precritical solution in the limit (+ — 75) - 0 — given by
(3.13a); the integration constant must be

2(1 + B — 6%)6**
BYAHH6*[ v +24(1 + B)] = ¥¥(1 + B)}
The algebraic decay ({ ") of (4.12a) does not permit matching with the lower
branch of the outer solution. In view of the local nature of the expansions (4.2)

this was to be expected. We therefore consider a second post-critical transition
region.

2/3
] . (4.13)

5. Second transition

The time appropriate to the approach to a new quasi-steady level 4 is
— 75— 6
£ = I_&_ﬁ’ (5.1)

£
so that apart from the time shift (&), which can be determined only by matching
of terms higher order than the first, § is equivalent to the original fast time ¢.
With the asymptotic expansion

8 = 04(8) + €8,(§) + O(e?), (5.2a)
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a = ay(¢) + ea,(¢) + O(e?), (5.2b)
the leading order equations are
db,
dg g(go’ Qo w) (533)
da,
aE 0. (5.3b)
The solution to (5.3b) is
ao(§) = a*, (54)
and when this is used in (5.3a) we obtain
a8,
o0~ (1 - )
+ H(9* — 1)[(1 +B—6)/(1+ 8- og)] exp[_y((éo)—- _ (gt)-l)].
(5.9)

This can be solved in terms of a quadrature and the solution has the following
asymptotic behaviour which we require for matching;:

§ > o0; 6, ~ 0 +transcendentally small terms, (5.6a)
§—-00; Oy~ 0*+ o/t (5.6b)

where
o = o*/[ HB(8* — 1)*], (5.7

and a? is given by (3.13c). The solution matches automatically with the lower
branch, as can be seen from (5.6a), and a little algebra will show that it also
matches with the first transition solution (see (4.12a)).

6. Concluding remarks

We have examined the dynamics of an adiabatically operated reactor as the
catalyst activity passes through a critical value a*. In the precritical period and
in the period following the jump the system responds on a time scale & but
passes through criticality on the faster time scale e'/%. The jump is completed on
the even faster time ¢, which is basically time scaled on the space velocity
through the reactor. Apart from (3.7) we have made no assumptions about the
magnitude of y, yet our results in many respects parallel those of Kapila [10]
who examined the inverse problem of ignition but in the limit y — oo. For the
ignition problem he found that most of the jump took place on an exponentially
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fast time scale in y; however this appears to be an artifact of the large activation
energy asymptotics. When we relax the assumption of large y such behaviour
does not arise. The cost of relaxing this assumption is algebra so unwieldy that
only O(1) solutions can be found. However, we speculate that, just as in the case
of a jump caused by the interaction of a slowly varying parameter with
Langmuir-Hinshelwood kinetics [6], there will be two time shifts, one each on
the ¢!/% and t-scales. The use of the approximation y — oo results in the shift on
the ¢'/%-scale being lost and only the ¢-scale need be time shifted [10).

The activity at which the transition will take place and the reactor will fail is
given by (4.5) and in the limit of y — oo this is

a* ~[Hpy/ (1 + B)’] exp[-By/ (1 + B)] <1, (6.1)

where we have had to use the first two terms in (3.8a). Thus, for y — oo, Figure
1 must be replaced by Figure 2 and

a, ~[H/(By — D] exp[- (1 + 1/7)"]. (6.2)

For very large v, the reactor fails at exponentially small values of activity and the
jump is most spectacular, being nearly 8 in magnitude.
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Figure 2. Solution trajectory for y > 1 showing reactor failure when a is nearly zero.

In the transition region, for large v, the solution (4.6) is asymptotically

a, ~—Pa*s, (6.3)
with a* given by (6.1). This implies that (4.2b) is
afa* ~1— 62/3B§, (6.4a)
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or
a/a* ~1— B(r — 1), (6.4b)
and comparing with (2.24) of Kapila [10] we see that his small parameter § plays
the same role as ¢ here. In his analysis, § > vy~
Perhaps the most important distinction between the work of Kapila [10] and
the current analysis is that if one were to take y — oo in the present problem,
then the reactor would not undergo sudden failure—it would merely die with
slowly falling activity. Thus, from a practical standpoint the asymptotics of
y — oo is probably not very relevant to the failure of chemical reactors, which in
any case have rather modest values of y. For ignition and explosion problems,
however, large activation energy asymptotics allows calculations to be made in
far greater detail.
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