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Abstract

In this study, we are concerned with a boundary value problem (BVP) for nonlinear differ-
ence equations on the set of all integers Z, under the assumption that the left-hand side is a
second-order linear difference expression which belongs to the so-called Weyl-Hamburger
limit-circle case. The BVP is considered in the Hilbert space I2 and includes boundary
conditions at infinity. Existence and uniqueness results for solution of the considered BVP
are established.

1. Introduction

Let A be the forward difference operator defined by Ay (t) = y(t + l)—y(t). Consider
the second-order nonlinear difference equation

A[p(t-l)Ay(t-l)]+q(t)y(t) = f(t,y(t)), t el, (1.1)

where p(t) and q(t) are real-valued functions defined on 2, p(t) ^ 0 for all t e Z
and f(t, £) is a real-valued function defined on Z x 1. Note that by Z we denote the
set of integers and by K the set of real numbers.

Denote by I2 the Hilbert space of real-valued functions y(t) on 1 such that
E~-oo \y(O\2 < oo with the inner product (y, z) = £~-oo y(t)z(t). Further, we let

Ly{t) := A[p(t - l)Ay(t - 1)] + q{t)y{t) (1.2)

and denote by D the linear manifold of all elements y € I1 such that Ly € I2. Notice
that all functions y(t) with finite support (that is, functions having only finitely many
nonzero values) belong to D.
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Let us set y(A1(O = p(t)Ay(t) and for two arbitrary functions y = y(t) and
z = z(t) we define the Wronskian of y and z by

W,(y, z) = y(t)zw(t) - yM(Oz(t) = p{t)[y{t)z{t + 1) - y(t + l)z(f)], t € 1.

It follows from Green's formula

(a, 6 6 I , a < b) (1.3)

that, for all y, z € D, the limits W^y, z) = lim^-oo W,(;y, z) and WooO1, z) =
lim^oo W,(y, z) exist as finite numbers.

We will assume that the following conditions are satisfied.

(Cl) The coefficients p(t) and q(t) are such that all solutions of the second-order
linear difference equation

A[p(t-l)Ay(t~l)] + q(t)y(t)=O, t el, (1.4)

belong to I1.
(C2) For each t € 2 the function f(t, f) is continuous in f € K, and

(1.5)

for all (t, £) in 2 x R, where g(r) > 0, g € ̂ 2 and d is a positive constant.

REMARK. The condition (Cl) means that for the difference expression (1.2) the so-
called Weyl-Hamburger limit-circle case holds (see [5, Chapter 7]). If, for example,
p(t) = t2 + 1 and q(t) = It1 - It + 3, then the condition (Cl) holds.

REMARK. If we define the operator F taking each function y(t) to the function
/ ( ' . y(0), then the condition (1.5) is necessary and sufficient for F to map I2 into
itself (see [6]).

Let M = u(t) and v = v(t) be solutions of (1.4) satisfying the initial conditions

M(0) = 0, M | A 1 ( 0 ) = 1 ; U(0) = - 1 and v|A1(0) = 0. (1.6)

By the constancy of the Wronskian of anytwo solutions of (1.4) we have W,(u, v) = 1.
Consequently, u and v are linearly independent and they form a fundamental system
of solutions of (1.4). It follows from the condition (Cl) that u, v € I2 and moreover
u,v € D. Therefore for each y e D the values Wioo(y, u) and Wioo(y, v) exist and
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are finite. For these values we can get, by using Green's formula (1.3) and the initial
conditions (1.6), the formulas

1=0

-oo

W-X(y, v) = yw(0) + £ v(t)Ly(t),

(1.7)

W^y, u) = y(0) - J2u(')Ly(t),

00

WooC, v) = yw(0) - J^ v(t)Ly(t).

Our boundary value problem (BVP) consists of finding a function y = y(t), t € 2,
such that yet2 and y satisfies (1.1) [consequently y € D by (1.5)] and the boundary
conditions at - o o and oo:

= di and yW^iy, u) + SW^iy, v) = d2, (1.8)

where a, /J, y, and S are given real numbers satisfying the condition

(C3) oo := aS — fiy J£ 0, and du d2 are arbitrary given real numbers.

Notice that since in (1.8) the function y satisfies (1.1), from (1.7) we have the
following formulas for the values W±0O(y, u) and W±oo(y, v):

1=0

W-ooiy, u) = >>(0) + 53 «(')/(*, y(0).
- 0 0

(=0

+ 53"(')/(». y(0).
- 0 0

00

In Section 2 we construct an appropriate Green's function by means of which the
BVP (1.1), (1.8) is reduced to a fixed point problem.

In Section 3 by using the Contraction Mapping theorem (Banach Fixed Point
theorem) we show that there is a unique solution of the BVP (1.1), (1.8) if f(t, £)
satisfies a Lipschitz condition.
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In Section 4 a theorem based on the Schauder Fixed Point theorem is proved which
gives a result that yields existence of solutions without the implication that solutions
must be unique.

Finally note that a similar problem in the case of the discrete semi-axis was earlier
investigated in [7] and in the continuous case in [8]. For other formulations of BVPs
on infinite intervals we refer to [1-4].

2. Green's function and the operator A

For h € I2 consider the linear B VP

A[p(t-l)Ay(t-l)] + q(t)y(t) = h(t), f e Z, (2.1)

aW_oo(y, u) + pW-^iy, v) = 0,

y,v) = 0,

where y € I2 is a desired solution and u and v are solutions of (1.4) under the initial
conditions (1.6).

Let us set

<p(t) =au(t) + Pv(t) and ir{t) = yu(t) + 8v(t). (2.3)

These functions (together with u and u)are solutions of (1.4) and are in I2. In addition
we have, for all t € 2,

W,(fp, a ) = <p(0) = -fi, W,(<p, v) = <pl*\0) = a; (2.4)

-«, V/,W, v) = VIA1(0) = y. (2.5)

Therefore <p satisfies the boundary condition at — oo in (2.2), and \Js satisfies the
boundary condition at oo. The Wronskian of <p and ̂  is

and hence it is different from zero by the condition (C3). Let

>) = — I ~ ' (2-7)
to \<p(s)\lf(t) if - oo < 5 < t < oo.

Since (p, y\r € I2, we have

00 OO

y \G(t,s)\ < oo. (2.8)
( =—OOJ=-O0
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THEOREM 2 . 1 . The nonhomogeneous BVP ( 2 . l ) - ( 2 . 2 ) has a unique solution y e t 2

for which the formula

oo

y(t) = Y G(t, s)h{s), t e I, (2.9)
S=—00

holds, where the function G(t, s) is defined by (2.7), and G(t, s) is called the Green's
function of the BVP (2.1 M2.2).

PROOF. Under the condition (C3), by (2.6), the solutions <p(0 and f{t) of the
homogeneous equation (1.4) are linearly independent. Consider the function

z(t) = ̂ J2 M*W) - <p(fW(s)Ms), t 6 2. (2.10)
-oo

Since <p, \j/, and h belong to I2, the series (2.10) is convergent for each t € 2. It can
be directly verified that the function z(t) defined by (2.10) is a particular solution of
the nonhomogeneous equation (2.1). Therefore the general solution of (2.1) has the
form

_ - l ' ^ '
CO L—i

-oo

where c\ and c2 are arbitrary constants. Now we try to choose the constants C\ and c2

so that the function y(t) also satisfies the boundary conditions (2.2). From (2.11) we
have

Therefore, taking (2.4) and (2.5) into account, we find

CO
- o o

i u) + c2W,(\lr, u) -\ > [(p(s)W,{xlr, u) — rj/(s)W,(<p, u)]h(s)
co J

c28 + - Y\-8<p{s)
co i—1

-oo
s=l

c28-y^u(s)h(s). (2.13)
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Likewise

s=l

W,(y, v) = cta + C2Y-J2 v(s)h(s). (2.14)

From (2.13) and (2.14) we get

W-^iy, u) = -erf - c2S, W^iy, v) = cxa + c2y, (2.15)

, u) = -erf -c2S- J2 u(s)h(s) and

(2-16)

-, v) =

Substituting the values W^iy, u) and W^^iy, v) from (2.15) into the first condition
of (2.2) we obtain -c2(aS - Py) = 0, that is, -c2co = 0. Therefore c2 = 0 and
(2.11), (2.16) become

y(t) = ci<p(t) H y^ [<p(s)\j/(t) — (p(t)\jr(s)]h(s), (2.17)
co ^-^

—oo
OO 00

Wcoiy, u) = -csp - Yl u(s)h(s), Wx(y, v) = cxa - J^ v(s)h(s). (2.18)
S=—OO S=—00

Substituting the values W^y, u) and Woo(y, u) from (2.18) into the second condition
of (2.2) we get

oo

c\ {-yP + aS)— V1 [yu(s) + Sv(s)]h(s) = 0.

Hence cx = (l/co) Yl^L-oo Vr(^)'I(*)- Putting this value of C\ in (2.17) we obtain

. 0 0 . S=t—\

T(OH)h()y(t) = -T<P(OrHs)h(s) + - T <p(sW(t)h(s),
co "-^ to

i=< -OO

that is, (2.9) and (2.7) hold. The theorem is proved. •

COROLLARY 2.2. The unique solution y(t) of the nonhomogeneous equation (2.1)
under the nonhomogeneous boundary conditions

frv) = d2 (2.19)
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is given by the formula y(t) = r(t) + 'EZL-oo G(t, s)h(s), where the function G(t, s)
is defined by (2.7), and

r(t) = %{t) - ^-f(t). (2.20)
CO CO

PROOF. The function r (t) defined by (2.20) is a unique solution of the homogeneous
equation (1.4) satisfying, by (2.4) and (2.5), the nonhomogeneous boundary conditions
(2.19), while the function Y^L-oo ̂ ('> s)h(s) is, by Theorem 2.1, a unique solution of
the nonhomogeneous equation (2.1) satisfying the homogeneous boundary conditions
(2.2). Hence the desired result holds. •

By Corollary 2.2 the nonlinear BVP (1.1), (1.8) is equivalent to the nonlinear
equation

00

y(t) = r(t) + J^ G(t, s)f(s, y(s)), t e 1, (2.21)
s=-oo

where the functions r(t) and G(t, s) are defined by (2.20) and (2.7), respectively.
So we have to investigate the equation (2.21) in I2. By (1.5), (2.8) and r e I2, we

can define the operator A : I1 -*• t2 by the formula

00

Ay(t) = r{t) + J2 G(f, s)f(s, y(s)), t € 1, (2.22)

where y e I2. Then (2.21) can be written as y = Ay. Therefore solving (2.21) in I2

is equivalent to finding fixed points of the operator A.

3. The Lipschitz case

In this section we will use the following well-known Contraction Mapping theorem,
also known as the Banach fixed point theorem: Let 68 be a Banach space and S a
nonempty closed subset of 68. Assume A : S -*• S is a contraction, that is, there is
a k, 0 < A. < 1, such that \\Au — Av\\ < k\\u — v\\ for all u, v in S. Then A has a
unique fixed point in S, that is, a unique point u0 € 5 such that Au0 = u0.

THEOREM 3.1. Assume conditions (C1)-(C3) are satisfied. In addition, let the
function f(t,%) satisfy the following Lipschitz condition: there is a constant K > 0
such that

00 00

- / ( / . z(t)\2 <K2T \y(t) - z(t)\2 (3.1)
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for all y and z in I2. If

f oo oo J '/2

l»=-oo/=-oo

then the BVP (1.1), (1.8) has a unique solution in I2.

PROOF. It will be sufficient to show that under the conditions of the theorem, the
operator A : I2 -*• I2 defined by (2.22) is a contraction mapping. For y, z € I2 we
have

\Ay(t) - Az(t)\2 =
2 _

00 2

G(t,s)[f(s,y(s))-f(s,z(s))]
J=—OO

00 00

\G(t,s)\2 J2 \f(s,y(s))-f(s,z(s))\2

S=—00 J=-0O

oo oo

|)>(s)-z(s)|2 J2 \G(t,s)\2

J=-O0 S=—00

oo

= K2\\y-z\\2 2^ IG(f,5)|2
J=—00

for t in Z. Hence || Ay - Az| | < X\\y - z\\, where

I I
lr=-oo/=-oo )

by (3.2). So, A is a contraction mapping and the theorem is proved. •

REMARK. The condition (3.1) is satisfied if \f(t, £,) - f(t, |2)l < K\S\ - h\ for
all t in 2 and all £,, ̂ 2 in OS.

In the next theorem, the function f(t,%) satisfies a Lipschitz condition not on the
whole of I2 but on a subset.

THEOREM 3.2. Assume conditions (C1MC3) are satisfied. In addition, let there
exist a number R > 0 such that

K2 J2 \y(0 - z(oi2 (3.3)
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for all y and z in S = {u € I2 : ||u|| < R], where K > 0 is a constant which may
depend on R. If

oo

E
'/2

EE
l»=-OOJ=-OO

and

(3.5)
l (=-00» = —00

then the BVP (1.1), (1.8) has a unique solution y 6 I1 with £~-oo \y(t)\2 < R2.

PROOF. Obviously, 5 is a closed subset of I2. Let A : I2 -> £2 be the operator
defined by (2.22). For y and z in 5, taking into account (3.3) and (3.5), in exactly the
same way as in the proof of Theorem 3.1, we can get \\Ay — Az\\ < k\\y — z\\, where
A. < 1. It remains to show that A maps S into itself. For y in S, we have

( 3 - 6 )

by (3.4). Therefore A : 5 - • S.
Now the contraction mapping theorem can be applied to obtain a unique solution

of (2.21) in 5, and the proof is complete. •

4. Existence of solutions

An operator (nonlinear, in general) acting in a Banach space is said to be completely
continuous if it is continuous and maps bounded sets into relatively compact sets.

To get an existence theorem without uniqueness of solution, in this section we will
apply the following Schauder fixed point theorem: Let SS be a Banach space and
S a nonempty bounded, convex and closed subset of 88. Assume A : 38 -*• SB is a
completely continuous operator. If the operator A leaves the set S invariant, that is,
ifA(S) C S, then A has at least one fixed point in S.

Passing on to the BVP (1.1), (1.8) let A : I2 ->• I2 be the operator defined by (2.22).
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LEMMA 4.1. Under the conditions (C1)-(C3) the operator A is completely contin-
uous.

PROOF. Consider e > 0 and y0 € I2. We want to show that there exists 8 > 0 such
that

y€.£2 and \\y - yo\\ < 8 implies \\Ay - Ayo\\ < e. (4.1)

We have \Ay(t) - Ayo(t)\
2 < £ ~ - » \G(t, s)\2 ET=-oo l/(*. ?(*)) - /(*.

Hence

\f(s, y(s)) - f(s, yo(s))\2

\s\<N

\2\f(s, y(s)) - f(s, yo(s))\2, (4.2)

where M = Yl'Z-x IZ~-oo \G(t,s)\2 and Â  is an arbitrary positive integer. Further,
by the condition (1.5) and the elementary inequalities

(a + b)2 < 2(a2 + b2), (a + b + c)2 < 3(a2 + b2 + c2),

we have

\s\>N

< J2U2g2(s) + 3d2\y(s)\2 + 3d2\y0(s)\2]
\s\>N

12 52 ^2(^)+6d2 52

\s\>N

Choose A/ such that EW>N 82(s) < (2/(4SM) and £M>N \yo(s)\2 < €2/(36d2M).
Then we get

+ M2*2
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After choosing N, by the continuity of f(t, £) in f, we can find a So > 0 such that
y € I2 and Hy - yo|| < So imply

V 1/(5, y(s)) - f(s, yo(s)))2 < - i - . (4.4)

Now setting S2 = min{e2/(24d2M), 3^}, we get from (4.2M4.4) the desired result
(4.1). Thus, the operator A is continuous. Next,lety C £2 be a bounded set: ]\y\] < c{

for all y e Y. We must show that A(Y) is a relatively compact set in I2, that is, every
infinite subset of A(Y) has a limit point in £2. To this end, we use the following known
criterion for relative compactness in I2: A set Set2 is relatively compact if and only
if S is bounded and for every e > 0 there exists a positive integer to (depending only
on e) such that J2\,\>l0 l.v('))l2 < e2for QU y e $• P°r a^ y e K, we have [see (3.6)]

V'2

On the other hand, using (1.5) we have

00 OO 00

X! l/(*> y(s»f * E Ms) + d\y(s)\)2 <2j^ tfis) + d2\y(s)\2]

Therefore ||Ay|| < ||r|| + {2M(||g||2 + rf2c2)}1/2 for all y 6 Y, that is, A(Y) is a
bounded set in t2.

Further, for all y e Y, we have

00

+ d2c]) X X \G(t, s)\2.
|i|>/o»=—oo

Hence we get by (2.8) that for a given e > 0 there exists a positive integer f0,
depending only on €, such that £|,|>/0 |Ay(r)|2 < e2 for all y € y. So, A(Y) is a
relatively compact set in t2. The lemma is proved. D

THEOREM 4.2. Assume conditions (C1MC3) are satisfied. In addition, let there
exist a number R > 0 such that

I
oo 1 '/2 I oo «, " y/2 I oo J 1/2

E E IG(',*)|2 s«P E l/(s' ^ H S «• (4-5)
where S = {v e I2 : ||y|| < /?}. 77ien ?/ie BVP (1.1), (1.8) has at least one solution
yzi2 with iZ-«> \y(0\2 < R2.
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PROOF. Let A : I2 -»• I2 be the operator defined by (2.22). By Lemma 4.1, the
operator A is completely continuous. Using (4.5), as in the proof of Theorem 3.2,
we can see that A maps the set 5 into itself. Besides, it is obvious that the set 5
is bounded, convex and closed. Therefore the Schauder fixed point theorem can be
applied to obtain a solution of the equation (2.21) in S. The theorem is proved. •

REMARK. Since for all y in 5 the left-hand side of (4.5) is less than or equal to

it follows that for a given R > 0 the condition (4.5) will be satisfied if the numbers d\
and d2 in the boundary conditions (1.8), and the numbers ||g|| and d in the condition
(1.5) are sufficiently small.
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