SOLUTION OF IRVING’S RAMSEY PROBLEM

by HEIKO HARBORTH and HEINZ-MICHAEL NITZSCHKE
(Received 6 June, 1979)

In [1] the following question was posed by R. W. Irving (see also Conjecture 4.10 in
[4]): Is there an edge 2-colouring of the complete bipartite graph K,;;; with no
monochromatic K;;? We give a negative answer in this note (Theorem 2). Furthermore
we prove Conjecture 4.11 (i) of [4] (Theorem 1), that is, any edge 2-coloured Ky, ,1.4n-3
contains a monochromatic K, , with the 2 and n vertices a subset of the 2n+1 and 4n—3
vertices, respectively. Theorem 1 is a consequence of Satz 4 in [3], however, we give a
direct proof here.

Instead of edge coloured complete bipartite graphs K., we use 0-1-matrices M=
(m;;), where m;; =0 or 1 (1=i=x,1=j=y), if the edge (i,j) of K, is of the first or
second colour, respectively.

Lemma 1. If py, pa, and p;, denote the numbers of equal columns (both entries O or both
entries 1) in the three pairs of rows of any triple of rows (i, j, k) in any 0-1-matrix with ¢
columns, then

pij + pik + ij = C(mod 2). (1)

Proof. Each column contributes 1 or 3 to the sum on the left-hand side.
In the following we denote by [x] and {x} the greatest integer =x and the smallest
integer =x, respectively.

TueoreM 1. Any (Cn+ 1, 4n—3)-0-1-matrix contains a (2, n)-submatrix with entries
0 only, or 1 only.

Proof. Any column of a (2n+1,4n—3)-0-1-matrix M contains at least (;)+

+1 ;
(n ) ) pairs of equal entries. Thus for the total number A of equal pairs in all columns of

M we obtain

+1
A_>—_(4n—3)(<n>+ (n ))=4n3—3n2. (2)
2 2
Using the pigeonhole principle there is at least one pair of rows in M with
4n®*-3n?
={2n+1 ={2n—2— "_2}=2n—2 3)
P ( n2 > 2n+1

equal columns for n=2 (if n=1, then Theorem 1 is trivial).
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We assume that no pair of rows in M has more than p equal columns. In any triple of
rows at most two pairs have p equal columns (Lemma 1). Then the famous theorem of
Turan ([2], p. 17) implies that at most [(2n+1)*/4]=n?+n pairs of rows in M have p
equal columns. It follows that

A=ZEn*+n)2n-2)+ (<2n2+ 1)— (n*+ n)>(2n —3)=4n>-3n%2-2n, 4)

which contradicts (2). Thus at least one pair of rows in M has p+1=2n—1 equal

2n—1
columns, that means, {—nz——}= n columns have entries 0 only, or 1 only.

THEOREM 2. Any (13, 17)-0-1-matrix contains a (3, 3)-submatrix with entries 0 only,
or 1 only.

Proof. We denote by B =(b,;) a (13,17)-0-1-matrix, by N the (3, 3)-matrix with
entries 0 only, and by M the matrix M with 0 and 1 interchanged. If M contains a
submatrix S, we will write S = M. The proof is divided into the following Lemmas. Those
parts of their proofs which follow by changing 0 and 1 are omitted.

We consider the matrices S; (1=i=10) shown opposite as submatrices of B up to
exchanges of rows or columns.

Lemma 2. If S, or S, < B, then N or N B,

Proof. If S, < B, then either N < B, or every row of that (11, 6)-submatrix M of B
determined by the columns of S, contains at least 4 entries 1, that is, (:)= 4 triples of
entries 1. Then any distribution of these 44 triples among the 6 columns of M guarantees

N < M, since 2(§><44.

Lemma 3. If S,, ST, S, or STc B, then N or Nc B.

Proof. Let S,< B, or S, < B”, which corresponds to ST < B. The first 5 columns and
the last 7 rows of S, determine M < S,. Either N S,, or every row of M contains at least

3 entries 1, that is, ( 2)= 3 pairs of entries 1. In any distribution of these 21 pairs among
the 5 columns of M there are 2 columns with 3 pairs of entries 1 in a row, since

2(§><21. Together with column 6 of S,, it follows that N< S,.

LemMA 4. If S; or S,< B, then N or N<B.

Proof. If S; is in the first rows and columns of B, then rows 6 to 13, and columns 3 to
17 determine a (8, 15)-submatrix M of B. If there is one row of M with more than 6
entries 1, then Lemma 3 can be used. Otherwise M has at least 8 X 9= 72 entries 0. Let s;
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(0=i=8) denote the number of columns of M with exactly i entries 0. Then

8
=15 and ) i5=72

i=1

Ipae

yield
Ss+286+3s;,+4sg = 12+ 450+ 38, +25,+ 53 =12, (5)
Together with (5) there are

8

] 8
Y (;>si§10(s5+2s6+3s7+4s8)§ 120>2(3)
i=3
triples of entries 0 in the columns of M, so that Nc M.

LemMma 5. If a column of B has 9 entries 0 or 9 entries 1, then N or Nc B..

Proof. Let b,; =0 for all i with 1=i=9. Rows 1 to 9 and columns 2 to 17 determine
M < B. If there is a column of M with at least 5 entries 0, we use Lemma 4. Otherwise at

least 16( ) 160 pairs with both entries 1 in the columns of M dlstrlbuted among all
pairs of rows of M guarantee 2 rows of M having 5 columns with both entries 1, since

8] —
4(2><160. Then S, < B, and we use Lemma 3.

Lemma 6. If S, or S,< B, then N or Nc B.

Proof. Let S, be in the first rows and columns of B. Rows 5 to 13 and columns 1 to 2,
3t05, 6 to 7 determine M,, M2, M, respectively. Either-N. or N c B, or every row of M,
has at most 2 entries 0, and at most 2 entries 1. In at least 5 rows of M, there are 2 entries
0 (1). Then either Nc B (N< B), or S;= M, (S;=M,), and Lemma 4 can be used.

Lemma 7. If S5 or Ss< B, then N or N< B.

Proof. Let Ss occur in the first rows and columns of B. Rows 4 to 13 and columns 1
to 5 of B determine M,, and rows 4 to 13 together with columns 11 to 14 of B determine
M,. At first b;; =1 for all j with 1=j=5, or Lemma 2 can be used. Next either N < B, or
every row in M, has at least 3 entries 1. If one row of M, exists with more than one entry
1, then together with row 3 of B we have S, < B, and use Lemma 6. Otherwise every row
of M, has 3 entries 0, and any distribution of 10 triples 000 among the 4 columns of M,

4
guarantees, N © M,, since 2 (3> <10.

Lemma 8. N or N exist in any (5, 5)-matrix obtained by changing rows or columns of
S()y SE, SG or Sg

Proof. If the second or third element of column 5 of S6 is 1, then N < 8¢, and
otherwise N < Sq.

https://doi.org/10.1017/50017089500004171 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500004171

SOLUTION OF IRVING’S RAMSEY PROBLEM 191

Lemma 9. If S, < B (respectively S, < B), then either N or N < B, or Sg (respectively Sg)
are in rows 3 to 8 and columns 1 to 5 of S; (respectively S,), up to exchanges of rows or
columns.

Proof. Let S;< B, and M denotes the elements of S, in rows 3 to 8 and columns 1 to
5. At least 3 entries 1 exist in every row of M, or N< S,. If one row has more than 3
tries 1, th (4)+5(3
entries 1, then ’ ’
together with column 6 of S, it follows N < S,. It remains that M has exactly 18 entries 1.
No column of M has more than 4 entries 1, since otherwise S;< B (Lemma 4). No
column of M has less than 3 entries 1, since otherwise 4 columns have 4 entries 1, and this
forces 2 rows of these 4 columns to have 2 entries 1 and 4 rows to have 3 entries 1, and
then 2(§>+4(;>>2(;) together with column 6 of S, guarantees N<= S,. So M can have
only 3 columns with 4, and 2 columns with 3 entries 1. Then N < S, (with column 6), or
by changing of rows or columns we obtain M = S,.

S\, . - . .
)>2( 2> implies that 2 columns exist in M with 3 pairs 11, and

Lemma 10. If Sg or Sg< B, then N or N< B.

Proof. If we find S, in the first rows and columns of B, then by Lemma 2 we can
assume by;=b,;,s=1 for j=1,2,3,4. Let M, be determined by rows 4 to 13 and
columns 1 to 9. Either N< B, or in columns 1 to 5, and in columns 5 to 9 of M,,
respectively, there are at least 30 entries 1. Every column #5 of M, has at most 6 entries
1, or we can use Lemma 3. Thus column 5 must have at least 6 entries 1. Since Lemma 5
yields N or N< B, column 5 has at most 8 entries 1.

(@ b,s=1 for all i with 8=i=13, b, ;=0 otherwise: The elements in rows 4 to 7 of B
and in columns 1 to 4, 6 to 9, 10 to 14 are denoted by M,, M;, M,, respectively. Every
row of M, and of M; has at least 3 entries 1, otherwise N < B. Then every pair of rows of
M, and of M; has at least 2 columns with both entries 1. Together with rows 2 or 3, and
M,, we find N < B, or every column of M, has at least 3 entries 0. Then 2 columns of M,
together with column 5 of B yield N<B.

(i) b,s=1 for all i with 7=i=13, b;5=0 otherwise: Let Ms and M, denote the
elements of B in rows 4 to 6, and in columns 1 to 4, and 6 to 9, respectively. Rows 7 to 13
and columns 1 to 4 determine M,. Every row of My and of M has at least 3 entries 1
(otherwise N < B), and then at most 3 entries 1 (otherwise N < B). Every column of M
and of M, has at most one entry 0, otherwise N < B. Thus we can assume b,;=bs,=
bes=bye=bs;=beg=0, and 1 for all other elements of M5 and of M. As in every pair
of columns of M, at most 2 pairs 11 occur (otherwise together with column 5 of B we
obtain N < B), there is a row in M, with 11 in columns 1 and 4, 2 and 4, or 3 and 4, and
we can assume b, 3= b, ,=1. At least 2 elements of b, 4 to b, o are 1, otherwise N<B.
These have to be b, ¢ and b, ,, since rows 4, 5, 7 and columns 3, 4, 8, 9 yield NcBor
b; = by o=0. Then rows 5, 6, 7 and columns 1, 4, 6 imply NcBor b,;,=0, and rows 4,
6, 7 and columns 2, 4, 7 imply N< B or b,,=0.
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At least 14 entries 1 occur in M,. Column 4 of M, contains at most 3 entries 1, since
otherwise we can use Lemma 3. No column of M, has more than 4 entries 1, and thus two
of columns 1 to 3 of M, contain exactly 4 entries 1. After possibly changing columns 1
and 2, and rows 4 and 5 we can assume bg ;= by, =byy1=by;,=1, and by, = by5,=0.
Now Lemma 9 guarantees N or N < B, or we can assume Sg in rows 5, 6, 8, 9, 10, 11 and
columns 6, 9, 5, 7, 8, in these sequences.

Then rows 5, 6 and 8, 9, 10 or 11 and columns 1, 4 and 6, 6, 9 or 9, respectively,
yield N B or bg 4= bg4=b104=b11.4=0. Rows 4, 5, 10 and columns 3, 8, 9 yield NcB
or by 3=0. Rows 4, 6, 11 and columns 2, 7, 9 yield NcBor by1,=0. Then rows 1, 8, 10
and columns 3, 4, 7, rows 1, 7, 9 and columns 2, 8, 9, rows 1, 2, 10 and columns 2, 3, 4,
rows 1, 2, 11 and columns 2, 3, 4 yield N< B or bg 3= by, = b92= by15=1, respectively.
Furthermore N < B or bg,= by ;=0 follow from rows 8, 9, 10 and columns 1, 2, 5, and
from rows 8, 9, 11 and columns 1, 3, 5.

If by;3=b33=1, then Lemma 4 can be used. Therefore we can assume by, ;=0
after possibly changing rows 12 and 13. Then rows 1, 2, 12 and columns 1 to 4 imply
N<Bor by;,=by,,=1. Rows 4, 6, 12 and columns 2, 4, 7, and columns 2, 4, 9 yield
NcB or bi27=b1,0=0. Then rows 1, 3, 12 and columns 6 to 9 yield N=B or
by6=b125=1. It follows b,3 =0, or Lemma 4 can be used. If b;5,=0, then rows 1, 2,
13 and columns 1 to 4 yield Nc B or by33=by3,=1, rows 1, 7, 13 and columns 1, 2, 8
yield N= B or bj3g=1, and then we find N in rows 4, 5, 13 and columns 3, 4, 8. If,
however, by;, =1, then rows 10, 12, 13 and columns 2, 5, 8 yield NcBor bi35=0, rows
1, 3, 13 and columns 6 to 9 yield N< B or by3 ;= bj59=1, and then we find N in rows 4,
6, 13 and columns 2, 7, 9.

(iii) b, 5 =1 for all i with 6 =i =13, b, s =0 otherwise: At least 2 of the elements b, ,
to bs 13 of B (say b; o and b; ;) are 0, otherwise N < B (with rows 1 and 2). At least one
of the elements b, 10, by 11, Ps 10, bs11 (5ay by o) is 1, otherwise N < B (with column 5).
Columns 6 to 9, rows 4 to 5 and rows 6 to 13 of B determine Mg and M,, respectively.
Both rows of Mg have at least 3 entries 1 (otherwise N < B), and then at most 3 entries 1
(otherwise N < B). If one column of M, has both entries 0, then N < B. Thus we can
assume b, ,= b; =0, and all other elements of M are 1.

In every column of M, there are at most 4 entries 1, or we can use Lemma 4 (with
column 5). At least 30 entries 1 are in columns 5 to 9 of M;, or N < B. Thus exactly 4
entries 1 occur in every column of M,, and exactly 2 entries 1 in every row of M,. We can
assume bg o= by o= bg 9= bgo=0. If in 2 of rows 1 to 4 of My, and in columns 1 and 2 of
M, there are 4 entries 1, then we have found S,, and Lemma 4 can be used. Otherwise we
can assume bg = bgg=b;¢=b,s=1, and bs ;= b, ,= 0 (after possibly changing columns
6 and 7). Then in these sequences the elements of rows 3, 6, 7, 2, 4 and of columns 6, 8,
7,9, 10 of B represent S¢, and Lemma 8 completes the proof.

LemMa 11. If Sy or S;o< B, then N or N B.

Proof. Let S, be in the first rows and columns of B. Then b,=b,;=b,g=b;;=
bs,=bs3=1, or Nc B. The elements of B in rows 4 to 13 and columns 1 to 3, 4 to 5,
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and 6 to 8 are denoted by M,;, M, and M,;, respectively. If we observe Lemma 4, it
suffices to discuss 3 cases: M, has (i) one row 00, (ii) 4 rows 11, or (iii) 4 rows 01.

(i) b4s=bys=0. Then NcB,or b,1=bs,=bs3=bss=b,,=b,g=1. By Lemma 4
we can assume one entry 0 in each of rows 2 to 5 of M,. The corresponding rows of M,
and M, have exactly 2 entries 1, since otherwise N or N < B. Then we can assume 2 equal
rows in M, (say bs,=bs,=bs,= =1 and bs;=be3=0). As M, has at least one
column with both entries 1 in rows 2 and 3 (say bse= bee=1), we find Ninrows 4, 5,6
and columns 1, 2, 6.

(ii) b4 =b,s=1 for all i with 4=i=7. In M, and M; rows 4 to 7 have at least one,
and rows 8 to 13 at least 2 entries 1 (otherwise N < B). Together there are at least 16
entries 1, which guarantee at least one column with 6 entries 1 in M, and in M,, since by
Lemma 3 we can assume at most 6 entries 1 in every column. At most 2 entries 1 exist in
the first 4 rows of every column of M; and M, (otherwise NcB). If a column with 6
entries 1 in M, or M; has exactly one entry 1 in the first 4 rows, then N or N< B by
Lemma 9, since the existence of Sg would force a row 11 in rows 8 to 13 of M,, and then
Lemma 4 can be used. As M, and M, cannot both have a column with 4 entries O in the
first 4 rows (otherwise we use Lemma 4), we can assume that in M; a column exists, which
has 6 entries 1, and 2 of them in the first 4 rows. Thus we may choose b, ;=1 for
i=6,7,...,11 and b, 5=bs3=>by53=by33=0. Then by Lemma 9 we can assume S; in
rows 6 to 11 and columns 4 to 8 of B. After possibly changing rows 12 and 13 we have

. biaa=bi3s=1, and by, s= by3 4= 0 (otherwise we have cases (i) or (iii), or S, and Lemma
4 can be used). Together with rows 1 and 2 of B we get N< B, or bys = bjp5= b3, =
b13,2 =1.

We next prove, that 6 entries 1 in columns 2 or 3 of M, yield N or N< B. After
possibly changing rows 6 and 7, 8 and 9, 10 and 11, so as columns 7 and 8 of B we can
assume by, 3= b135=bss=1, and by g=0 (rows 4 and 5 can be changed). By Lemma 9 we
find N or N B, or Sg in rows 5, 6, 12, 8, 13, 10 and columns 4, 5, 1, 3, 2 after possibly
changing columns 1 and 2 of B. Thus we assume b5y =bg1=bs2=bg>=b19,=0, bg;=
bip1=bs>=1. Then rows 8, 10, 12, 13 and columns 1, 6, 8 of B yield N< B, or
bis6=bi3s=0. Rows 12 and 13 together with rows 1 and 3 of B yield N<B, or
biz7=bi3,=1. Rows 8, 9, 10, 11 and columns 1, 3, 6 of B yield NcB,or by, = by, ,=0.
Together with rows 1 and 2 it follows by , = by, , = 1 (otherwise N < B). Rows 7, 9, 11 and
columns 2, 3, 7 yield NcB, or b;,=0. Rows 1, 6, 7 and columns 1, 2, 6 force N< B, or
b;1=1. Rows 5, 12, 13 and columns 2, 7, 8 yield NcB, or bs;=0. Rows 1, 5, 6 and
columns 1, 6, 7 force N< B, or bs = 1. If now b, ; =1, then 6 entries 1 are in column 1 of
M,, and by Lemma 9 it remains b, =1, b,,=0 (Sg is in rows 4, 7, 8, 12, 10, 13 and
columns 4, 5, 8, 7, 6 of B). Then in case b, , =0 we find $; in columns 2, 7 and rows 1, 4,
6, 8, 10 of B, and we use Lemma 4, and in case b,,=1 rows 4, 5, 9 and columns 2, 4, 6
yield N < B. If otherwise b,1=0, then rows 1, 2, 4 and columns 1, 2, 3 yield N<c B, or
b,»=1. Then b,,=0 forces Nc B (rows 1, 4, 5 and columns 1, 3, 7), and b, ;=1 gives
S.c B (rows 4, 9, 11, 12, 13, columns 2, 7), and we use Lemma 4.

In the following we can assume that at most S entries 1 exist in columns 2 and 3 of
M, that is, 6 entries 1 occur in column 1 of M;. By Lemma 9, this is possible only in two

7
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cases, either by ¢=bs =1 and by = b136=0, 01 by s=bss=0 and by, ¢=b,3=1. In the
first case we find N in rows 1, 3, 12, 13 and columns 4 t0 8, or by 5= bys g= b137= by135=

1. Then more than 5 entries 1 occur in column 2 or 3 of M;, or N B (rows 1, 4, 5,
columns 3, 7, 8). In the second case we use Lemma 9, and we can assume Sg in columns 3,
2,1,4,50of B, and (j) in rows 11, 9, 10, 8, 13, 12, or (jj) in rows 11, 8, 10, 9, 13, 12 of B,
after possibly changing columns 1 and 2. In other words, we can assume by, = b;;,=0,
bio1=bn2=1and (j) bs,=by; =0, bg1=by,=1, or ) bsz—b91 1, bg ;1 =bo,=0.

In case (j) rows 9, 11, 12, 13 and columns 2, 6, 7 yield N < B or by, ,= b3, =0, rows
8, 10, 12, 13 and columns 1, 6, 8 yield N< B or by, 3= b;35=0, and then we have N in
rows 1, 12, 13 and columns 3, 7, 8.

In case (jj) bs-=bs>=0 or 1 yield N in rows 1, 4, 5 and columns 3, 6, 7, or N in
rows 4, 5, 7 and columns 4, 5, 7, respectively, and thus we can assume b,,=0, bs,=1,
after possibly changing rows 4 and 5. Then rows 1, 3, 4 and columns 6, 7, 8 imply NcB
or b,g=1, and rows 4, 5, 6 and columns 4, 5, 8 imply N B or b; 3=0. If b,,=0, then
bs,=1or N isin rows 1, 4, 5 and columns 2, 3, 6. Rows 5, 11, 13 and columns 2, 5, 7
yield Nc B or by37=0. Then rows 1, 3, 13 and columns 4, 7, 8 imply N< B or by;35=1.
Rows 4, 10, 13 and columns 1, 5, 8 then yield N< B or b, =0, and we find N in rows 1,
2, 4 and columns 1, 2, 3. If, otherwise, b,, =1, then bs,=0 or N is in rows 4, 6, 8 and
columns 2, 4, 8, and by, =0 or N is in rows 4, 8, 12 and columns 2, 4, 8. Rows 1, 3, 12
and columns 5, 7, 8 yield N< B or by, ,=1. Then rows 5, 9, 12 and columns 1, 4, 7 yield
N<B or bs;=0. Rows 11, 12, 13 and columns 2, 6, 7 yield N< B or b,;,=0. Then
rows 1, 3, 13 and columns 4, 7, 8 imply N< B or b,;35=1. At last rows 4, 10, 13 and
columns 1, 5, 8 yield N< B or b, , =0, and we find N in rows 1, 4, 5 and columns 1, 3, 6.

(i) b,4=0, b,s=1 for all i with 4=i=7. There are at most 13 entries 1 in M,
(otherwise (11)) At least 3 entries 1 are in every row of rows 4 to 13 in columns 1 to 5, or
in 4 to 8 (otherwise N < B). Thus at least 17 entries 1 exist in M;, and in M,, and either
we use Lemma 3, or at least 2 columns of M,, and at least 2 columns of M, have exactly 6
entries 1.

Every column in the first 4 rows of M; or of M, has at least 2 entries 1 (otherwise
S;< B, and we use Lemma 4). In the first 4 rows of M, and Mj; there exists at most one
column with 4 entries 1 (otherwise N < B), which we can assume not to be in M,. Each of
the first 4 rows of M, and of M; has at least 2 entries 1 (otherwise N < B). Altogether the
first 4 rows of M, contain at least 8 entries 1, so that 2 columns have exactly 3 entries 1,
and we can assume b, 3= bs3=bg3=bs,=bs,=b,,=1, bs,=b; ;=0 (otherwise N< B).
Then bs1=b,,=1, or NcB.

After possibly changing rows 6 and 7, and columns 2 and 3 of B we can assume
column 3 to be one of the 2 columns of M, with 6 entries 1, that is, bg3=bo3=byo3=1.
Then Lemma 9 can be used, and we find Sg in rows 4, 8, 5, 9, 6, 10 and columns 8, 7, 6,
4, 5 of B (columns 4 and 5 of Sg have to be in M,), that is,

b b48_‘b56_b58—b66 b67 b84 b87—b88

—b94 b96 b98_b104—b106_'b107_1
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and
b4,6 = b5,7 =bgg= bs,s = bs,s = b9,5 = b9,7 = b10,5 = b10,8 =0.

In rows 4, 5, 7 and columns 2, S, 8 of B we find N, or b,5=0, and then b, ¢=b,,=1
(otherwise N < B). Rows 4, 5, 8, 9 and columns 2, 3, 8 of B yield N< B, or by, = by, =0.

If 6 entries 1 are in column 1 of M,, then N or Nc B by Lemma 9 (S; is impossible,
since rows 6 and 7 are identical in columns 4 to 8). Thus 6 entries 1 exist in column 2 of
M;. Then Lemma 9 can be used, and columns 4 and 5 of Sg have to be in M,. Then at
most 11 entries 1 exist in M,, and therefore M, has more than 18 entries 1, that means, at
least one column of M, has 7 entries 1, and Lemma 3 can be used.

Lemma 12. Let Z; denote the number of pairs of rows of B with i equal columns. Then
either N or N B, or

Zo+ Z1oZ 12+ ), Z. (6)

i=6

Proof. If Z,>0 for i>10, then by Lemma 2 we have N or N < B. Otherwise, if s,
denotes the number of columns with i entries 0, then

igl,ozi = (123>= 78, and i;) s =17, N
ing iz, = go ((;)+ (132— i))si =36 iéjo 5 =612. (8)

At most 2 pairs of rows in every triple of rows of B have an even number of equal
columns (Lemma 1, ¢ =17). Again the Theorem of Turan ([2], p. 17) implies then

Zo+ Zo+ Zy+ Zg+ Zg+ 71, =[13%/4]=42. 9)
With (7) and Zg+ Z,, from (9) we obtain
Y NZ=2Zo+ Zi)+ Zs+ Zio+T L Zi— X (1-D)Z,

i=10 i=10 i=6

=2Zo+Z1o)+588-2 ). Z. (10)

i=6

From (8) and (10) we obtain (6).

Lemma 13. If there are three rows a, b, c in B, so that the number of equal columns is at
least 9 in rows a and b, and in rows a and c, then N or N< B.

Proof. Let a, b, ¢ be rows 1, 2, 3 of B. If more than 5 columns with both entries 0 (or
both entries 1) occur in one pair of rows we use Lemma 2. If then the pairs of rows 1 and 2,
and of rows 1 and 3 both contain 5 columns with both entries 0, or both contain 5 columns
with both entries 1, then N or N < B follows directly, or by use of Lemmas 7, 10, or 11.
Thus in the following we can assume 5 pairs with both entries 0 in the first 5 columns of
rows 1 and 2, 5 pairs with both entries 1 in columns 6 to 10 of rows 1 and 3, and exactly 4
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columns with both entries 1 in rows 1 and 2, and exactly 4 columns with both entries 0 in
rows 1 and 3.

If in rows 2 and 3 there are less than 7 equal columns, then by Lemma 12 we have
Zot+ZxZ13 in B. Then the pigeonhole principle guarantess that one row of B exists
which has together with each of two other rows at least 9 equal columns, among which in
both pairs of rows occur 5 columns with both entries 0, or 5 columns with both entries 1.
Thus we can use Lemmas 7, 10 or 11 to get N or N B.

In columns 11 to 17 occur at least 2 columns with both entries 0 in rows 1 and 3, and
at least 2 columns with both entries 1 in rows 1 and 2. We can assume b, ;; = b, ,=
bs11=b31,=0 and by ;3=by14=b,,;3=by14=1. Then S, or Sch or by;1=by12=1
and b; 15 = b; ;,=0. Now at least 7 equal columns in rows 2 and 3 are possible only if at
least 4 of them occur in columns 1 to 10. More than 4 columns, however, yield N or
N < B. Thus we can choose by1=b3,=by3=by9=by10=0, b33=b34=b35=b6=by;=
1, and without loss of generality b, s=b,;6=bs15=b36=1. Then NcB, or by ;5=
b1.16=0.

If column 15 in rows 4 to 13 contains more than 6 entries 0, or more than 5 entries 1,
then S, or S, < B, and we can use Lemma 3. It remains to consider that column 15 in rows
4 to 13 contains (i) 5 entries 1, and (ii) 6 entries 0.

(i) b.15s=1 for all i with 4=i=8. By Lemma 9 we can assume Sg in rows 3 to 8 and
columns 1 to 5. There exist 3 rows in this Sg which together with row 3 of B have
2 columns with both entries 1. If one of these rows contains more than one entry 1 in
columns 6 to 10, then S;,< B, and we use Lemma 11. Otherwise in columns 6 to 10 we
find N, or we have 3 rows with at least 4 entries 0, and 8 rows with at least 3 entries 0.

4 3
Then any distribution of 3<2>+ 8( 2) =42 pairs 00 among the columns 6 to 10 guarantees

S;<B (since 4(;)<42> and we use Lemma 4.

(i) b,;5=0 for all i with 4=i=9. By Lemma 9 we can assume S in rows 4 to 9 and
columns 6 to 10. If column 16 has at least 4 entries 0 in rows 4 to 9, then S; < B (together
with row 1 of B), and Lemma 4 can be used. Thus we can assume by ;5= bs 16 = bs,16= 1.
If then in columns 3 to 5 in one of rows 4 to 6 there are 2 entries 1, then S,,< B, and we
use Lemma 11. Otherwise N < B, or in rows 4 to 6 and columns 1 and 2 occur entries 1
only. Then, however, we find N in rows 4 to 6 and columns 1, 2 and 16, and Lemma 13 is
proved.

The proof of Theorem 2 is complete, since Lemma 12 for any B guarantees the
existence of three rows which enable us to apply Lemma 13.
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