SOLUTION OF IRVING'S RAMSEY PROBLEM

by HEIKO HARBORTH and HEINZ-MICHAEL NITZSCHKE

(Received 6 June, 1979)
In [1] the following question was posed by R. W. Irving (see also Conjecture 4.10 in [4]): Is there an edge 2-colouring of the complete bipartite graph $K_{13,17}$ with no monochromatic $K_{3,3}$? We give a negative answer in this note (Theorem 2). Furthermore we prove Conjecture 4.11 (i) of [4] (Theorem 1), that is, any edge 2-coloured $K_{2 n+1,4 n-3}$ contains a monochromatic $K_{2, n}$ with the 2 and n vertices a subset of the $2 n+1$ and $4 n-3$ vertices, respectively. Theorem 1 is a consequence of Satz 4 in [3], however, we give a direct proof here.

Instead of edge coloured complete bipartite graphs $K_{x, y}$ we use 0-1-matrices $M=$ ($m_{i, j}$), where $m_{i, j}=0$ or $1(1 \leqq i \leqq x, 1 \leqq j \leqq y)$, if the edge (i, j) of $K_{x, y}$ is of the first or second colour, respectively.

Lemma 1. If $p_{i j}, p_{i k}$, and $p_{j k}$ denote the numbers of equal columns (both entries 0 or both entries 1) in the three pairs of rows of any triple of rows (i, j, k) in any 0-1-matrix with c columns, then

$$
\begin{equation*}
p_{i j}+p_{i k}+p_{j k} \equiv c(\bmod 2) . \tag{1}
\end{equation*}
$$

Proof. Each column contributes 1 or 3 to the sum on the left-hand side.
In the following we denote by $[x]$ and $\{x\}$ the greatest integer $\leqq x$ and the smallest integer $\geqq x$, respectively.

Theorem 1. Any ($2 n+1,4 n-3$)-0-1-matrix contains $a(2, n)$-submatrix with entries 0 only, or 1 only.

Proof. Any column of a $(2 n+1,4 n-3)-0-1$-matrix M contains at least $\binom{n}{2}+$ $\binom{n+1}{2}$ pairs of equal entries. Thus for the total number A of equal pairs in all columns of M we obtain

$$
\begin{equation*}
A \geqq(4 n-3)\left(\binom{n}{2}+\binom{n+1}{2}\right)=4 n^{3}-3 n^{2} \tag{2}
\end{equation*}
$$

Using the pigeonhole principle there is at least one pair of rows in M with

$$
\begin{equation*}
p=\left\{\frac{4 n^{3}-3 n^{2}}{\binom{2 n+1}{2}}\right\}=\left\{2 n-2-\frac{n-2}{2 n+1}\right\}=2 n-2 \tag{3}
\end{equation*}
$$

equal columns for $n \geqq 2$ (if $n=1$, then Theorem 1 is trivial).

Glasgow Math. J. 21 (1980) 187-197.

We assume that no pair of rows in M has more than p equal columns. In any triple of rows at most two pairs have p equal columns (Lemma 1). Then the famous theorem of Turán ([2], p. 17) implies that at most $\left[(2 n+1)^{2} / 4\right]=n^{2}+n$ pairs of rows in M have p equal columns. It follows that

$$
\begin{equation*}
A \leqq\left(n^{2}+n\right)(2 n-2)+\left(\binom{2 n+1}{2}-\left(n^{2}+n\right)\right)(2 n-3)=4 n^{3}-3 n^{2}-2 n \tag{4}
\end{equation*}
$$

which contradicts (2). Thus at least one pair of rows in M has $p+1=2 n-1$ equal columns, that means, $\left\{\frac{2 n-1}{2}\right\}=n$ columns have entries 0 only, or 1 only.

Theorem 2. Any (13, 17)-0-1-matrix contains a (3, 3)-submatrix with entries 0 only, or 1 only.

Proof. We denote by $B=\left(b_{i, j}\right)$ a $(13,17)$ - 0 -1-matrix, by N the $(3,3)$-matrix with entries 0 only, and by \bar{M} the matrix M with 0 and 1 interchanged. If M contains a submatrix S, we will write $S \subset M$. The proof is divided into the following Lemmas. Those parts of their proofs which follow by changing 0 and 1 are omitted.

We consider the matrices $S_{i}(1 \leqq i \leqq 10)$ shown opposite as submatrices of B up to exchanges of rows or columns.

Lemma 2. If S_{1} or $\bar{S}_{1} \subset B$, then N or $\bar{N} \subset B$,
Proof. If $S_{1} \subset B$, then either $N \subset B$, or every row of that $(11,6)$-submatrix M of B determined by the columns of S_{1} contains at least 4 entries 1 , that is, $\binom{4}{3}=4$ triples of entries 1 . Then any distribution of these 44 triples among the 6 columns of M guarantees $\bar{N} \subset M$, since $2\binom{6}{3}<44$.

Lemma 3. If $S_{2}, S_{2}^{T}, \bar{S}_{2}$ or $\bar{S}_{2}^{T} \subset B$, then N or $\bar{N} \subset B$.
Proof. Let $S_{2} \subset B$, or $S_{2} \subset B^{T}$, which corresponds to $S_{2}^{T} \subset B$. The first 5 columns and the last 7 rows of S_{2} determine $M \subset S_{2}$. Either $N \subset S_{2}$, or every row of M contains at least 3 entries 1 , that is, $\binom{3}{2}=3$ pairs of entries 1 . In any distribution of these 21 pairs among the 5 columns of M there are 2 columns with 3 pairs of entries 1 in a row, since $2\binom{5}{2}<21$. Together with column 6 of S_{2}, it follows that $\bar{N} \subset S_{2}$.

Lemma 4. If S_{3} or $\bar{S}_{3} \subset B$, then N or $\bar{N} \subset B$.
Proof. If S_{3} is in the first rows and columns of B, then rows 6 to 13 , and columns 3 to 17 determine a $(8,15)$-submatrix M of B. If there is one row of M with more than 6 entries 1 , then Lemma 3 can be used. Otherwise M has at least $8 \times 9=72$ entries 0 . Let s_{i}

$(0 \leqq i \leqq 8)$ denote the number of columns of M with exactly i entries 0 . Then

$$
\sum_{i=0}^{8} s_{i}=15, \quad \text { and } \quad \sum_{i=1}^{8} i s_{i} \geqq 72
$$

yield

$$
\begin{equation*}
s_{5}+2 s_{6}+3 s_{7}+4 s_{8} \geqq 12+4 s_{0}+3 s_{1}+2 s_{2}+s_{3} \geqq 12 . \tag{5}
\end{equation*}
$$

Together with (5) there are

$$
\sum_{i=3}^{8}\binom{i}{3} s_{i} \geqq 10\left(s_{5}+2 s_{6}+3 s_{7}+4 s_{8}\right) \geqq 120>2\binom{8}{3}
$$

triples of entries 0 in the columns of M, so that $N \subset M$.
Lemma 5. If a column of B has 9 entries 0 or 9 entries 1, then N or $\bar{N} \subset B$.
Proof. Let $b_{i, 1}=0$ for all i with $1 \leqq i \leqq 9$. Rows 1 to 9 and columns 2 to 17 determine $M \subset B$. If there is a column of M with at least 5 entries 0 , we use Lemma 4. Otherwise at least $16\binom{5}{2}=160$ pairs with both entries 1 in the columns of M distributed among all pairs of rows of M guarantee 2 rows of M having 5 columns with both entries 1 , since $4\binom{9}{2}<160$. Then $\bar{S}_{2} \subset B$, and we use Lemma 3.

Lemma 6. If S_{4} or $\bar{S}_{4} \subset B$, then N or $\bar{N} \subset B$.
Proof. Let S_{4} be in the first rows and columns of B. Rows 5 to 13 and columns 1 to 2, 3 to 5,6 to 7 determine M_{1}, M_{2}, M_{3}, respectively. Either N or $\bar{N} \subset B$, or every row of M_{2} has at most 2 entries 0 , and at most 2 entries 1 . In at least 5 rows of M_{2} there are 2 entries 0 (1). Then either $N \subset B(\bar{N} \subset B)$, or $\bar{S}_{3} \subset M_{1}\left(S_{3} \subset M_{3}\right)$, and Lemma 4 can be used.

Lemma 7. If S_{5} or $\bar{S}_{5} \subset B$, then N or $\bar{N} \subset B$.
Proof. Let S_{5} occur in the first rows and columns of B. Rows 4 to 13 and columns 1 to 5 of B determine M_{1}, and rows 4 to 13 together with columns 11 to 14 of B determine M_{2}. At first $b_{3, j}=1$ for all j with $1 \leqq j \leqq 5$, or Lemma 2 can be used. Next either $N \subset B$, or every row in M_{1} has at least 3 entries 1 . If one row of \dot{M}_{2} exists with more than one entry 1, then together with row 3 of B we have $S_{4} \subset B$, and use Lemma 6. Otherwise every row of M_{2} has 3 entries 0 , and any distribution of 10 triples 000 among the 4 columns of M_{2} guarantees, $N \subset M_{2}$, since $2\binom{4}{3}<10$.

Lemma 8. N or \bar{N} exist in any (5,5)-matrix obtained by changing rows or columns of $S_{6}, S_{6}^{T}, \bar{S}_{6}$ or \bar{S}_{6}^{T}.

Proof. If the second or third element of column 5 of S_{6} is 1 , then $\dot{\bar{N}} \subset S_{6}$, and otherwise $N \subset S_{6}$.

Lemma 9. If $S_{7} \subset B$ (respectively $\bar{S}_{7} \subset B$), then either N or $\bar{N} \subset B$, or S_{8} (respectively \bar{S}_{8}) are in rows 3 to 8 and columns 1 to 5 of S_{7} (respectively \bar{S}_{7}), up to exchanges of rows or columns.

Proof. Let $S_{7} \subset B$, and M denotes the elements of S_{7} in rows 3 to 8 and columns 1 to 5. At least 3 entries 1 exist in every row of M, or $N \subset S_{7}$. If one row has more than 3 entries 1 , then $\binom{4}{2}+5\binom{3}{2}>2\binom{5}{2}$ implies that 2 columns exist in M with 3 pairs 11 , and together with column 6 of S_{7} it follows $\bar{N} \subset S_{7}$. It remains that M has exactly 18 entries 1 . No column of M has more than 4 entries 1 , since otherwise $\bar{S}_{3} \subset B$ (Lemma 4). No column of M has less than 3 entries 1 , since otherwise 4 columns have 4 entries 1 , and this forces 2 rows of these 4 columns to have 2 entries 1 and 4 rows to have 3 entries 1, and then $2\binom{2}{2}+4\binom{3}{2}>2\binom{4}{2}$ together with column 6 of S_{7} guarantees $\bar{N} \subset S_{7}$. So M can have only 3 columns with 4 , and 2 columns with 3 entries 1 . Then $N \subset S_{7}$ (with column 6), or by changing of rows or columns we obtain $M=S_{8}$.

Lemma 10. If S_{9} or $\bar{S}_{9} \subset B$, then N or $\bar{N} \subset B$.
Proof. If we find S_{9} in the first rows and columns of B, then by Lemma 2 we can assume $b_{3, j}=b_{2, j+5}=1$ for $j=1,2,3,4$. Let M_{1} be determined by rows 4 to 13 and columns 1 to 9 . Either $N \subset B$, or in columns 1 to 5 , and in columns 5 to 9 of M_{1}, respectively, there are at least 30 entries 1 . Every column $\neq 5$ of M_{1} has at most 6 entries 1 , or we can use Lemma 3. Thus column 5 must have at least 6 entries 1 . Since Lemma 5 yields N or $\bar{N} \subset B$, column 5 has at most 8 entries 1 .
(i) $b_{i, 5}=1$ for all i with $8 \leqq i \leqq 13, b_{i, 5}=0$ otherwise: The elements in rows 4 to 7 of B and in columns 1 to 4,6 to 9,10 to 14 are denoted by M_{2}, M_{3}, M_{4}, respectively. Every row of M_{2} and of M_{3} has at least 3 entries 1 , otherwise $N \subset B$. Then every pair of rows of M_{2} and of M_{3} has at least 2 columns with both entries 1 . Together with rows 2 or 3, and M_{4}, we find $\bar{N} \subset B$, or every column of M_{4} has at least 3 entries 0 . Then 2 columns of M_{4} together with column 5 of B yield $N \subset B$.
(ii) $b_{i, 5}=1$ for all i with $7 \leqq i \leqq 13, b_{i, 5}=0$ otherwise: Let M_{5} and M_{6} denote the elements of B in rows 4 to 6 , and in columns 1 to 4 , and 6 to 9 , respectively. Rows 7 to 13 and columns 1 to 4 determine M_{7}. Every row of M_{5} and of M_{6} has at least 3 entries 1 (otherwise $N \subset B$), and then at most 3 entries 1 (otherwise $\bar{N} \subset B$). Every column of M_{5} and of M_{6} has at most one entry 0 , otherwise $\bar{N} \subset B$. Thus we can assume $b_{4,1}=b_{5,2}=$ $b_{6,3}=b_{4,6}=b_{5,7}=b_{6,8}=0$, and 1 for all other elements of M_{5} and of M_{6}. As in every pair of columns of M_{7} at most 2 pairs 11 occur (otherwise together with column 5 of B we obtain $\bar{N} \subset B$), there is a row in M_{7} with 11 in columns 1 and 4,2 and 4 , or 3 and 4 , and we can assume $b_{7,3}=b_{7,4}=1$. At least 2 elements of $b_{7,6}$ to $b_{7,9}$ are 1 , otherwise $N \subset B$. These have to be $b_{7,6}$ and $b_{7,7}$, since rows $4,5,7$ and columns $3,4,8,9$ yield $\bar{N} \subset B$ or $b_{7,8}=b_{7,9}=0$. Then rows $5,6,7$ and columns $1,4,6$ imply $\bar{N} \subset B$ or $b_{7,1}=0$, and rows 4 , 6,7 and columns $2,4,7$ imply $\bar{N} \subset B$ or $b_{7,2}=0$.

At least 14 entries 1 occur in M_{7}. Column 4 of M_{7} contains at most 3 entries 1 , since otherwise we can use Lemma 3. No column of M_{7} has more than 4 entries 1 , and thus two of columns 1 to 3 of M_{7} contain exactly 4 entries 1 . After possibly changing columns 1 and 2 , and rows 4 and 5 we can assume $b_{8,1}=b_{9,1}=b_{10,1}=b_{11,1}=1$, and $b_{12,1}=b_{13,1}=0$. Now Lemma 9 guarantees N or $\bar{N} \subset B$, or we can assume S_{8} in rows $5,6,8,9,10,11$ and columns $6,9,5,7,8$, in these sequences.

Then rows 5,6 and $8,9,10$ or 11 and columns 1,4 and $6,6,9$ or 9 , respectively, yield $\bar{N} \subset B$ or $b_{8,4}=b_{9,4}=b_{10,4}=b_{11,4}=0$. Rows $4,5,10$ and columns $3,8,9$ yield $\bar{N} \subset B$ or $b_{10,3}=0$. Rows $4,6,11$ and columns $2,7,9$ yield $\bar{N} \subset B$ or $b_{11,2}=0$. Then rows $1,8,10$ and columns $3,4,7$, rows $1,7,9$ and columns $2,8,9$, rows $1,2,10$ and columns $2,3,4$, rows $1,2,11$ and columns $2,3,4$ yield $N \subset B$ or $b_{8,3}=b_{9,2}=b_{10,2}=b_{11,3}=1$, respectively. Furthermore $\bar{N} \subset B$ or $b_{8,2}=b_{9,3}=0$ follow from rows $8,9,10$ and columns $1,2,5$, and from rows $8,9,11$ and columns $1,3,5$.

If $b_{12,3}=b_{13,3}=1$, then Lemma 4 can be used. Therefore we can assume $b_{12,3}=0$ after possibly changing rows 12 and 13 . Then rows $1,2,12$ and columns 1 to 4 imply $N \subset B$ or $b_{12,2}=b_{12,4}=1$. Rows 4, 6, 12 and columns 2, 4, 7, and columns 2, 4, 9 yield $\bar{N} \subset B$ or $b_{12,7}=b_{12,9}=0$. Then rows $1,3,12$ and columns 6 to 9 yield $N \subset B$ or $b_{12,6}=b_{12,8}=1$. It follows $b_{13,6}=0$, or Lemma 4 can be used. If $b_{13,2}=0$, then rows 1,2 , 13 and columns 1 to 4 yield $N \subset B$ or $b_{13,3}=b_{13,4}=1$, rows $1,7,13$ and columns $1,2,8$ yield $N \subset B$ or $b_{13,8}=1$, and then we find \bar{N} in rows $4,5,13$ and columns $3,4,8$. If, however, $b_{13,2}=1$, then rows $10,12,13$ and columns $2,5,8$ yield $\bar{N} \subset B$ or $b_{13,8}=0$, rows $1,3,13$ and columns 6 to 9 yield $N \subset B$ or $b_{13,7}=b_{13,9}=1$, and then we find N in rows 4 , 6,13 and columns $2,7,9$.
(iii) $b_{i, 5}=1$ for all i with $6 \leqq i \leqq 13, b_{i, 5}=0$ otherwise: At least 2 of the elements $b_{3,10}$ to $b_{3,13}$ of B (say $b_{3,10}$ and $b_{3,11}$) are 0 , otherwise $\bar{N} \subset B$ (with rows 1 and 2). At least one of the elements $b_{4,10}, b_{4,11}, b_{5,10}, b_{5,11}$ (say $b_{4,10}$) is 1 , otherwise $N \subset B$ (with column 5). Columns 6 to 9 , rows 4 to 5 and rows 6 to 13 of B determine M_{8} and M_{9}, respectively. Both rows of M_{8} have at least 3 entries 1 (otherwise $N \subset B$), and then at most 3 entries 1 (otherwise $\bar{N} \subset B$). If one column of M_{8} has both entries 0 , then $\bar{N} \subset B$. Thus we can assume $b_{4.9}=b_{5.8}=0$, and all other elements of M_{8} are 1.

In every column of M_{9} there are at most 4 entries 1 , or we can use Lemma 4 (with column 5). At least 30 entries 1 are in columns 5 to 9 of M_{1}, or $N \subset B$. Thus exactly 4 entries 1 occur in every column of M_{9}, and exactly 2 entries 1 in every row of M_{9}. We can assume $b_{6,9}=b_{7,9}=b_{8,9}=b_{9,9}=0$. If in 2 of rows 1 to 4 of M_{9}, and in columns 1 and 2 of M_{9} there are 4 entries 1 , then we have found \bar{S}_{3}, and Lemma 4 can be used. Otherwise we can assume $b_{6,6}=b_{6,8}=b_{7,6}=b_{7,8}=1$, and $b_{6,7}=b_{7,7}=0$ (after possibly changing columns 6 and 7). Then in these sequences the elements of rows $3,6,7,2,4$ and of columns 6,8 , $7,9,10$ of B represent S_{6}, and Lemma 8 completes the proof.

Lemma 11. If S_{10} or $\bar{S}_{10} \subset B$, then N or $\bar{N} \subset B$.
Proof. Let S_{10} be in the first rows and columns of B. Then $b_{2,6}=b_{2,7}=b_{2,8}=b_{3,1}=$ $b_{3,2}=b_{3,3}=1$, or $N \subset B$. The elements of B in rows 4 to 13 and columns 1 to 3,4 to 5 ,
and 6 to 8 are denoted by M_{1}, M_{2} and M_{3}, respectively. If we observe Lemma 4 , it suffices to discuss 3 cases: M_{2} has (i) one row 00 , (ii) 4 rows 11 , or (iii) 4 rows 01 .
(i) $b_{4,4}=b_{4,5}=0$. Then $N \subset B$, or $b_{4,1}=b_{4,2}=b_{4,3}=b_{4,6}=b_{4,7}=b_{4,8}=1$. By Lemma 4 we can assume one entry 0 in each of rows 2 to 5 of M_{2}. The corresponding rows of M_{1} and M_{3} have exactly 2 entries 1 , since otherwise N or $\bar{N} \subset B$. Then we can assume 2 equal rows in M_{1} (say $b_{5,1}=b_{6,1}=b_{5,2}=b_{6,2}=1$ and $b_{5,3}=b_{6,3}=0$). As M_{3} has at least one column with both entries 1 in rows 2 and 3 (say $b_{5,6}=b_{6,6}=1$), we find \bar{N} in rows $4,5,6$ and columns $1,2,6$.
(ii) $b_{i, 4}=b_{i, 5}=1$ for all i with $4 \leqq i \leqq 7$. In M_{1} and M_{3} rows 4 to 7 have at least one, and rows 8 to 13 at least 2 entries 1 (otherwise $N \subset B$). Together there are at least 16 entries 1 , which guarantee at least one column with 6 entries 1 in M_{1}, and in M_{3}, since by Lemma 3 we can assume at most 6 entries 1 in every column. At most 2 entries 1 exist in the first 4 rows of every column of M_{1} and M_{3} (otherwise $\bar{N} \subset B$). If a column with 6 entries 1 in M_{1} or M_{3} has exactly one entry 1 in the first 4 rows, then N or $\bar{N} \subset B$ by Lemma 9 , since the existence of S_{8} would force a row 11 in rows 8 to 13 of M_{2}, and then Lemma 4 can be used. As M_{1} and M_{3} cannot both have a column with 4 entries 0 in the first 4 rows (otherwise we use Lemma 4), we can assume that in M_{1} a column exists, which has 6 entries 1 , and 2 of them in the first 4 rows. Thus we may choose $b_{i, 3}=1$ for $i=6,7, \ldots, 11$ and $b_{4,3}=b_{5,3}=b_{12,3}=b_{13,3}=0$. Then by Lemma 9 we can assume S_{8} in rows 6 to 11 and columns 4 to 8 of B. After possibly changing rows 12 and 13 we have $b_{12,4}=b_{13,5}=1$, and $b_{12,5}=b_{13,4}=0$ (otherwise we have cases (i) or (iii), or \bar{S}_{3}, and Lemma 4 can be used). Together with rows 1 and 2 of B we get $N \subset B$, or $b_{12,1}=b_{12,2}=b_{13,1}=$ $b_{13,2}=1$.

We next prove, that 6 entries 1 in columns 2 or 3 of M_{3} yield N or $\bar{N} \subset B$. After possibly changing rows 6 and 7,8 and 9,10 and 11 , so as columns 7 and 8 of B we can assume $b_{12,8}=b_{13,8}=b_{5,8}=1$, and $b_{4,8}=0$ (rows 4 and 5 can be changed). By Lemma 9 we find N or $\bar{N} \subset B$, or S_{8} in rows $5,6,12,8,13,10$ and columns $4,5,1,3,2$ after possibly changing columns 1 and 2 of B. Thus we assume $b_{5,1}=b_{6,1}=b_{6,2}=b_{8,2}=b_{10,2}=0, b_{8,1}=$ $b_{10,1}=b_{5,2}=1$. Then rows $8,10,12,13$ and columns $1,6,8$ of B yield $N \subset B$, or $b_{12,6}=b_{13,6}=0$. Rows 12 and 13 together with rows 1 and 3 of B yield $N \subset B$, or $b_{12,7}=b_{13,7}=1$. Rows $8,9,10,11$ and columns $1,3,6$ of B yield $\bar{N} \subset B$, or $b_{9,1}=b_{11,1}=0$. Together with rows 1 and 2 it follows $b_{9,2}=b_{11,2}=1$ (otherwise $N \subset B$). Rows 7, 9, 11 and columns $2,3,7$ yield $\bar{N} \subset B$, or $b_{7,2}=0$. Rows $1,6,7$ and columns $1,2,6$ force $N \subset B$, or $b_{7,1}=1$. Rows 5, 12, 13 and columns $2,7,8$ yield $\bar{N} \subset B$, or $b_{5,7}=0$. Rows $1,5,6$ and columns $1,6,7$ force $N \subset B$, or $b_{5,6}=1$. If now $b_{4,1}=1$, then 6 entries 1 are in column 1 of M_{1}, and by Lemma 9 it remains $b_{4,6}=1, b_{4,7}=0\left(S_{8}\right.$ is in rows $4,7,8,12,10,13$ and columns $4,5,8,7,6$ of B). Then in case $b_{4,2}=0$ we find S_{3} in columns 2,7 and rows 1,4 , $6,8,10$ of B, and we use Lemma 4 , and in case $b_{4,2}=1$ rows $4,5,9$ and columns $2,4,6$ yield $\bar{N} \subset B$. If otherwise $b_{4,1}=0$, then rows $1,2,4$ and columns $1,2,3$ yield $N \subset B$, or $b_{4,2}=1$. Then $b_{4,7}=0$ forces $N \subset B$ (rows $1,4,5$ and columns $1,3,7$), and $b_{4,7}=1$ gives $\bar{S}_{3} \subset B$ (rows $4,9,11,12,13$, columns 2,7), and we use Lemma 4.

In the following we can assume that at most 5 entries 1 exist in columns 2 and 3 of M_{3}, that is, 6 entries 1 occur in column 1 of M_{3}. By Lemma 9, this is possible only in two
cases, either $b_{4,6}=b_{5,6}=1$ and $b_{12,6}=b_{13,6}=0$, or $b_{4,6}=b_{5,6}=0$ and $b_{12,6}=b_{13,6}=1$. In the first case we find N in rows $1,3,12,13$ and columns 4 to 8 , or $b_{12,7}=b_{12,8}=b_{13,7}=b_{13,8}=$ 1. Then more than 5 entries 1 occur in column 2 or 3 of M_{3}, or $N \subset B$ (rows $1,4,5$, columns $3,7,8$). In the second case we use Lemma 9, and we can assume S_{8} in columns 3, $2,1,4,5$ of B, and (j) in rows $11,9,10,8,13,12$, or $(j j)$ in rows $11,8,10,9,13,12$ of B, after possibly changing columns 1 and 2 . In other words, we can assume $b_{10,2}=b_{11,1}=0$, $b_{10,1}=b_{11,2}=1$ and (j) $b_{8,2}=b_{9,1}=0, b_{8,1}=b_{9,2}=1$, or (jj) $b_{8,2}=b_{9,1}=1, b_{8,1}=b_{9,2}=0$.

In case (j) rows $9,11,12,13$ and columns $2,6,7$ yield $\bar{N} \subset B$ or $b_{12,7}=b_{13,7}=0$, rows $8,10,12,13$ and columns $1,6,8$ yield $\bar{N} \subset B$ or $b_{12,8}=b_{13,8}=0$, and then we have N in rows $1,12,13$ and columns $3,7,8$.

In case $(j j) b_{4,7}=b_{5,7}=0$ or 1 yield N in rows $1,4,5$ and columns $3,6,7$, or \bar{N} in rows $4,5,7$ and columns $4,5,7$, respectively, and thus we can assume $b_{4,7}=0, b_{5,7}=1$, after possibly changing rows 4 and 5 . Then rows $1,3,4$ and columns $6,7,8$ imply $N \subset B$ or $b_{4,8}=1$, and rows $4,5,6$ and columns $4,5,8$ imply $\bar{N} \subset B$ or $b_{5,8}=0$. If $b_{4,2}=0$, then $b_{5,2}=1$ or N is in rows $1,4,5$ and columns $2,3,6$. Rows $5,11,13$ and columns $2,5,7$ yield $\bar{N} \subset B$ or $b_{13,7}=0$. Then rows $1,3,13$ and columns $4,7,8$ imply $N \subset B$ or $b_{13,8}=1$. Rows $4,10,13$ and columns $1,5,8$ then yield $\bar{N} \subset B$ or $b_{4,1}=0$, and we find N in rows 1 , 2,4 and columns $1,2,3$. If, otherwise, $b_{4,2}=1$, then $b_{6,2}=0$ or \bar{N} is in rows $4,6,8$ and columns $2,4,8$, and $b_{12,8}=0$ or \bar{N} is in rows $4,8,12$ and columns $2,4,8$. Rows $1,3,12$ and columns $5,7,8$ yield $N \subset B$ or $b_{12,7}=1$. Then rows $5,9,12$ and columns $1,4,7$ yield $\bar{N} \subset B$ or $b_{5,1}=0$. Rows $11,12,13$ and columns $2,6,7$ yield $\bar{N} \subset B$ or $b_{13,7}=0$. Then rows $1,3,13$ and columns $4,7,8$ imply $N \subset B$ or $b_{13,8}=1$. At last rows $4,10,13$ and columns $1,5,8$ yield $\bar{N} \subset B$ or $b_{4,1}=0$, and we find N in rows $1,4,5$ and columns $1,3,6$.
(iii) $b_{i, 4}=0, b_{i, 5}=1$ for all i with $4 \leqq i \leqq 7$. There are at most 13 entries 1 in M_{2} (otherwise (ii)). At least 3 entries 1 are in every row of rows 4 to 13 in columns 1 to 5 , or in 4 to 8 (otherwise $N \subset B$). Thus at least 17 entries 1 exist in M_{1}, and in M_{3}, and either we use Lemma 3, or at least 2 columns of M_{1}, and at least 2 columns of M_{3} have exactly 6 entries 1.

Every column in the first 4 rows of M_{1} or of M_{3} has at least 2 entries 1 (otherwise $S_{3} \subset B$, and we use Lemma 4). In the first 4 rows of M_{1} and M_{3} there exists at most one column with 4 entries 1 (otherwise $\bar{N} \subset B$), which we can assume not to be in M_{1}. Each of the first 4 rows of M_{1} and of M_{3} has at least 2 entries 1 (otherwise $N \subset B$). Altogether the first 4 rows of M_{1} contain at least 8 entries 1 , so that 2 columns have exactly 3 entries 1 , and we can assume $b_{4,3}=b_{5,3}=b_{6,3}=b_{4,2}=b_{5,2}=b_{7,2}=1, b_{6,2}=b_{7,3}=0$ (otherwise $\bar{N} \subset B$). Then $b_{6,1}=b_{7,1}=1$, or $N \subset B$.

After possibly changing rows 6 and 7 , and columns 2 and 3 of B we can assume column 3 to be one of the 2 columns of M_{1} with 6 entries 1 , that is, $b_{8,3}=b_{9,3}=b_{10,3}=1$. Then Lemma 9 can be used, and we find S_{8} in rows $4,8,5,9,6,10$ and columns 8, 7, 6, 4,5 of B (columns 4 and 5 of S_{8} have to be in M_{2}), that is,

$$
\begin{aligned}
b_{4,7}=b_{4,8}=b_{5,6}=b_{5,8}=b_{6,6}=b_{6,7}=b_{8,4}=b_{8,7} & =b_{8,8} \\
& =b_{9,4}=b_{9,6}=b_{9,8}=b_{10,4}=b_{10,6}=b_{10,7}=1,
\end{aligned}
$$

and

$$
b_{4,6}=b_{5,7}=b_{6,8}=b_{8,5}=b_{8,6}=b_{9,5}=b_{9,7}=b_{10,5}=b_{10,8}=0
$$

In rows $4,5,7$ and columns $2,5,8$ of B we find \bar{N}, or $b_{7,8}=0$, and then $b_{7,6}=b_{7,7}=1$ (otherwise $N \subset B$). Rows 4,5,8,9 and columns 2, 3, 8 of B yield $\bar{N} \subset B$, or $b_{8,2}=b_{9,2}=0$.

If 6 entries 1 are in column 1 of M_{1}, then N or $\bar{N} \subset B$ by Lemma 9 (S_{8} is impossible, since rows 6 and 7 are identical in columns 4 to 8). Thus 6 entries 1 exist in column 2 of M_{1}. Then Lemma 9 can be used, and columns 4 and 5 of S_{8} have to be in M_{2}. Then at most 11 entries 1 exist in M_{2}, and therefore M_{1} has more than 18 entries 1 , that means, at least one column of M_{1} has 7 entries 1 , and Lemma 3 can be used.

Lemma 12. Let Z_{i} denote the number of pairs of rows of B with i equal columns. Then either N or $\bar{N} \subset B$, or

$$
\begin{equation*}
Z_{9}+Z_{10} \geqq 12+\sum_{i \leqq 6} Z_{i} . \tag{6}
\end{equation*}
$$

Proof. If $Z_{i}>0$ for $i>10$, then by Lemma 2 we have N or $\bar{N} \subset B$. Otherwise, if s_{i} denotes the number of columns with i entries 0 , then

$$
\begin{gather*}
\sum_{i \leqq 10} Z_{i}=\binom{13}{2}=78, \quad \text { and } \quad \sum_{i \geqq 0} s_{i}=17, \tag{7}\\
\sum_{i \geqq 10} i Z_{i}=\sum_{i \geqq 0}\left(\binom{i}{2}+\binom{13-i}{2}\right) s_{i} \geqq 36 \sum_{i \geqq 0} s_{i}=612 . \tag{8}
\end{gather*}
$$

At most 2 pairs of rows in every triple of rows of B have an even number of equal columns (Lemma 1, $c=17$). Again the Theorem of Turán ([2], p. 17) implies then

$$
\begin{equation*}
Z_{0}+Z_{2}+Z_{4}+Z_{6}+Z_{8}+Z_{10} \leqq\left[13^{2} / 4\right]=42 \tag{9}
\end{equation*}
$$

With (7) and $Z_{8}+Z_{10}$ from (9) we obtain

$$
\begin{align*}
\sum_{i \leqq 10} i Z_{i} & =2\left(Z_{9}+Z_{10}\right)+Z_{8}+Z_{10}+7 \sum_{i \leqq 10} Z_{i}-\sum_{i \leqq 6}(7-i) Z_{i} \\
& \leqq 2\left(Z_{9}+Z_{10}\right)+588-2 \sum_{i \leqq 6} Z_{i} \tag{10}
\end{align*}
$$

From (8) and (10) we obtain (6).
Lemma 13. If there are three rows a, b, c in B, so that the number of equal columns is at least 9 in rows a and b, and in rows a and c, then N or $\bar{N} \subset B$.

Proof. Let a, b, c be rows $1,2,3$ of B. If more than 5 columns with both entries 0 (or both entries 1) occur in one pair of rows we use Lemma 2. If then the pairs of rows 1 and 2, and of rows 1 and 3 both contain 5 columns with both entries 0 , or both contain 5 columns with both entries 1 , then N or $\bar{N} \subset B$ follows directly, or by use of Lemmas 7,10 , or 11 . Thus in the following we can assume 5 pairs with both entries 0 in the first 5 columns of rows 1 and 2,5 pairs with both entries 1 in columns 6 to 10 of rows 1 and 3, and exactly 4
columns with both entries 1 in rows 1 and 2 , and exactly 4 columns with both entries 0 in rows 1 and 3 .

If in rows 2 and 3 there are less than 7 equal columns, then by Lemma 12 we have $Z_{9}+Z_{10} \geqq 13$ in B. Then the pigeonhole principle guarantess that one row of B exists which has together with each of two other rows at least 9 equal columns, among which in both pairs of rows occur 5 columns with both entries 0 , or 5 columns with both entries 1 . Thus we can use Lemmas 7,10 or 11 to get N or $\bar{N} \subset B$.

In columns 11 to 17 occur at least 2 columns with both entries 0 in rows 1 and 3 , and at least 2 columns with both entries 1 in rows 1 and 2 . We can assume $b_{1,11}=b_{1,12}=$ $b_{3,11}=b_{3,12}=0$ and $b_{1,13}=b_{1,14}=b_{2,13}=b_{2,14}=1$. Then S_{1} or $\bar{S}_{1} \subset B$, or $b_{2,11}=b_{2,12}=1$ and $b_{3,13}=b_{3,14}=0$. Now at least 7 equal columns in rows 2 and 3 are possible only if at least 4 of them occur in columns 1 to 10 . More than 4 columns, however, yield N or $\bar{N} \subset B$. Thus we can choose $b_{3,1}=b_{3,2}=b_{2,8}=b_{2,9}=b_{2,10}=0, b_{3,3}=b_{3,4}=b_{3,5}=b_{2,6}=b_{2,7}=$ 1 , and without loss of generality $b_{2,15}=b_{2,16}=b_{3,15}=b_{3,16}=1$. Then $\bar{N} \subset B$, or $b_{1,15}=$ $b_{1,16}=0$.

If column 15 in rows 4 to 13 contains more than 6 entries 0 , or more than 5 entries 1 , then S_{2} or $\bar{S}_{2} \subset B$, and we can use Lemma 3. It remains to consider that column 15 in rows 4 to 13 contains (i) 5 entries 1 , and (ii) 6 entries 0 .
(i) $b_{i, 15}=1$ for all i with $4 \leqq i \leqq 8$. By Lemma 9 we can assume S_{8} in rows 3 to 8 and columns 1 to 5 . There exist 3 rows in this S_{8} which together with row 3 of B have 2 columns with both entries 1 . If one of these rows contains more than one entry 1 in columns 6 to 10 , then $\bar{S}_{10} \subset B$, and we use Lemma 11 . Otherwise in columns 6 to 10 we find \bar{N}, or we have 3 rows with at least 4 entries 0 , and 8 rows with at least 3 entries 0 . Then any distribution of $3\binom{4}{2}+8\binom{3}{2}=42$ pairs 00 among the columns 6 to 10 guarantees $S_{3} \subset B\left(\right.$ since $\left.4\binom{5}{2}<42\right)$, and we use Lemma 4 .
(ii) $b_{i, 15}=0$ for all i with $4 \leqq i \leqq 9$. By Lemma 9 we can assume \bar{S}_{8} in rows 4 to 9 and columns 6 to 10 . If column 16 has at least 4 entries 0 in rows 4 to 9 , then $S_{3} \subset B$ (together with row 1 of B), and Lemma 4 can be used. Thus we can assume $b_{4,16}=b_{5,16}=b_{6,16}=1$. If then in columns 3 to 5 in one of rows 4 to 6 there are 2 entries 1 , then $\bar{S}_{10} \subset B$, and we use Lemma 11. Otherwise $N \subset B$, or in rows 4 to 6 and columns 1 and 2 occur entries 1 only. Then, however, we find \bar{N} in rows 4 to 6 and columns 1,2 and 16, and Lemma 13 is proved.

The proof of Theorem 2 is complete, since Lemma 12 for any B guarantees the existence of three rows which enable us to apply Lemma 13.

REFERENCES

1. R. K. Guy, (Ed.), Sixth British Combinatorial Conference, Unsolved Problems, No. 13 (Typescript 1977).
2. F. Harary, Graph theory, (Addison-Wesley, 1969).
3. H. Harborth and I. Mengersen, Ein Extremalproblem für Matrizen aus Nullen und Einsen, J. Reine Angew. Math. 309 (1979), 149-155.
4. R. W. Irving, A bipartite Ramsey problem and the Zarankiewicz numbers. Glasgow Math. J. 19 (1978), 13-26.

Technische Universität Braunschweig
D-3300 Braunschweig, West Germany

