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In [1] the following question was posed by R. W. Irving (see also Conjecture 4.10 in
[4]): Is there an edge 2-colouring of the complete bipartite graph K1317 with no
monochromatic K3 3? We give a negative answer in this note (Theorem 2). Furthermore
we prove Conjecture 4.11 (i) of [4] (Theorem 1), that is, any edge 2-coloured K2n+14n_3

contains a monochromatic K2,„ with the 2 and n vertices a subset of the 2n +1 and An - 3
vertices, respectively. Theorem 1 is a consequence of Satz 4 in [3], however, we give a
direct proof here.

Instead of edge coloured complete bipartite graphs Kxy we use 0-1-matrices M =
(mu), where ^ = 0 or 1 (ISiiSx, lS/S=y), if the edge (i,j) of Kxy is of the first or
second colour, respectively.

LEMMA 1. If ptj, pik, and pjk denote the numbers of equal columns (both entries 0 or both
entries 1) in the three pairs of rows of any triple of rows (i, j , fc) in any 0-1-matrix with c
columns, then

ft, + Pik + P,k = c(mod 2). (1)

Proof. Each column contributes 1 or 3 to the sum on the left-hand side.
In the following we denote by [x] and {x} the greatest integer Six and the smallest

integer §x, respectively.

THEOREM 1. Any (2n + l,4n-3)-0-l-mafrix contains a (2, n)-submatrix with entries
0 only, or 1 only.

Proof. Any column of a (2n + l, 4n - 3)-0-l-matrix M contains at least I )+

( I pairs of equal entries. Thus for the total number A of equal pairs in all columns of

M we obtain

A S ( 4 n - 3 ) ( ( )+( H = 4n3-3n2 . (2)

Using the pigeonhole principle there is at least one pair of rows in M with

equal columns for n ̂  2 (if n = 1, then Theorem 1 is trivial).

" Glasgow Math. J. 21 (1980) 187-197.
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We assume that no pair of rows in M has more than p equal columns. In any triple of
rows at most two pairs have p equal columns (Lemma 1). Then the famous theorem of
Turan ([2], p. 17) implies that at most [(2n +1)2/4] = n2+n pairs of rows in M have p
equal columns. It follows that

/7?*i-H\ \

3) = 4n3 — 3n2 — 2n, (4)

which contradicts (2). Thus at least one pair of rows in M has p + l = 2 n - l equal

columns, that means, j —-— \ = n columns have entries 0 only, or 1 only.

THEOREM 2. Any (13,17)-0-l-matrix contains a (3, 3)-submatrix with entries 0 only,
or 1 only.

Proof. We denote by B = (bu) a (13,17)-0-l-matrix, by JV the (3, 3)-matrix with
entries 0 only, and by M the matrix M with 0 and 1 interchanged. If M contains a
submatrix S, we will write S<^M. The proof is divided into the following Lemmas. Those
parts of their proofs which follow by changing 0 and 1 are omitted.

We consider the matrices Sf ( l S i ^ l O ) shown opposite as submatrices of B up to
exchanges of rows or columns.

LEMMA 2. If S1 or Sx c B, then N or N c B,

Proof. If SX<=B, then either N<=B, or every row of that (11, 6)-submatrix M of B
/ 4 \determined by the columns of Sx contains at least 4 entries 1, that is, I j = 4 triples of

entries 1. Then any distribution of these 44 triples among the 6 columns of M guarantees

N c M , since 21 l<44.

LEMMA 3. If S2, Sj, S2 or Sj^B, then N or N<^B.

Proof. Let S2aB, or Si^B7, which corresponds to S j c R The first 5 columns and
the last 7 rows of S2 determine M c S2. Either N <= S2, or every row of M contains at least

/ 3 \
3 entries 1, that is, I 1 = 3 pairs of entries 1. In any distribution of these 21 pairs among

the 5 columns of M there are 2 columns with 3 pairs of entries 1 in a row, since

2L )<21. Together with column 6 of S2, it follows that iVc S2.

LEMMA 4. If S3 or S3 <= B, then N or N^B.

Proof. If S3 is in the first rows and columns of B, then rows 6 to 13, and columns 3 to
17 determine a (8, 15)-submatrix M of B. If there is one row of M with more than 6
entries 1, then Lemma 3 can be used. Otherwise M has at least 8 x 9 = 72 entries 0. Let st
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(0^iS=8) denote the number of columns of M with exactly i entries 0. Then
8 8

X sf = 15, and £ is;S 72
i = 0 i = l

yield

s5 + 2s6 + 3s7 + 4s8 ̂  12 + 4s0 + 3sj + 2s2 + s3 ̂  12. (5)

Together with (5) there are

triples of entries 0 in the columns of M, so that N <= M.

LEMMA 5. If a column of B has 9 entries 0 or 9 entries 1, (hen JV or

Proof. Let b u = 0 for all i with 1 ^ i S 9. Rows 1 to 9 and columns 2 to 17 determine
M c J3. if there is a column of M with at least 5 entries 0, we use Lemma 4. Otherwise at

least 16 ( 1= 160 pairs with both entries 1 in the columns of M distributed among all

pairs of rows of M guarantee 2 rows of M having 5 columns with both entries 1, since
/9 \

41 1< 160. Then S2c B, and we use Lemma 3.

LEMMA 6. / / S4 or S 4 cB, then N or NcB.

Proof. Let S4 be in the first rows and columns of B. Rows 5 to 13 and columns 1 to 2,
3 to 5, 6 to 7 determine Mu M2, M3, respectively. Either-N, or N c B, or every row of M2

has at most 2 entries 0, and at most 2 entries 1. In at least 5 rows of M2 there are 2 entries
0 (1). Then either N c B ( N c B ) , or S 3 c M ! (S3<=M3), and Lemma 4 can be used.

LEMMA 7. / / S5 or S5 c B, then N or N^B.

Proof. Let S5 occur in the first rows and columns of B. Rows 4 to 13 and columns 1
to 5 of B determine Mlt and rows 4 to 13 together with columns 11 to 14 of B determine
M2. At first b3, = 1 for all / with 1 ^ / g 5 , or Lemma 2 can be used. Next either N c B , o r
every row in Mj has at least 3 entries 1. If one row of M2 exists with rhore than one entry
1, then together with row 3 of B we have S 4 c B, and use Lemma 6. Otherwise every row
of M2 has 3 entries 0, and any distribution of 10 triples 000 among the 4 columns of M2

/4\
guarantees, Nc M2, since 21 I < 10.

LEMMA 8. N or N exist in any (5, 5)-matrix obtained by changing rows or columns of
S6, SJ, S6 or Si.

Proof. If the second or third element of column 5 of S6 is 1, then N c S 6 , and
otherwise N <= S6.
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LEMMA 9. If S7<^B (respectively S7<^B), then either N orNcB, or S8 {respectively S8)
are in rows 3 to 8 and columns 1 to 5 of S7 (respectively S7), up to exchanges of rows or
columns.

Proof. Let S7 <= B, and M denotes the elements of S7 in rows 3 to 8 and columns 1 to
5. At least 3 entries 1 exist in every row of M, or ATczS7. If one row has more than 3

entries 1, then ( )+5( )>2( I implies that 2 columns exist in M with 3 pairs 11, and

together with column 6 of S7 it follows JVc S7. It remains that M has exactly 18 entries 1.
No column of M has more than 4 entries 1, since otherwise S3cB (Lemma 4). No
column of M has less than 3 entries 1, since otherwise 4 columns have 4 entries 1, and this
forces 2 rows of these 4 columns to have 2 entries 1 and 4 rows to have 3 entries 1, and

then 2( )+4( J>2( I together with column 6 of S7 guarantees TVc S7. So M can have

only 3 columns with 4, and 2 columns with 3 entries 1. Then N c S7 (with column 6), or
by changing of rows or columns we obtain M = S8.

LEMMA 10. If S9 or S9 c B, then N or N<=B.

Proof. If we find S9 in the first rows and columns of B, then by Lemma 2 we can
assume b3]-= b2,+ 5 = 1 for 7 = 1,2,3,4. Let Mt be determined by rows 4 to 13 and
columns 1 to 9. Either NcJB, or in columns 1 to 5, and in columns 5 to 9 of Mu

respectively, there are at least 30 entries 1. Every column ^5 of Mx has at most 6 entries
1, or we can use Lemma 3. Thus column 5 must have at least 6 entries 1. Since Lemma 5
yields JVor JVcB, column 5 has at most 8 entries 1.

(i) bt_5 = 1 for all i with 8 S i ̂  13, bj>5 = 0 otherwise: The elements in rows 4 to 7 of B
and in columns 1 to 4, 6 to 9, 10 to 14 are denoted by M2, M3, M4, respectively. Every
row of M2 and of M3 has at least 3 entries 1, otherwise N<^B. Then every pair of rows of
M2 and of M3 has at least 2 columns with both entries 1. Together with rows 2 or 3, and
M4, we find Ncf i , or every column of M4 has at least 3 entries 0. Then 2 columns of M4

together with column 5 of B yield N<=B.
(ii) bi5 = l for all i with 7 ^ i S 1 3 , bi5 = 0 otherwise: Let M5 and M6 denote the

elements of B in rows 4 to 6, and in columns 1 to 4, and 6 to 9, respectively. Rows 7 to 13
and columns 1 to 4 determine M7. Every row of Ms and of M6 has at least 3 entries 1
(otherwise N<^B), and then at most 3 entries 1 (otherwise NczB). Every column of M5

and of M6 has at most one entry 0, otherwise N<=B. Thus we can assume b4>1 = b5 2 =
6̂,3 = 4̂,6 = 5̂,7 = 6̂,8 = 0, a n d 1 for all other elements of M5 and of M6. As in every pair

of columns of M7 at most 2 pairs 11 occur (otherwise together with column 5 of B we
obtain N<^B), there is a row in M7 with 11 in columns 1 and 4, 2 and 4, or 3 and 4, and
we can assume b7>3 = b7A= 1. At least 2 elements of b7 6 to b7 9 are 1, otherwise N<=B.
These have to be b7A and b77, since rows 4, 5, 7 and columns 3, 4, 8, 9 yield N c B or
b7 8 = b19 = 0. Then rows 5, 6, 7 and columns 1,4,6 imply NcB or b7 1 = 0, and rows 4,
6, 7 and columns 2, 4, 7 imply N c B or b7>2 = 0.
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At least 14 entries 1 occur in M7. Column 4 of M7 contains at most 3 entries 1, since
otherwise we can use Lemma 3. No column of M7 has more than 4 entries 1, and thus two
of columns 1 to 3 of M7 contain exactly 4 entries 1. After possibly changing columns 1
and 2, and rows 4 and 5 we can assume bsa = bgi = b101 = btll = 1, and b121 = b13i = 0.
Now Lemma 9 guarantees N or JV<= B, or we can assume S8 in rows 5, 6, 8, 9, 10, 11 and
columns 6, 9, 5, 7, 8, in these sequences.

Then rows 5, 6 and 8, 9, 10 or 11 and columns 1, 4 and 6, 6, 9 or 9, respectively,
yield JVcfi or b8 4 = b9>4 = b10A = b11A = 0. Rows 4, 5, 10 and columns 3, 8, 9 yield iVc jg
or blo>3 = 0. Rows 4, 6, 11 and columns 2, 7, 9y ie ldNcB or b11>2 = 0. Then rows 1, 8, 10
and columns 3, 4, 7, rows 1, 7, 9 and columns 2, 8, 9, rows 1, 2, 10 and columns 2, 3, 4,
rows 1, 2, 11 and columns 2, 3, 4 yield N<^B or b8 3= b9,2 = bio2= bU3 = 1, respectively.
Furthermore NczB or b8>2

= b9>3 = 0 follow from rows 8, 9, 10 and columns 1, 2, 5, and
from rows 8, 9, 11 and columns 1, 3, 5.

If ^12,3= ^13,3= 1> then Lemma 4 can be used. Therefore we can assume fri2,3 = 0
after possibly changing rows 12 and 13. Then rows 1, 2, 12 and columns 1 to 4 imply
N<=B or b12,2

= b\2,4= I- R ° w s 4, 6, 12 and columns 2, 4, 7, and columns 2, 4, 9 yield
JVcB or b 1 2 7 =b 1 2 9 = O. Then rows 1, 3, 12 and columns 6 to 9 yield JVcB or
b\2,6

= b12,s= 1- It follows bi3,6 = 0, or Lemma 4 can be used. If fci3>2 = 0, then rows 1, 2,
13 and columns 1 to 4 yield JV<=B or b133 = b134 = 1, rows 1, 7, 13 and columns 1, 2, 8
yield IVcB or b13# = 1, and then we find N in rows 4, 5, 13 and columns 3, 4, 8. If,
however, b13a = 1, then rows 10, 12, 13 and columns 2, 5, 8 yield JVcBor b138 = 0, rows
1, 3, 13 and columns 6 to 9 yield N c f i o r bi3J = b1X9 = 1, and then we find N in rows 4,
6, 13 and columns 2, 7, 9.

(iii) b; 5 = 1 for all i with 6 ^ i S13, bii5 = 0 otherwise: At least 2 of the elements b3>10

to b313 of B (say b310 and b3>n) are 0, otherwise N<=B (with rows 1 and 2). At least one
of the elements b410, b4Al, b510, bSA1 (say b4>10) is 1> otherwise Nc=B (with column 5).
Columns 6 to 9, rows 4 to 5 and rows 6 to 13 of B determine Mg and M9, respectively.
Both rows of M8 have at least 3 entries 1 (otherwise N^B), and then at most 3 entries 1
(otherwise JVcfi). If one column of M8 has both entries 0, then N c B . Thus we can
assume b4.9= b5.8 = 0, and all other elements of M8 are 1.

In every column of M9 there are at most 4 entries 1, or we can use Lemma 4 (with
column 5). At least 30 entries 1 are in columns 5 to 9 of Mu or N<=B. Thus exactly 4
entries 1 occur in every column of M9, and exactly 2 entries 1 in every row of M9. We can
assume b69 = b79 = bS9 = b99 = 0. If in 2 of rows 1 to 4 of M9, and in columns 1 and 2 of
M9 there are 4 entries 1, then we have found S3, and Lemma 4 can be used. Otherwise we
can assume b66= b6 8= b7>6= b7>8= 1, and b67= b77 = 0 (after possibly changing columns
6 and 7). Then in these sequences the elements of rows 3, 6, 7, 2, 4 and of columns 6, 8,
7, 9, 10 of B represent S6, and Lemma 8 completes the proof.

LEMMA 11. 7/ S10 or S10<^B, then N or N<=B.

Proof. Let S10 be in the first rows and columns of B. Then fe26 = bzl = fo28 = b31 =
b3,2~ b33= 1, or N^B. The elements of B in rows 4 to 13 and columns 1 to 3, 4 to 5,
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and 6 to 8 are denoted by M1? M2 and M3, respectively. If we observe Lemma 4, it
suffices to discuss 3 cases: M2 has (i) one row 00, (ii) 4 rows 11, or (iii) 4 rows 01.

(i) b44 = b45 = 0. Then N<^B, or b4l = b42 = b43 = b46 = b47 = b48 = 1. By Lemma 4
we can assume one entry 0 in each of rows 2 to 5 of M2. The corresponding rows of Mx

and M3 have exactly 2 entries 1, since otherwise N o r N c f l . Then we can assume 2 equal
rows in Mx (say b5 1 = b6-1 = b52 = b62 = 1 and b5 3 = b6 3 = O). As M3 has at least one
column with both entries 1 in rows 2 and 3 (say b56 = b66= 1), we find N in rows 4, 5, 6
and columns 1, 2, 6.

(ii) biA= bi5= 1 for all i with 4 g j g 7 . in Mx and M3 rows 4 to 7 have at least one,
and rows 8 to 13 at least 2 entries 1 (otherwise N^B). Together there are at least 16
entries 1, which guarantee at least one column with 6 entries 1 in M1; and in M3, since by
Lemma 3 we can assume at most 6 entries 1 in every column. At most 2 entries 1 exist in
the first 4 rows of every column of Mx and M3 (otherwise NcB). If a column with 6
entries 1 in Ml or M3 has exactly one entry 1 in the first 4 rows, then N or N c f l by
Lemma 9, since the existence of S8 would force a row 11 in rows 8 to 13 of M2, and then
Lemma 4 can be used. As Mj and M3 cannot both have a column with 4 entries 0 in the
first 4 rows (otherwise we use Lemma 4), we can assume that in Mx a column exists, which
has 6 entries 1, and 2 of them in the first 4 rows. Thus we may choose bi>3=l for
i = 6, 7 , . . . , 11 and b43 = b5 3 = b1 2 3 = bl33 = 0. Then by Lemma 9 we can assume S8 in
rows 6 to 11 and columns 4 to 8 of B. After possibly changing rows 12 and 13 we have
b12>4= b13S = 1, and b125 = b13>4 = 0 (otherwise we have cases (i) or (iii), or S3, and Lemma
4 can be used). Together with rows 1 and 2 of B we get IVcB, or b12i = b122=bl31 =

We next prove, that 6 entries 1 in columns 2 or 3 of M3 yield N or IV <= B. After
possibly changing rows 6 and 7, 8 and 9, 10 and 11, so as columns 7 and 8 of B we can
assume b12S = b138 = b5S = 1, and b4S = 0 (rows 4 and 5 can be changed). By Lemma 9 we
find N o r N c f l , or S8 in rows 5, 6, 12, 8, 13, 10 and columns 4, 5, 1, 3, 2 after possibly
changing columns 1 and 2 of B. Thus we assume b5X = b6A = b62 = bS2 = bl02 = 0, b8A =
bio,i = bSi2=l. Then rows 8, 10, 12, 13 and columns 1, 6, 8 of B yield NcB, or
bi2,6=bi3,6 = 0. Rows 12 and 13 together with rows 1 and 3_of B yield NcB, or
bi2,7 = *>i3,7 = 1- R o w s 8> 9> 1°. 11 a n d columns 1, 3, 6 of B yield JVcfi.or b9-1 = b l l t l = 0.
Together with rows 1 and 2 it follows b9>2 = b11>2 = 1 (otherwise NcB). Rows 7, 9, 11 and
columns 2, 3, 7 yield N c B , or b72 = 0. Rows 1, 6, 7_and columns 1, 2, 6 force N c B , o r
b7>1= 1. Rows 5, 12, 13 and columns 2, 7, 8 yield N<^B, or b5,7 = 0. Rows 1, 5, 6 and
columns 1, 6, 7 force JV<= B, or b5 6 = 1. If now b4>1 = 1, then 6 entries 1 are in column 1 of
M1; and by Lemma 9 it remains b4>6= 1, b4J = 0 (S8 is in rows 4, 7, 8, 12, 10, 13 and
columns 4, 5, 8, 7, 6 of B). Then in case b4>2

 = 0 we find S3 in columns 2, 7 and rows 1, 4,
6, 8, 10 of B, and we use Lemma 4, and in case b4a = 1 rows 4, 5, 9 and columns 2, 4, 6
yield N^B. If otherwise b4>1 = 0, then rows 1, 2, 4 and columns 1, 2, 3 yield N c B , or
^4.2= 1- Then b4>7 = 0 forces NaB (rows 1, 4, 5 and columns 1, 3, 7), and b47= 1 gives
S3c:B (rows 4, 9, 11, 12, 13, columns 2, 7), and we use Lemma 4.

In the following we can assume that at most 5 entries 1 exist in columns 2 and 3 of
M3, that is, 6 entries 1 occur in column 1 of M3. By Lemma 9, this is possible only in two
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cases, either b46= b56= 1 and b1 2,6
= bix6 = 0, or £>46 = bs>6 = 0 and b12j6 = ^13,6= 1- In the

first case we find N in rows 1, 3, 12, 13 and columns 4 to 8, or b12>7 = b12is = b13i7 = b1X8 =
1. Then more than 5 entries 1 occur in column 2 or 3 of M3, or N<=B (rows 1, 4, 5,
columns 3, 7, 8). In the second case we use Lemma 9, and we can assume S8 in columns 3,
2, 1, 4, 5 of B, and (/) in rows 11, 9, 10, 8, 13, 12, or (//) in rows 11, 8, 10, 9, 13, 12 of B,
after possibly changing columns 1 and 2. In other words, we can assume b10j2= bni = 0,
bio.i = ^ii,2 = 1 and (/) b8a = b9,i = 0, bgl = b9a = 1, or (//) b j 2 = b9l = 1, b8 1 = b92 = 0.

In case (/) rows 9, 11, 12, 13 and columns 2, 6, 7 yield JVcBor b127 = b13>7 = 0, rows
8, 10, 12, 13 and columns 1, 6, 8 yield N c B o r b12,8 = bi3>8 = 0, and then we have N in
rows 1, 12, 13 and columns 3, 7, 8.

In case (//) bA1 = b57 = 0 or 1 yield N in rows 1, 4, 5 and columns 3, 6, 7, or jV in
rows 4, 5, 7 and columns 4, 5, 7, respectively, and thus we can assume b4 7 = 0, bSJ = 1,
after possibly changing rows 4 and 5. Then rows 1, 3, 4 and columns 6, 7, 8 imply JVcfi
or b4>8 = 1, and rows 4, 5, 6 and columns 4, 5, 8 imply JVcfi or b5 8 = 0. If b4,2 = 0, then
^5,2= 1 or N is in rows 1, 4, 5 and columns 2, 3, 6. Rows 5, 11, 13 and columns 2, 5, 7
yield N c B o r b13 7 = 0. Then rows 1, 3, 13 and columns 4, 7, 8 imply N<= B or b13 8 = 1.
Rows 4, 10, 13 and columns 1, 5, 8 then yield JVcBor b41 = 0, and we find N in rows 1,
2, 4 and columns 1, 2, 3. If, otherwise, b 4 2 = 1, then b6t2 = 0 or N is in rows 4, 6, 8 and
columns 2, 4, 8, and b128 = 0 or N is in rows 4, 8, 12 and columns 2, 4, 8. Rows 1, 3, 12
and columns 5, 7, 8 yield N<=B or b1 2 7= 1. Then rows 5, 9, 12 and columns 1, 4, 7 yield
N c B or b5)1 = 0. Rows 11, 12, 13 and columns 2, 6, 7 yield N^B or b137 = 0. Then
rows 1, 3, 13 and columns 4, 7, 8 imply N<=£} or b1 3 8= 1. At last rows 4, 10, 13 and
columns 1, 5, 8 yield N c B o r b4 1 = 0, and we find N in rows 1, 4, 5 and columns 1, 3, 6.

(iii) bj4 = 0, bi5=l for all i with 4 ^ i S 7 . There are at most 13 entries 1 in M2

(otherwise (ii)). At least 3 entries 1 are in every row of rows 4 to 13 in columns 1 to 5, or
in 4 to 8 (otherwise N<^B). Thus at least 17 entries 1 exist in M1; and in M3, and either
we use Lemma 3, or at least 2 columns of Mt, and at least 2 columns of M3 have exactly 6
entries 1.

Every column in the first 4 rows of Mx or of M3 has at least 2 entries 1 (otherwise
S3<^B, and we use Lemma 4). In the first 4 rows of Mx and M3 there exists at most one
column with 4 entries 1 (otherwise N<^B), which we can assume not to be in Mx. Each of
the first 4 rows of Mx and of M3 has at least 2 entries 1 (otherwise NcB). Altogether the
first 4 rows of Mt contain at least 8 entries 1, so that 2 columns have exactly 3 entries 1,
and we can assume b43 = bS3 = b63 = b4 2 = b52 = b12 = 1, b62 = b13 = 0 (otherwise NcB).
Then b61 = b71 = 1, or JV<= B.

After possibly changing rows 6 and 7, and columns 2 and 3 of B we can assume
column 3 to be one of the 2 columns of M1 with 6 entries 1, that is, b8>3 = bg3 = b103 = 1.
Then Lemma 9 can be used, and we find S8 in rows 4, 8, 5, 9, 6, 10 and columns 8, 7, 6,
4, 5 of JB (columns 4 and 5 of S8 have to be in M2), that is,

b4-7 = bAA = b5 6 = b5 8 = b66 = b6J = bSA = b8 7 = bs 8

= C>9)4
 = 09,6 = ^9,8 = "10,4 = "10,6 = ^10 , 7

 = 1 >
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and

b*,6 = b5tl = b68 = b8S = b86 = b9i5 = b91 = b10S = b10>8 = 0.

In rows 4, 5, 7 and columns 2, 5, 8 of B we find N, or b7 8 = 0,_and then b7>6= b7J= 1
(otherwise N^B). Rows 4, 5, 8, 9 and columns 2, 3, 8 of B yield N<= B, or b8>2 = b9>2 = °-

If 6 entries 1 are in column 1 of M1; then N or N c B by Lemma 9 (Sg is impossible,
since rows 6 and 7 are identical in columns 4 to 8). Thus 6 entries 1 exist in column 2 of
Mj. Then Lemma 9 can be used, and columns 4 and 5 of S8 have to be in M2. Then at
most 11 entries 1 exist in M2, and therefore M1 has more than 18 entries 1, that means, at
least one column of Mx has 7 entries 1, and Lemma 3 can be used.

LEMMA 12. Let Zt denote the number of pairs of rows of B with i equal columns. Then
either N or N c B, or

Z9 + Z10^\2+^Zt. (6)

Proof. If Zj>0 for i>10, then by Lemma 2 we have N or Ncf l . Otherwise, if sf

denotes the number of columns with i entries 0, then

and 1 ^ = 17, (7)

(8)

At most 2 pairs of rows in every triple of rows of B have an even number of equal
columns (Lemma 1, c = 17). Again the Theorem of Turan ([2], p. 17) implies then

Zo + Z2 + Z4 + Z6 + Z8 + Z10 Si [132/4] = 42. (9)

With (7) and Zs + Z10 from (9) we obtain

iS10 iSlO iS6

Si2(Z9+Z10) + 588-2 I Zf. (10)

From (8) and (10) we obtain (6).

LEMMA 13. If there are three rows a, b, c in B, so that the number of equal columns is at
least 9 in rows a and b, and in rows a and c, then N or N c B.

Proof. Let a, b, c be rows 1, 2, 3 of B. If more than 5 columns with both entries 0 (or
both entries 1) occur in one pair of rows we use Lemma 2. If then the pairs of rows 1 and 2,
and of rows 1 and 3 both contain 5 columns with both entries 0, or both contain 5 columns
with both entries 1, then N or iVcfi follows directly, or by use of Lemmas 7, 10, or 11.
Thus in the following we can assume 5 pairs with both entries 0 in the first 5 columns of
rows 1 and 2, 5 pairs with both entries 1 in columns 6 to 10 of rows 1 and 3, and exactly 4
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columns with both entries 1 in rows 1 and 2, and exactly 4 columns with both entries 0 in
rows 1 and 3.

If in rows 2 and 3 there are less than 7 equal columns, then by Lemma 12 we have
Z9 + Z10 = 13 in B. Then the pigeonhole principle guarantess that one row of B exists
which has together with each of two other rows at least 9 equal columns, among which in
both pairs of rows occur 5 columns with both entries 0, or 5 columns with both entries 1.
Thus we can use Lemmas 7, 10 or 11 to get N or NcB.

In columns 11 to 17 occur at least 2 columns with both entries 0 in rows 1 and 3, and
at least 2 columns with both entries 1 in rows 1 and 2. We can assume bull = b112 =
b3,u = bxl2 = 0 ana" bx 13 = bi,i4= bxi3 = b2,i4= 1. Then Sj or Si^B, or 6211 = b212

 = 1
and b3,13 = b3>14 = 0. Now at least 7 equal columns in rows 2 and 3 are possible only if at
least 4 of them occur in columns 1 to 10. More than 4 columns, however, yield N or
N c B . Thus we can choose b31 = b32~ b2& = b2g = b210 = 0, b33 = b3A = b35 = b26 = b27 =
1, and without loss of generality b2>15 = b216= fc3>15 = b316= 1. Then N<=£?, or b115 =
&1.16=0.

If column 15 in rows 4 to 13 contains more than 6 entries 0, or more than 5 entries 1,
then S2 or S2 c B, and we can use Lemma 3. It remains to consider that column 15 in rows
4 to 13 contains (i) 5 entries 1, and (ii) 6 entries 0.

(i) bul5 = 1 for all i with 4 ̂  i S= 8. By Lemma 9 we can assume S8 in rows 3 to 8 and
columns 1 to 5. There exist 3 rows in this S8 which together with row 3 of B have
2 columns with both entries 1. If one of these rows contains more than one entry 1 in
columns 6 to 10, then S10<^B, and we use Lemma 11. Otherwise in columns 6 to 10 we
find N, or we have 3 rows with at least 4 entries 0, and 8 rows with at least 3 entries 0.

Then any distribution of 3( 1 + 8( I = 42 pairs 00 among the columns 6 to 10 guarantees

S3cfl (since 4( I<42 I, and we use Lemma 4.

(ii) bils = 0 for all i with 4 Si i ̂ 9 . By Lemma 9 we can assume S8 in rows 4 to 9 and
columns 6 to 10. If column 16 has at least 4 entries 0 in rows 4 to 9, then S3<^B (together
with row 1 of B), and Lemma 4 can be used. Thus we can assume b416= b516= b616= 1.
If then in columns 3 to 5 in one of rows 4 to 6 there are 2 entries 1, then S10 a B, and we
use Lemma 11. Otherwise N^B, or in rows 4 to 6 and columns 1 and 2 occur entries 1
only. Then, however, we find N in rows 4 to 6 and columns 1, 2 and 16, and Lemma 13 is
proved.

The proof of Theorem 2 is complete, since Lemma 12 for any B guarantees the
existence of three rows which enable us to apply Lemma 13.
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