A Large Diffuse Radio Source in a Cluster of Galaxies at z = 0.13

Gopal-Krishna¹, V.K. Kulkarni¹, J. Bagchi² and J. Melnick³

¹ NCRA-TIFR, Pune University Campus, Pune 411007, India.

² IUCAA, Pune University Campus, Pune 411007, India.

³ ESO, Casilla 19, Santiago, Chile

Abstract. Discovery of a diffuse ultra-steep spectrum radio source of size ~ 0.3 Mpc, possibly a radio halo, in a cluster of galaxies at z = 0.13 is reported hilighting the presence of a giant radio spiral within the halo.

We present GMRT and VLA radio maps and NTT optical image/spectrum of an ultra-steep-spectrum ($\alpha \sim -1.3$), highly diffuse radio source 0116+111 found in the Ooty Lunar Occultation Survey (Joshi & Singal, 1980). Its spectrum is derived from measured flux densities of $920 \pm 24mJy$ at 327 MHz (Joshi & Singal, 1980), $810 \pm 60mJy$ at 408 MHz (Large et al, 1981), $448 \pm 12mJy$ at 610 MHz (present work), $147 \pm 8mJy$ at 1.4 GHz (Condon et al, 1998), $60 \pm 9mJy$ at 2.7 GHz (Effelsberg telescope, present work), $30 \pm 5mJy$ at 4.9 GHz (Gregory et al, 1996) and $35 \pm 4mJy$ at 4.9 GHz (present work). Earlier, our C-array VLA map revealed an amorphous radio emission ($\sim 1'$ at 5 GHz), without any unresolved component above 1 mJy. Based on a R-band NTT image (Fig. 1), the source is identified with a $\sim 17 - mag$ cD galaxy ($\alpha_{1950} = 01$ 16 23.52, δ_{1950} = +11 07 35.0, which appears to be the dominant member of a distant cluster. A slit-spectrum taken with the grism-3 optics of the NTT gave a redshift z =0.1316, based on the absoption lines of Na(λ 5893), Mgb (λ 5169), H β , G-band $(\lambda 4304)$, the H,K break and a probable [O II] $\lambda 3727$ emission line. Also, the bright elliptical $\sim 15''$ south of the cD is found to have z = 0.1309.

The VLA maps (Figs. 2 & 3) show two warm spots straddling the cD along PA ~ 50°, indicating a jet-like outflow from the cD. The amorphous radio structure underlying these peaks has an overall extent of 2′ in the GMRT map at 610 MHz (i.e., ~ 0.3 Mpc ,for $H_o = 65 \text{ Kms}^{-1}$.Mpc⁻¹; Fig. 4). Much of this diffuse radio emission lies to the noth-west of the cD and has no detected optical counter parts (See Fig. 1). Thus, it probably represents parts of a radio halo associated with this distant cluster. If so, its luminosity (~ $1.10^{25} \text{ W.Hz}^{-1}$ at 610 MHz) would place it among the most luminous radio halos known.

From Figs. 2-4, it is seen that the orientation of the two radio peaks undergoes a systematic clockwise progression with frequency. In fact, the two peaks appear to be part of a radio ridge emanating form the cD and extending well beyond the two peaks, taking the form of a huge radio 'barred spiral' with a diameter of ~ 100 kpc (Fig. 2b). Quite plausibly, such an edge-darkened morphology of radio jets facilitates leakage of their relativistic particles which can fill the giant radio halo. Further in-situ particle acceleration within the halo could occur in the turbulent wakes of the cluster galaxies (Jaffe 1977) and/or in the shocks caused by merger of sub-clusters (De Young, 1992; Tribble, 1993).

159

Acknowledgments. The VLA is operated by the National Radio Astronomy Observatory (NRAO) for Associated Universities Inc. under a licence from the National Science Foundation of the USA.

References

Condon, J. J. et. al. 1998, AJ 115, 1693
De Young, D. S., 1992, ApJ 386, 464
Ekers, R. D., Fanti, R., Lari, C. & Parma, P., 1978, Nature 276, 588
Gopal-Krishna & Steppe, H., 1982. A&A 113, 150
Gregory, P. C., Scott, W. K., Douglas, K. & Condon, J. J., 1996, ApJS 103 427
Jaffe, W. J., 1977, ApJ 212, 1
Joshi, M. N. & Singal, A. K., 1980, Mem. Astr. Soc. India, 1,49
Large, M. I., Mills, B. Y., Little, A. G., Crawford, D. F. & Sutton, J. M., 1981, MNRAS 194, 693
Tribble, P. C., 1993, MNRAS 263, 31