Canad. J. Math. Vol. **66** (4), 2014 p. 902 http://dx.doi.org/10.4153/CJM-2014-004-7 © Canadian Mathematical Society 2014

Corrigendum to Example in "Quantum Drinfeld Hecke Algebras"

Viktor Levandovskyy and Anne V. Shepler

Abstract. The last example of the article contains an error which we correct. We also indicate some indices in Theorem 11.1 that were accidently transposed.

Some indices were transposed in [1, Theorem 11.1]. The condition in parts (iii) and (iv) should be $q_{12} = q_{23} = q_{31}$; the parameter q_{13}^{-1} in part (v)(a) should be replaced by q_{31}^{-1} . The last example should have indicated the following relations \mathcal{R} defining all quantum Drinfeld Hecke algebras $\mathcal{H} \cong \mathbb{K}\langle v_1, v_2, v_3 \rangle \# G / \langle \mathcal{R} \rangle$ over a field \mathbb{K} of characteristic not 2.

- (I) For $q_{13} = 1$, $q_{12}q_{23} = 1$:
 - (a) If $q_{12} \neq q_{23}$, then the relations are $v_2v_1 = q_{12}v_1v_2$, $v_3v_2 = q_{12}^{-1}v_2v_3$, and $v_3v_1 = v_1v_3$.
 - (b) If $q_{12} = q_{23}$, then the parameter $\kappa_4(1,3)$ can be chosen freely in K and the relations are $v_2v_1 = q_{12}v_1v_2$, $v_3v_2 = q_{12}v_2v_3$, and $v_3v_1 = v_1v_3 + \kappa_4(1,3)(t_{g_4} t_{g_5})$.
- (II) For $q_{13} = -1, q_{12}q_{23} = 1$:
 - (c) If $q_{12}^2 = -1$ (giving a primitive fourth-root-of-unity), then $\kappa_2(1,3)$ can be chosen freely in \mathbb{K} and the relations are $v_2v_1 = q_{12}v_1v_2$, $v_3v_2 = -q_{12}v_2v_3$, and $v_3v_1 = -v_1v_3 + \kappa_2(1,3)(t_{g_2} t_{g_7})$.
 - (d) Otherwise, the relations are $v_2v_1 = q_{12}v_1v_2$, $v_3v_2 = q_{12}^{-1}v_2v_3$, and $v_3v_1 = -v_1v_3$.

Note that in the nonquantum setting, when $q_{13} = q_{12} = q_{23} = 1$, we recover a one-parameter family of classical Hecke Drinfeld algebras from Case (I)(b). In the quantum setting, we obtain several other one-parameter families of algebras.

References

 V. Levandovskyy and A. Shepler, *Quantum Drinfeld Hecke Algebras*. Canad. J. Math. 66(2014), 874–901. http://dx.doi.org/10.4153/CJM-2013-012-2

Lehrstuhl D für Mathematik, RWTH Aachen University, Templergraben 64, D-52062 Aachen, Germany e-mail: levandov@math.rwth-aachen.de

Department of Mathematics, University of North Texas, Denton, Texas 76203, USA e-mail: ashepler@unt.edu

Received by the editors October 18, 2013.

Published electronically April 28, 2014.

AMS subject classification: 16S36, 16S35,16S80,16W20,16Z05,16E40.

Keywords: quantum/skew polynomial rings, noncommutative Groebner bases.