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Abstract

We investigate the location and separation of zeros of certain three-term linear combination of translates
of polynomials. In particular, we find an interval of the form / = [— 1, 1 + h], h > 0 such that for a
polynomial/, all of whose zeros are real, and A. e /, all zeros of/ (x + 2ic) + 2Xf (x) +f(x — lie) are
also real.

2000 Mathematics subject classification: primary 26C10, 30C15.

1. Introduction

Given the location of the zeros of a polynomial or entire function, it is important
to have corresponding information about the zeros of other functions which may be
derived from the given one. For instance Rolle's theorem says that if all the zeros
of a polynomial lie on the real axis, then the zeros of the derivative also lie on the
axis, and lie one in each interval between successive zeros. We showed in [3] that the
separation, measured by

n

8(f) := min(a; - cij-i), where / (x) = T](x - a,-), ax < a2 < • • • < an,

is increased by differentiation, and more generally in [4] that for real k there is some
explicit constant cn (k) > 1, for which

S(f'-kf)>cn(k)S(f).
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Another operation which has been considered in this context is translation. For
instance Polya showed in [2, Lemma II, page 316], that for c > 0 and 9 e C, \9\ — 1,
fg(x) := f (x + ic) + Of (x — ic) has only real zeros when / does, and we showed
in [5] that the separation is also increased:

S(fe) > 8(f),

again with explicit estimates for the amount of the increase. If we apply this result
twice, using 9,9 = e±ta, « e I , we find that when / has only real zeros then the
same is true for / (x + lie) + 2 cos af (x) + f (x — 2ic). Equivalently the map

(1) f(x)-*TJ (x) :=f(x + lie) + 2kf(x)+f(x- 2ic),

where - 1 < X < 1, c > 0, preserves the reality of the zeros of/ and increases their
separation. For convenience we shall replace 2c by c in (1) from now on.

In this paper we extend the range of these results to values of X which lie outside
the interval [—1, 1]. The motivation for doing this comes from the study of Mellin
transforms in which given a function

F(x) = / tix<t>(t)dt

we are interested in applying multipliers of the form (t + r1 It) and (/ + \/r2t) with
real r to the integrand. This gives

/ tix(t + r2/t)(t + l/r2t)<p(t)dt = F(x + 2i) + (r2 + r~2)F{x) + F(x - 2i)
o

= F(x + 2i) + 2XF{x) + F(x - 2i),

where necessarily X > 1.
More precisely we shall find neighbourhoods of 1 and oo such that for these values

of X, all the zeros of Tk are real. (It is not possible to do this near — 1 since two zeros
are lost at —oo.) The size of the neighbourhood of 1 turns out to depend only on the
degree of the polynomial, and not on the values of c or S, as Theorem 5 shows. We
shall also estimate the separation of the zeros for X > 1.

Our results also relate to Polya's generalisation of the Hermite-Poulain theorem—
see [1], particularly Lemma I*, page 228. This lemma states that if </> is in the
Laguerre-Polya class LP, and g is a polynomial with real coefficients, then, with D
denoting the operation of differentiation, <p(D)g has at least as many real zeros as does
g. In our context we have Tkf = 2(X + cos(cD))f, and so <p(z) = X + cos(cz) € LP
if and only if — 1 < X < 1. In contrast, our Theorem 5 states that for suitable / , 71
also preserves the zeros of / in some neighbourhood to the right of 1. In addition,
our Theorem 7 constructs, for any given X > 1, a polynomial with real zeros such
that Tkf has some non-real zeros; this gives further information about the size of the
neighbourhood of 1, and shows that the restriction on / cannot be omitted entirely.

https://doi.org/10.1017/S1446788700003621 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003621


[3] The zeros of linear combinations of translates of polynomials 111

2. Location of zeros

Let/C*) := Y\1(x ~ aj)< where a, < a2 < • • • < an e R. For given c > 0 and
x eR, let

a} +ic-x := r, eiBj, rs > 0, 0 < Oj = cot"

Note that (i) each 0j is a continuous strictly increasing function of x with Oj (—oo) = 0,
Oj (aj) = n/2, Oj (+oo) = n and (ii) that n > 0t > 02 > • • • > 0n > 0. Then

TJ (x)=f(x + ic) + 2Xf(x)+f(x- ic)

: -ic-aj)

= fl H ^ ) + fl (-0 ̂ ) + 2* fl(-0 cos 9;)
1 1 1

n I" n n "1

= 2f](-r>) cos^^+^ncos^ •
i L i i J

The following result follows at once from this expression:

LEMMA 1. Real zeros of T\f occurwhere 4>\ + ^<t>i = 0, where

0,00 := c

and since T>J has degree n (or n — 2 in case X = — 1) all zeros of Tkf will be real if
n (or n — 2) real zeros can be identified.

Let bj, 1 < j < n, be the points at which £"0,- = (j - l/2)n, that is, the
zeros of 0 l t Note that 0i -»• 1 as x —• —oo and 0i —>• (— 1)" as x —• +oo.
Note also that ^ < #i < an < bn, since for instance 0i = n/2 at aj and so
£ " 0y = 7r/2 at some point less than at. Let ci, c 2 , . . . , cn_i be the points at which
J21 Oj =n,2n,... ,(n — \)n, that is, the successive maxima and minima of 4>\- Let
c0 = —oo, cn = +oo. Note that <pi is strictly monotone from each (c,-_i, Cj) onto
( - 1 , 1) since each Oj is an increasing function of*. More detailed information on the
relation between bj, c, and the roots ay of/ is contained in Lemma 3 below.

For <j>i, observe that <j>2 —> 1 as x —• —oo, that <f>2 —> (—1)" as x -*• oo, that 02

changes sign at each aj, and that \<j>2\ < 1 for all real x. Let ft, = sup{|02OO| : <*j <
x < aj+l], 1 < j < n - 1 with hj = |02(4)l- Also let h0 = 02(6,), AB = |0 2 (W| .
Note that ho,h\,... ,hn are all in the interval (0, 1). Let h* = mino^, , hj, h* =
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LEMMA 2. 71 / has only real zeros if either (i) - 1 < k < l/h* or (ii) |A.| >

PROOF, (i) For — 1 < A. < 1, observe that \kfa\ < 1021 < 1 for all A:. Hence since
the graph of <p\ goes from —1 to 1 on each interval (c,-_i, c,-), 1 < j < n, it follows
from the the intermediate value theorem that there is at least one root of 0, + kfc
in each of these intervals. Since there are n such intervals and at most n zeros, the
result follows in this case. If k -*• —1 the result remains true since the roots vary
continuously with A., though the two extreme zeros tend to ±oo.

For positive A., <pi and — k<f>2 have opposite sign outside [b\, bn] (recall the earlier
observation that bx < ai < an < bn.) For x e [bu bn] and 1 < k < l/h* we still have
\k(f>2(x)\ < 1 and hence there is exactly one root in each interval (cy-i.c)) as before.
The result when k = l/h* again follows as a limiting case.

(ii) If |A.| > 1/ ht, then we reverse the roles of <p\, k<f>2 in the above argument. The
function kfo now goes from a value less than — 1 to a value greater than 1 on each
interval (dj-i, dj) (with do = b\ and dn = bn), and so must intersect </>, there. Since
there are n such intervals we have located the required number of real roots. The
result when \k\ = l/ht follows once more as a limiting case. •

Lemma 2 shows the existence of some range of values of k > 1 for which the zeros
of 71/ are real. (The condition is that k\<p2\ < 1 on [bu bn]\ compare Lemma 4 (i)
below.) However as it stands, it does not give useful quantitative information, since
estimation of hj may involve the lengths of any of the intervals (a,, aJ+i). To make
further progress we need more detailed information about the location of zeros of Txf
for which the following definition is required:

DEFINITION. For each j , 1 <j < n, let 7, := [a, - /z,, a, + v,- ], where fXj, v; are
non-negative numbers, which are defined by the requirement that the angles Oj to the
right of aj sum to n/2 at Oj — / i , , and the complementary angles n — dj to the left of
aj sum to JT/2 at as + v,. More formally, we require that

n j

= -r, a t* =a}:-fij and ^ ( T T - 6k) = - , a t* = a,•+ Vj.
k=j *=i

Since as has been noted, each 6k is an increasing function of x from 7? onto (0, n),
and 6j — n/2 at aj, each of fij, v, is well defined. (Note that in particular that
a, - /xi = bu an + vn = bn and that v, = fxn = 0.) Let I := \J" Ij.

The following result describes the arrangement of these intervals, and their relation
to the points bj where (f>\ = 0.

LEMMA 3. (i) The end points of the intervals Ij form strictly increasing sequences:

aj - fj,j < aJ+l - fij+i and aj + Vj < aj+1 + vJ+1 for 1 < j < n - 1.

https://doi.org/10.1017/S1446788700003621 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003621


[5] The zeros of linear combinations of translates of polynomials 113

(ii) For each j , 1 < j'•' < n, we have bj e 7,; more precisely

Oj — ixj < bj, with strict inequality when j > 1, and

Oj + Vj > bj, with strict inequality whenj < n.

Moreover, if for some k, ak < bj < ak+l, then bj e Ik U 7t+1. (This includes both of
the extreme cases k = 0, and k = n;ifk = 0 there is no ak to the left ofbj and the
claim is simply that bj € 7i = [bu at], similarly ifk = n, then bj € /„ = [an, bn].)

(iii) At any point not in I, 4>i and fa have strictly the same sign.

PROOF, (i) follows since each 0, > 0 and £ " 0, = n/2 at a} - fij while £ J + 1 6>, =

n/2ataj+i - fiJ+l.
For (ii) we see that ^ " 0 , = n/2 at b\ and at a{ — fii, so bt = ai — /ii as

already noted. In general, for j > 2 we have Yll @i = ^ / 2 at «; — M; and so
E"0, = TT/2 + E r ' ^ . < T/2 + (J ~ !)*• But J^d, = (j - 1/2)TT at ^ , so
a; — fXj < bj. The inequality a; + v; > bj is proved similarly, and so bj e Ij.

If ak < fe; < a*+i, then either _/ < k, when since a; + v; < a* + vt and ^ e 77 we
have also bj e Ik, orj > k + 1 when bj e 7*+1 follows similarly.

(iii) For x £ I, suppose that ak < x < ak+{ (which includes the extreme cases
mentioned in the statement of the lemma). Since x ^ 7, we must have ak + vk < x <
ak+l — nk+\. Then from the definition of vk, /j.k+l we see that at x,

0 < p := ^Oi < n/2 and 0 < q := ^ ( T T - 6>,) < n/2.
i=k+l 1 = 1

Hence £" = 1 #, = kn + (p-q) must lie strictly between (k - l/2);r and (k + l/2)n
and so <j>i(x) = cos(^"= 1 6{) has the sign (—1)*. But this is also the sign of 02 on the
interval (ak, ak+l), so <pt and <j>2 have the same sign. D

LEMMA 4. (i) 7/0 < k\4>2\ < I on I, then all zeros (pj)" ofTxf are real and
lie in I.

(ii) For each zero pj of Tkf there is some ak with

\ak — Pj\ < 2cmax(&, n + 1 — k)/n.

(iii) sup{|</>2(;t)| : x e 7} < 1/^/1 +n2/4n2. .

PROOF, (i) We know from Lemma 2 that there is one zero pj in each interval
(c,-_i, Cj) and we shall assume without loss of generality that 4>\ is increasing on this
interval. Suppose that ak < bj < ak+l, (including, as above, the extreme cases when
k = 0 or k = n). We consider separately the two cases when (a) Ik D Ik+l ^ 0, and
(b) lk n 7*+1 = 0.

https://doi.org/10.1017/S1446788700003621 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003621


114 Peter Walker [6] 

In case (a) we have [ak,ak+\] C /* U Ik+i, and suppose first that c,_i < ak. 
Then <f>i(ak) < <j>\(bj) = 0 = — k<p2(ak). Otherwise if Cj-X > ak, then 4>t{Cj-i) = 
— I < —k4>2(Cj-\), since Cj-\ is now in Ik. Hence if r := max(a t , c,_i), then 
<t>\(r) < —^<fa(r)- Similarly if s := min(a*+i, cj),lhen<pi(s) > —k<p2(s). Hence from 
the intermediate value theorem, there is a zero of <f>i = —k(f>2 on [r, s] C [ak, ak+i] C / 
as required. 

In case (b) when Iknik+i = 0 we can assume without loss of generality that bj e Ik. 
Now if Cj < ak + vk then we can argue as in case (a) that there is a zero in [r, Cj ] C Ik, 
where r := max (a*, cy-_i). But if cy > ak + vk, then we know from Lemma 3 (iii) that 
<f>i, —02 have opposite signs off / , and so <f>i(ak + vk) > 0 > —k<p2(ak + vk) and there 
is a zero in [r, ak + vk] C /*. This proves (i). 

(ii) We have shown in (i) that each pj lies in some /*, so it is enough to prove the 
inequalities 

Hj < 2c(n - j + 1)/7T, vj < 2cj /n. 

But at x = ٧j — Hj, we have 

n n (n-j + 1)C 

*=/ k=j 

which gives the result for fij, and the result for Vj is similar, 
(iii) For each point x € / , we have x e Ik for some k and so 

\x — Φ*I 5 maxOx* , v t ) < 2cn/n. 

Thus at * we have 

I C O S φ i | = 
I* - g * l < 1 

and so 
1 

(2) sup{|</>2(*)l e /} < 
^ 1 + T T 2 / 4 / Z 2 • 

We now come to our main result on the zeros of Txf. 

THEOREM 5. If 1 < k < -/1 + . 7 r 2 / 4 n 2 , f/ig/i 7^/ to ow/y real zeros whose sepa
ration satisfies 

2d , /7tc\ , I k \ 
S(T,J) > — tanh ( — ) c o s - 1 . 

where d = 8(f) = mirij (a, — a,-_i). 

https://doi.org/10.1017/S1446788700003621 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003621


[7] The zeros of linear combinations of translates of polynomials 115

The reality of the zeros follows at once from Lemma 4, since the restriction on
k ensures that A.|</>2| < 1 on / . The proof of the estimate will follow after we have
established Lemma 6 below.

The following example shows that there can be no corresponding result for infinite
products, without further restrictions on the location of their zeros.

EXAMPLE. Let / ( j t ) = f i r U 1 ~ x/n)e*/n}. Then TJ has some non-real roots
for any X > 1.

In this example we have 6n = c o r 1 {(n — x)/c] and we write n ± ic = x + rne
±ie-

as in Lemma 1. Then

'•}+ft {(• - ~ ) <«-"•

^/.-Hc/n-9.) J

where it is easily checked that the sums and products are absolutely convergent

as grouped. This gives an obvious extension of Lemma 1. We shall show that

the sum Y1T(@" ~ cln^ ~^ ~°° a s x ~* ~~°°' t m s w^^ establish the result since
01 = cos (5Zi°(^n ~ c/n)) oscillates infinitely often between 1 and — 1, while fa =
I'Jf'cosfl,, -> 1 as x -*• — oo since each term -> 1 and the product is absolutely
convergent. Thus as soon as A. > 1, some real intersections of (j>i and — \<j>2 will be
replaced by corresponding non-real roots. It remains to show that £ f (0n — c/n) ->
—oo as x -*• —oo.

Given K > 0, choose N >3 such that (i) J^+i(6n - c/n) < 1 and (ii) £ " c/n >
2 K. Since each 9n -> 0 as x —*• —oo we can choose x sufficiently large and negative
such that 6n < \/N for n = 1,2,... , N. Then for such x we will have

N+l

which is less than -K when K > 2. This shows that £ ~ ( 0 n - c/n) -*• —oo as
x -*• —oo as required.

The following estimate for the rate of increase of the sum of the angles 6j is needed
to complete the proof of Theorem 5.
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LEMMA 6. For all x € K,

d
3 coth (^ ) ,
d V a /

w/iere rf = S(f) = min(ay — a,_i).

PROOF. We have 0, = c o r 1 ((a, - x)/c) and hence 9- = c/ic2 + (aj - x)2). Let
h = mity \aj — x\. Since the zeros are separated by at least d = 8(f) the sum £ " #;'
is bounded above by

E°° c n sm\\(2nc/d)

cosh(2nc/d) - cos(2nh/d)

sinh(2n c/d) n
d cosh(2nc/d) -

We can now complete the proof of Theorem 5.

PROOF. Put Ao = ^ 1 + n2/An2 and let a denote any real number in (1, Xo). Then
for x e / and 1 < X < a we have from (2) that-

< k/k0 < a/k0 < 1.

In particular, each zero pj _ i of TjJ lies in that part of the interval (c,- _ i, c;) on which
I0i(*)l < o/k0. It follows that between p;_i and c, the sum J^fy m u s t increase
by at least cos"1 (a/k0). Similarly between c,- and pj the sum ^ 0 y must increase
by at least COS~'(CT/A0), and so on [pj-i, Pj] the sum £#,• must increase by at least
2COS~'(CT/A.0).

But 0,0c) = cos (J2&j) and so \<f>[(x)\ < Y,d'j ^ (n/d)coth(nc/d) from
Lemma 6. Hence an increase in x of at least A is required to make J2 6j increase by
2COS~'(CT/X0) where

A — coth I — I > 2 cos I — I .
d V d / V^o/

Hence the separation S(Tkf) is at least (2d/n) tanh(nc/d) cos l(cr/k0) and putting
k = CT gives the required result. •

We complement Theorem 5 with the following result which shows that for A. > 1,
some restriction on / is necessary to ensure reality of the zeros of Tkf.

THEOREM 7. Given any k > 1, there is a polynomial f with real distinct zeros such
that not all zeros of 71 / are real.
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PROOF. Consider first f (x) = x", where all zeros are at the origin. With the
notation of Lemma 1, we have all Oj = 0 := cot"1 (x/c), 0 < 0 <n, and so the zeros
of TJ are where cos(«6>) + A(cos0)" = 0.

We see by inspection of the graphs of cos(n0) and — A(cos#)" that when X = 1
there are two real zeros on the interval [n/2n, 3n/2n]. However if X is increased so
that -X(cos0)" = - 1 at 0 = 3n/2n then these real zeros are lost. Thus we have to
show that for any X > 1 we can choose n so that X(cos(3n/2n))n > 1. This follows
at once since (cos(37r/2n))" -> 1 as n -> oo, and we can estimate the size of n from
the elementary inequalities

Thus given X > 1, we can say that not all zeros of Tk(x") are real if

1 . , , 9n2Xx>;—n , ,o ' orequivalently n>— - .

Finally to find an example with distinct roots, we can replace x" by a polynomial
n zeros equally spaced on [—h, h] say, and take h sufficiently close to zero. •

It would be interesting to find which of the estimates 1 + O(n~2) given by Theorem 5,
or 1 + O(n~l) for the example of Theorem 7 is closer to the correct order of magnitude
for the value of X required to make the zeros of 71/ real.
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