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0. Introduction

The classical Hamburger moment problem can be formulated as follows: Given a
sequence {cn:n = 0,1,2,...} of real numbers, find necessary and sufficient conditions for
the existence of a distribution function ib (i.e. a bounded, real-valued, non-decreasing
function) on ( — 00,00) with infinitely many points of increase, such that cn = $™0Otndil/(t),
w = 0,1,2, This problem was posed and solved by Hamburger [5] in 1921. The
corresponding problem for functions \j/ on the interval [0, 00) had already been treated
by Stieltjes [15] in 1894. The characterizations were in terms of positivity of Hankel
determinants associated with the sequence {cn}, and the original proofs rested on the
theory of continued fractions. Much work has since been done on questions connected
with these problems, using orthogonal functions and extension of positive definite
functionals associated with the sequence. Accounts of the classical moment problems
with later developments can be found in [1,4,14]. Good modern accounts of the theory
of orthogonal polynomials can be found in [2,3].

In 1980 Jones, Thron and Waadeland [6,11] introduced the strong moment
problems. The strong Hamburger moment problem (SHMP) may be formulated as
follows: Given a double sequence {cn:n = 0, ± 1 , ±2, . . .} of real numbers, find necessary
and sufficient conditions for the existence of a distribution function i/> on ( — 00,00) with
infinitely many points of increase, such that cn = \™aot"d\l/(i), n = 0, + 1 , + 2 The
corresponding problem for the case that ^ is a function on the interval [0,00) was
solved in [11], the theory of continued fractions being used in the proofs. The SHMP
was solved for a restricted class of sequences in [9], again by the use of continued
fractions. A solution in the general case was given in [10], where the theory of
orthogonal Laurent polynomials (L-polynomials) introduced in [6] was used as the
main tool in the proofs. The characterizations were again given in terms of positivity of
Hankel determinants associated with {cn}, or alternatively in terms of positive definite-
ness of a functional associated with the sequence. An exposition of the theory of
orthogonal L-polynomials is given in [12]. Discussions of orthogonal L-polynomials
and the strong moment problems can also be found in [7,8,13].

In this paper we discuss the following extended Hamburger moment problem (EHMP)
defined as follows: Given p real numbers au...,ap and p sequences {cj,r): n = l ,2 , . . .} ,
r = l , 2 , . . . , p , of real numbers, find necessary and sufficient conditions for the existence
of a distribution function ij/ on ( — 00,00) with infinitely many points of increase, such that

0

J #(t)=l, 4"= J T %
- co - 00 \t—ar)
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168 OLAV NJASTAD

The solution is given in terms of positive definiteness of a functional <j> associated
with the given sequences. The main tool used in the proofs is the theory of orthogonal
R-functions. R-functions are functions of the form

Nr ft .

Our treatment of the EHMP is closely related to those of the classical and strong
moment problems that use orthogonal (and quasi-orthogonal) function systems as
important tools. In the course of the exposition we prove a few results on orthogonal
R-functions that are not strictly needed for the solution of the EHMP, but which may be
of some interest in themselves.

We also discuss to some extent quasi-orthogonal R-functions. Some results on
orthogonal R-functions are special cases of results on quasi-orthogonal R-functions, and
can be easily obtained from these. We have, however, preferred to give direct proofs for
all results on orthogonal R-functions.

1. Preliminaries

1.1. Let au...,ap be given (fixed) real numbers, Let Si denote the linear space
consisting of all functions of the form

J I A.«0.«(,6R- (1-1)

Elements of 38 shall be called R-functions. (We may also consider complex R-functions,
i.e. functions where the coefficients ao,arj are complex numbers. The results in Section 1
are valid for complex R-functions.)

We note that a function R(t) belongs to (% iff it can be written in the form R(f) =
P(t)/Q(t), where Q{t) is a polynomial with all its zeros among the points a1;...,ap, and
where P(t) is a polynomial such that degP^degg (degP denotes the degree of the
polynomial P(t)). This follows by partial fraction decomposition. Thus the R-functions
are exactly the rational functions whose only poles in the extended complex plane are
among the points au...,ap. Clearly the space S& is closed under multiplication.

1.2. The L-polynomials discussed e.g. in [10,12] are of the form L(r)=£"=ma/'.
They are not R-functions, but are related to R-functions in the sense that they
correspond to the points av,...,ap being replaced by 0,oo. Ordinary polynomials
correspond to the one distinguished point oo.

1.3. We write M{slts2,...,sp) for the space of all R-functions

Pit)
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Every natural number n has a unique decomposition n = p-qn + rn, l ^ r n ^ p . We shall
write n=pq + r when there is no danger of confusion. We shall write 3$n for 9t(su...,sp)
in the special case that st= ••• =sr = q+l, sr+1= ••• =sp = q. Thus an element of 3$n may
by written

where d e g P ^ n . We shall denote by 3$° (resp. 32°, 32° (s1;...,sp)) the subspace of those
R-functions in 3i (resp. S#n, 32(su...,sp)) where degP<n, i.e. those functions for which

A base for the space 3ft, is given by

1 1 1 1 1

The initial section

1 1 1
'(t-al)''"'(t-apy (t-cii)2''"' (t-

is a base for the subspace 3k'„.

2. Orthogonal /^-functions

2.1. In the following, (j> shall denote a (fixed) linear functional on 3i. This functional
gives rise to a bilinear form <, > on 0t x 38, defined by <A, B> = <f>(A • B). We shall assume
that 4>, and hence <,> is positive definite, i.e. that (p(R2)>0 when Re31, R(t)^0. We
formally state as a lemma the following easy result.

Lemma 2.2. Let Re32, R(t)^0/or all te(-oo, oo), R(t)#0. Then <f>(R)>0.

Proof. The R-function R(t) can be written in the form

m C(t)2'

where C(t) = (t — a1)
si...(t—apy

i' and A is a non-negative polynomial such that
deg/I ^ 2 deg C. It is well known that every non-negative polynomial may be written as
a sum of two squared polynomials (see e.g. [4]). So there are polynomials D and E such
that A(t) = D(t)2 + E(t)2. It follows that
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170 OLAV NJASTAD

where clearly degD^degC, degE^degC. Thus D/Ce@, E/CeM, and

2.3. By applying the Gram-Schmidt orthonormalization process (with respect to the
inner product defined above) to the sequence

1 1 1 1 1

(in the indicated order) we obtain an orthonormal sequence {Qn: n — 0,1,2,...} of
i?-functions. Since QneMn — 8&n-i we may write

where r = rn, q = qn, /?,._,+x^0. It follows that we may also write

Bn^' (2 2)

where Bn is a polynomial of degree at most n, and Bn(ar) =/= 0. (Note that here and in the
following ar+1 means a1 if r = p, and ar_j means ap if r= 1.)

Proposition 2.4. T/ie polynomial Bn has degree at least equal to n—l, and all its zeros
are real and simple.

Proof. Let t1,...,tx be all the real zeros of Bn of odd order. Assume that l<n — 1,
and set

T(t) = (t-tl)...(t-h)
U ( t a ) " + i ( t a r + \ t a r \ t a ) - ( t a r -

Then T e ^ n . , , since the denominator has degree n — 2. Furthermore TQn is a product
of squares and a non-negative (or non-positive) factor. This implies $(T-Qn)^0, by
Lemma 2.2, since TQn is an R-function. Consequently T£<%n_l, which is a contradic-
tion. Thus X^n — 1, and hence degBn^n —1. If degBn = n —1, then X = n— 1, and so all
the zeros are real and simple. If deg Bn = n, then at least n—l zeros are real and simple
and consequently all the zeros are real and simple. •

2.5. We observe that since Qne&n—$n-u the point ar cannot be a zero of Bn. The
points a;, i±r, may be zeros of Bn, though only simple ones. Let fi = nn denote the
number of zeros of Bn, and v = vn the number of zeros of Qn.
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Theorem 2.6. The orthonormal R-function Qn can be written

where

Cn(t) = kn-{t-tl)...{t-Q,

i=\,...,p, j=l,...,v. Here Kr = q+l, q^x^q+l for i<r, q—l^K,^q for i>r.
Furthermore n— l^fi^n, \i — p+l^v^fi,tct+ ••• + tcp =

Proof. The theorem follows by cancellation of common factors in the numerator and
denominator in the expression (2.2) for Qn(t), the results of Proposition 2.4 and
observations of Section 2.5 being taken into account. D

2.7. We shall call the R-function Qn and the index n degenerate if the number \i of
zeros of Bn is n — 1. (This situation may also be described by saying that Qn has a zero
at infinity.) Similarly we shall call Qn and n defective at at or at-defective if a; is a zero of
Bn. Thus Qn is a,-defective if K, = q when i < r, if K:, = <? — 1 when i > r. Recall that Qn

cannot be defective at ar = ar. So in particular there cannot be p ap-defective indices in a
row, for any p=l,...,p.

We shall call Qn (and n) defective if it is ardefective for at least one i and maximally
defective if it is a,-defective for every i^r. This means that K{ = q for every i<r, K—q — l
for every i>r, and v=/i—p+1. We shall call Qn (and n) singular if it is degenerate or
defective, otherwise non-singular.

2.8. There exist /^-functions playing a role similar to that of quasi-orthogonal
polynomials and quasi-orthogonal L-polynomials in the theory of orthogonal poly-
nomials and ^polynomials. For every index n we shall define the quasiorthogonal
R-functions Qn(t, T) in the following way: For every real number T we define

Qn(t, T) = QM-*^') Qn- l(t). (2.5)

Clearly Qn(t, z) e &„. (We shall always consider Qn(t, z) as a function of t for fixed z when
making statements Qn(t, z) e ̂ , Qn(t, z) e Mn, etc.) We may write

where Bn(l, T) is a polynomial of degree at most n. In the following let \i{z) denote the
degree of Bn(t, x) and V(T) the number of zeros of Qn(t, T).
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Theorem 2.9. The quasi-orthogonal R-function Qn(t, T) can be written

O(tx\= Cn(Ut)
**' ' ( t - a 1 ) " l ( t ) . . . ( t - a r )

M t ) . . . ( t -<g" 'M ( '

where Cn(t,z) = kn(z)(t-t1(z))...(t-tv{t)(z)), t/r)^ah i = l , . . . , p , J = 1 , . . . , V ( T ) . Here
q ^ Kj(x) g q +1 /or i ̂  r, g — 1 ^ K,-(T) ^ g /or i > r. Furthermore n — 1 ;g JI(T) ̂  n,

Proof. Let t1 = tl(z),...,tx = tx(z) be the real zeros of Qn(t,z) of odd order. Assume
that X<n — 1. We define the R-function T as in formula (2.3), and conclude that
<t>(Qn(t,i)- T(t))j=0. On the other hand Te@n-u hence (p(Qn{t) • T(t)) = 0, and

hence

This is a contradiction. We conclude as in the proof of Proposition 2.4 that
n — 1 ^/x(r)^n, and all the zeros of Bn(t,T) are real and simple.

Then by cancellation of common factors in the numerator and denominator in the
expression (2.6) we obtain the desired result. •

2.10. In the same way as for orthogonal R-functions we may define the quasi-
orthogonal R-functions Qn(t,x) to be degenerate, defective, singular, etc. Note that if
Qn-i(t) is not degenerate, then Qn(t, z) is degenerate for exactly one value of z. We also
observe that Qn(t, z) is ap-defective for at most one value of t, for a given p = 1,..., p.

3. Recursion formulas

3.1. In this section we shall prove some recursion formulas involving several
consecutive orthogonal R-functions Qn. For comparison we recall the well known three-
term recursion formula for orthogonal polynomials (see e.g. [3]) and the following
facts about elements of an orthogonal sequence {Qn} of L-polynomials: Qn can always
be expressed in terms of the four preceding elements Qn_i, Qn-2, 6n-3> Qn-4- If Qn-i is
non-singular, then Qn can be expressed in terms of the two preceding elements Qn~i,
Qn-2- If Qn is singular it can be expressed in terms of the preceding element Qn-i- For
these results, see [12]. In the following, {Qn} denotes the sequence of orthonormal
R-functions determined by (j>.

Theorem 3.2. Assume that Qn-m (where l g m ^ p —1) is non-defective at ar =
 arn- Then

the following (p + m)-term-recursion formula holds:
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Qn(t)=j-^TQn-m(t)+ " f ajQJLt), (3.1)
(t — ar) j = n-p-m+\

where c and a.j are constants.

Proof. We may choose the constant c such that the term

1

(t-ar)"
 + 1

cancel in the partial fraction decompositions of

QJt) and rQn-m(t).

For this value of c we can write

Qn{t)~~^a~)Qn-m{t) = %

Let j^n-p-m. Then

and hence

From this the desired formula immediately follows. •

Corollary 3.3. Assume that Qn~t is non-defective at ar. Then the following (p + l)-term
recursion formula holds:

(3.2)

where c and a,- are constants.

Proof. Immediate from Theorem 3.2. •

3.4. Theorem 3.2 shows that when Qn-m is non-defective at ar, l^m^p—l, then Qn
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satisfies a (p + m)-term recursion formula. The shortest possible such formula is a (p +1)-
term formula as given in Corollary 3.3. We now show that Qn always satisfies a (2p+1)-
term recursion formula.

Theorem 3.5. For all n the following (2p+l)-term recursion formula holds:

Qn(t)=j-^-Mn-P{t)+ *£ ajQfi), (3.3)
(t — ar) j = n-2p

where c and <Xj are constants.

Proof. As in the proof of Theorem 3.2 we may choose a constant c such that

(t — ar)

can be written as

Then

Qit)
Qftjeyln-!,-—-—-e^?n_p_! when j^n — 2p—l.

Hence

= O for ^ n - 2 p - l .

From this the formula follows. •

Proposition 3.6. Every segment {Qs,Qs+i,-.-,Qs+2P} contains at least two non-
degenerate elements Qn.

Proof. The segment {Q0,Qu---,0,^} contains Qo which is non-degenerate, and we
conclude from Theorem 3.5 that it therefore must contain at least one more non-
degenerate Qn. The result now follows by induction on s, Theorem 3.5 being used at
every step. •

Corollary 3.7. There is an infinite number of indices n for which Qn is non-degenerate.

Proof. Immediate. •
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Proposition 3.8. Assume that Qn is defective at aix,...,aix (and possibly at other
points.) Then we may write

Qn(t)=-^—At-ai)...(t-ai)- "If ajQJit) (3.4)
(t — aT) j = n-p+l

where a,- are constants.

Proof. We observe that

{t-ai)...(t-aQ

(recall that ati,...,aijL±a,)- Therefore we may write

We also observe that

(note that if j=n—p then 1 ! , . . . , ^ ^ ^ = ^). Hence

Consequently

j=n-p+l

from which the desired results follows. •

Proposition 3.9. IfQn-p+l,...,Qn~1 are maximally defective, then Qn is non-defective.

Proof. If Qn-P+1,•..,C are all maximally defective, then any sum Yj=n-P+1 ajQj c a n

be written as (t — ar)G(i), where G€&„-!. This makes it impossible for any expression

j = n-p+\
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to have a term

in its partial fraction decomposition. Hence no formula of the form (3.4) can hold. •

Corollary 3.10. Every segment {Qs+i,---,Qs+p} contains at least one Qn which is not
maximally defective.

Proof. Immediate. •

4. Quadrature formulas

4.1. As before let tu...,tv denote the zeros of Qn. We define the fundamental
R-functions Ln h i = 1,2,..., v, by

^ ( 4 1 )

We immediately observe that L n i e ^ n _ 1 and that Lnji(£,-) = <5y- Note that Lni is
degenerate iff Qn is degenerate. We shall write ! „ , for <p{LnJ).

Let KU...,KP have the same meaning as in Section 2. (cf. Theorem 2.6). We also recall
the meaning of 3ti.{sy,...,sp) and &°(su...,sp) from Section 1.

Let / be a given function. We define the nth interpolating R-function F by
Fit) = U= i f(tt)Ln,Jit)- Then Fe&„_x and F(tj)=f{t}), j=\,...,v.

Theorem 4.2. When Qn is non-degenerate, the quadrature formula

<t>(f)= t K,if{Q (4.2)t
1 = 1

is valid for every f e3^su...,sp), where si=Ki +q+l,...,sr-1 = x r _ 1 + q + l , sr = 2<j+l,
sr + 1 = Kr+1+q,...,sp = Kp + q. When Qn is degenerate, the same formula is valid for

Proof. Let fe£%{su...,sp). The function g = f — F (where F is defined as in Section
4.1) also belongs to ^l(si,...>sp). We note that g is degenerate if both Qn and / are
degenerate. Since g(tt) = 0, i = 1,2,..., v, we may write

{t-aiT\..{t-arY'...(t-apY> (t-a1)"
+1...(t-arr...(t-apr

 (^>

where G is a polynomial of degree at most Sj+ • •• +sp—v if Qn is non-degenerate, and
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of degree at most Sj + • • • +sp— 1 - v if Qn and / (hence also g) are degenerate. By using
the equalities qp + r = n, /q-f- ••• +Kp = n + v—fi (Theorem 2.6) we get degG^n + n + v -
fi— 1— v = (n = l) + (n — n) = n— 1 when Qn is non-degenerate, degG^n + n + v —\i— 1 — 1 —
v = (n — l)+(n — 1— n) = n — 1 when QB and / are degenerate. Thus we may write f — F =
g = Qnh, where he@n-v Consequently <j>(f) - <f>(F) = (j>(Qn • h) = 0, and so

•

Corollary 4.3. When Qn is non-singular the quadrature formula

(4.4)

is valid for fe&(2q + 2,...,q+l,...,2q).

Proof. Follows immediately from Theorem 4.2. •

Proposition 4.4. The constants !„ f are positive.

Proof. Note that we may write

LnJ(t)=- —— " _ x — —,

where deg£>B = v—1. It follows that

I /.\2 i / . \ En(t)

" W ^'-(t-al)
2-...{t-ar)

2«...{t-ap)
2'<>

where deg£n = 2v — 2 = 2 ( K X + ••• +KP) — 2(n—/z) — 2 by Theorem 2.6. Thus deg£n=
2K t+ ••• +2q+ ••• +2KP—2(n — //), and consequently L2

ni — LnA belongs to
@(2K1,...,2q,...,2Kp), and to #°(2K!, . . . ,2g, . . . ,2K:p) if Qn is degenerate. Since 2Kjg

•l,...,2qg,2q+l,...,2KP^Kp + q, we conclude from Theorem 4.2 that

and consequently !„_ f = < (̂LB>,) = <^(Lj,) > 0. •

4.5. Let Qn(t, T) denote the quasi-orthogonal /?-functions introduced in Section 2.8.
We recall the meaning of tfa), K,{T), etc. We define fundamental R-functions correspond-
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ing to Qn{t,z) in analogy with Lnl{t), i.e.

(4-5)

We observe that Lnt,{t,z)e!%tt-l, that Ln l{tJ(z),z) = 8ij, and that Lni{t,z) is degenerate iff
Qn{t,z) is degenerate. Let knt{z) denote <£(Ln.(t,T)).

Theorem 4.6. When Qn(t,z) is non-degenerate, the quadrature formula

is valid for every fe^s^x),...^^)), where sl{x) = Kl(x) + q+\,...,sr{x) = 2q,...,sp{x) =
K

P('Z) + <1- When Qn{t,x) is degenerate, the same formula is valid for
fe<%0(Sl(x),...,sp(x)).

Proof. We define

As in the proof of Theorem 4.2 we verify that we may write

G{t,x)
t,x) = Qn(t,x)

(t-a1y
+1...(t-ary-1...(t-apy

where G(t, z) is a polynomial of degree at most n — 2 (note that sr(x) = 2q, while sr =
2q+ 1), both in the general case and when Qn{t,z) and f(t) are degenerate. It follows that
g(t,x) = Qn{t,x)-h{t,x), where

h(t,x)=-
\t-aiy

+1...(t-a,y-l...(t-apy

belong to &n-i, and

G(t,x)
(t-ar)

 ('X) (t-aiy+1...(t-a,-iy(t-ary...(t-apy

belongs to ^ n - 2 - Consequently

, t)) = 4>(Qn(t, z) • h(t, z)) = 4>{Qn{t) • h(t, T)) - x<f> (QK _ M • {t~ar~t] Kt, T) ) = p .
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Thus

4>U) = f f(tM)<KLmM,t)) = Z An,,(t)/(t,<t)). •
i = l i = l

Proposition 4.7. The constants Xn,{x) are positive.

Proof. As in the proof of Proposition 4.4 we find that Ln ,{t, x)2 — Ln Jj., x) belongs to
« ( 2 K 1 ( T ) , . . . , 2 9 , . . . , 2 K J ( T ) ) , and to ^ ^ K ^ T ) , . . . , ^ , . . . ^ ^ ) ) if gn(i,T) is degenerate.
Consequently the quadrature formula (4.6) is valid for the function f{t,x) = LHti{t,x)1 —
Ln t(t,x), and the desired result follows as in the proof of Proposition 4.4. •

5. Moment problems

5.1. Let {cj,r): n = l , 2 , . . . } , r=l,2,...,p, be p given sequences of real numbers. We
seek necessary and sufficient conditions for the existence of at least one distribution
function (i.e.: bounded real-valued non-decreasing function) t// with an infinite number of
points of increase such that

1 # ( 0 = 1 . J 7 7 ^ = ^ , r = l , 2 , . . . , p , n = l , 2 , . . . .
- oo - oo \i ar)

We shall call this problem the extended Hamburger moment problem (EHMP). When \j/
is a solution of EHMP, the integral \^xf(t)d^/{i) is defined for every R-function / We
shall here treat the problem in the context of the theory of orthogonal /^-functions.

5.2. The sequences {cj,r)} determine a linear functional <j> on 3t by way of the
following definition:

I Z 7 7 ^ ) = ao+ Z Z «rnc<". (5-1)
r=l n=l (t — ar) J r = l n=i

Obviously ${(pr „) = c(,r), where

We want to determine a distribution function ip with an infinite number of points of
increase which represents the functions (/> on 2%.

Proposition 5.3. / / EHMP has a solution, then the sequences {cj,r)} must be such that
the functional (j> is positive definite.

Proof. For every R-function S, the .R-function S2 has only a finite number of zeros.
Therefore ^(S2) = |™o oS(t)2#(t)>0. s m c e "A has infinitely many points of increase. •
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5.4. We have seen that positive definiteness of </> is a necessary condition for the
existence of a solution of EHMP. We shall in the following assume that the sequences
{cj,r)} are such that (j> is positive definite. Then the theory of orthogonal (and quasi-
orthogonal) K-functions presented in the preceding sections is valid.

Before proceeding we note that every distribution function \j/ for which all
the moments J™ m cpr m # ( t ) exist, gives rise to a functional T on S defined by

J '
Proposition 5.5. / / \j/ is a distribution function for which all the moments

cj,r) = J™m <pr n(t)dij/(t) exist, and if the functional *P is positive definite, then i]/ has an infinite
number of points of increase.

Proof. Assume that \j/ has only a finite set of points of increase {TX, . . . ,Tfc}. Clearly
T,#ar, i=l,...,k, r=l,...,p. We define an i?-function S, e.g. by

Then ^c2ooS(t)2d\j/(t) = 0, since i// is a step function with jumps exactly at the points
T i . . . ^ , where S2 vanish. On the other hand f™ooS(02#(£) = vP(S2)>0, since ¥ is
assumed to be positive definite. This contradiction shows that \j/ must have infinitely
many points of increase. •

5.6. For fixed indices r,m the function cprm belongs to ^2(0,0,...,m,0,...,0) (where
m is a t the rth place). We observe that 3t(0,...,0,m,0,...,0)cz@(2K1,...,2q + l,...,2Kp)
when n is so large that 2qn + 1 ^ m.

Hence for qn^j{m— 1) the quadrature formula (4.2) gives

where tjn), j=l,...,vn are the zeros of Qn.
Furthermore

= 0(1 )= g An>J- (5.3)
I

when gn is non-degenerate.
For every index n we define the step function ipn by

l { , j f (5.4)

Then we may write formula (5.2) as

f <pr,Jit)d4,JLt) = <%, for q^&m-V). (5.5)
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We observe that \pn is non-negative and non-decreasing, since Anj>0.
Furthermore

?#„(£) = ! (5-6)

when Qn is non-degenerate. This formula implies that 0 ̂  î n(£) ̂  1 for all re ( — 00,00)
when n is non-degenerate.

5.7. We recall Helly's selection theorems (see e.g. [4]):
(HI) Let {fn:n = 0,1,...} be a uniformly. bounded sequence of real-valued non-

decreasing functions on an interval [a, ft] (possibly [a,ft]=( — 00,00)). Then there exists
a subsequence {fKk:k = 0,1,2. . .} which converges to a (non-decreasing) function / for
every t e [a, ft]

(H2) Let a uniformly bounded sequence {gm:m = 0,1,...} of real-valued non-
decreasing function on a compact interval [a, ft] converge to a function / for every
t e [a,ft]. Then

for every continuous function ft on [a, ft].

Proposition 5.8. The sequence {i//n:n= 1,2,...} has at least one convergent
subsequence.

Proof. We recall that there are infinitely many non-degenerate indices (Corollary
3.7). Let {nk:k= 1,2,...} be the sequence of non-degenerate indices. It follows from
Section 5.5 that the sequence {\j/n\k = 1,2,...} is uniformly bounded and consists of non-
decreasing functions on (-co,00). Hence by (HI) there exists a convergent subsequence.

•
Proposition 5.9. Let ij/(t) be the limit on ( — 00,03) of some convergent subsequence

{Xi(t):i=l,2,...} of the sequence {ilfnk(t):nk is non-degenerate}. Then i// is a solution of the
EHMP.

Proof. Formula (5.5) implies that for fixed r and m we have

( r ) = ? dXi(t)
m L ( r

for sufficiently large i. Theorem (H2) implies that
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for every compact interval not containing ar. From these facts follow, e.g. by an
argument analogous to that of [10], that the integrals

-Jco (t-ar)"

exist and that

00

c£?= f
m j (t-arr

Similarly the integral J? „ di/>(t) exists and equals 1.
It follows by Proposition 5.5 that the distribution function \J/ solves the EHMP for

the given sequences. •

Theorem 5.10. The EHMP for the sequences {cj,r)} has a solution iff the sequences are
such that the functional <f> is positive definite.

Proof. Follows immediately from Proposition 5.3, Section 5.4 and Propositions 5.8
and 5.9. •

5.11. We may generalize the definition of the functions i/>n(t) as follows: For every
index n and every real x we define the step function ij/n(t, x) by

ipn(t, x)=£ {kn J(i): tf\x) ^ i], (5.7)

where tfXx), j= 1,...vn(x), are the zeros of Qn(t,x). Then again ij/n(t,x) is non-negative
and non-decreasing as a function oft, O^ij/n(t,x)^l when Qn{t,x) is non-degenerate, and

- oo - oo \l — "r/

for sufficient large n. We recall that Qnk(t, T) is non-degenerate for every value of T except
one.

The following result gives no extra information on the EHMP, but it may provide a
larger family of solutions to the problem.

Theorem 5.12. Let \j/(t) be the limit on (—00,00) of some convergent subsequence
{/,•(£):i= 1,2,...} of a sequence {i^n(t,Tn):n = l ,2 , . . . } , where Qn{t,xn) is non-degenerate.
Then \j/ is a solution of the EHMP for the given sequences {c^}.

Proof. The sequence {^n(t,xn)} is uniformly bounded, and so the arguments in the
proof of Proposition 5.9 may be carried over to the present situation. •
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