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DECENTRALIZED SEARCH ON SPHERES
USING SMALL-WORLD MARKOV CHAINS:
EXPECTED HITTING TIMES AND
STRUCTURAL PROPERTIES

ARCHIS GHATE,∗ University of Washington

Abstract

We build a family of Markov chains on a sphere using distance-based long-range
connection probabilities to model the decentralized message-passing problem that has
recently gained significant attention in the small-world literature. Starting at an arbitrary
source point on the sphere, the expected message delivery time to an arbitrary target on
the sphere is characterized by a particular expected hitting time of our Markov chains. We
prove that, within this family, there is a unique efficient Markov chain whose expected
hitting time is polylogarithmic in the relative size of the sphere. For all other chains,
this expected hitting time is at least polynomial. We conclude by defining two structural
properties, called scale invariance and steady improvement, of the probability density
function of long-range connections and prove that they are sufficient and necessary for
efficient decentralized message delivery.
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1. Introduction

The small-world phenomenon was observed in the 1960s by Stanley Milgram’s team [10],
[13], who realized that apparent strangers are often connected by a short chain of acquaintances.
This striking discovery was the result of a simple letter-forwarding experiment that started out
by identifying a pair of people in the United States, unknown to each other. One of them, called
the source, was given basic information such as the name and address of the other, termed the
target. A letter was handed to the source and she was told that it should be passed on to a
person she knows on a first name basis. The aim of the experiment was to deliver the letter to
the target in as few steps as possible. Each intermediate person who received the letter also
followed the same rule: the letter should be passed on to one of your acquaintances. The chain
was continued until the target received the letter. Over a large number of trials, the average
number of steps in a successful chain was found to be between five and six. This astounding
observation was popularized as six degrees of separation.

While social experiments of this nature continue to amaze experts and nonexperts alike,
several mathematicians, computer scientists, physicists, biologists, and economists have been
drawn to the small-world phenomenon [1], [2], [7], [8], [9], [11], [14], [15] perhaps due to
the empirical evidence that a multitude of social, natural, economic, and physical systems [12]
possess the key property that they are highly clustered, yet exhibit a small diameter; indeed, a
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friend of your friend is very likely to be your friend, and yet, you are connected to strangers by
an acquaintance chain of length six on average.

The string of quantitative research in this area was pioneered by Watts and Strogatz [14]
who showed that it is possible to construct networks where arbitrary nodes are connected by
a short chain of edges. They achieved this by superimposing a small number of uniformly
random ‘long-range connections’ on a ring lattice where each node originally has a few ‘local
contacts’. However, Kleinberg [7] was the first to note that the most fascinating component of
Milgram’s social experiments is not that short chains of acquaintances exist between strangers,
but that people are able to actually find them by using a simple letter-forwarding procedure.
Specifically, existence of short chains in a network where the long-range contacts are chosen
uniformly randomly does not imply that nodes acting only on local information will be able
to find them [7]. In his seminal work, Kleinberg [7], [8] showed that it is indeed possible to
construct networks in which nodes can accomplish this task using a decentralized algorithm,
i.e. an algorithm which uses only local information at the nodes it visits. Such networks are
often termed navigable. This approach goes beyond the mere existence of short chains in that it
attempts to actually find them, and, hence, is algorithmic. In Kleinberg’s grid lattice network,
the probability of a long-range connection between two nodes was allowed to decrease with a
power of the distance between them. In particular, he proved that there is a unique power-law
exponent for which a decentralized algorithm can find short chains.

Following Kleinberg’s idea, researchers have continued employing some notion of dis-
tance while modeling Milgram’s message-passing experiment using decentralized algorithms.
A recent important departure from the above modeling framework was presented by Liben-
Nowell et al. [9], who employed rank-based connection probabilities (where the probability
that person v is person u’s long-range contact is inversely proportional to the number of persons
w that are closer to u than the distance between u and v). Another interesting paradigm shift
in this area includes models in Euclidean spaces. That is, instead of using the more traditional
graph theoretic models like the ring lattice or the grid lattice, researchers have embedded their
models in a plane [3], a square [4], or a ball [5], [6] in R

2. In some cases such as [3], these
continuous-domain models do not explicitly build a network by adding random long-range
contacts to an existing finite graph defined by local contacts (sometimes called the ‘substrate’),
but rather model the message-passing procedure directly as a stochastic process characterized
by locations of local and long-range contacts in a continuum starting at an arbitrarily selected
source point.

In this paper we model the message-passing experiment using a family of Markov chains we
call small-world Markov chains defined on the surface of a sphere. In this model, the message
is initially at source s in the sphere and is to be delivered to a location close to a target point
t also in the sphere (note that exact delivery is impossible in continuous-domain models [3]).
When the message is at point u, it is passed on either to one of u’s four local contacts or to
its long-range contact. Given the geodesic circle through u on which u’s long-range contact
lies, the probability density function (see (2.1)) for the geodesic distance ρ between u and its
long-range contact is proportional to ρ−a for a nonnegative parameter a, akin to distance-based
power-law models in the literature [3], [4], [5], [6], [7], [8]. Point u is only assumed to know
the locations of all of its contacts (local as well as long range) and the location of target t . As a
result, u’s choice of where to send the message is entirely decentralized and the location of the
message on the sphere is a Markov chain. The key quantity of interest is the expected hitting
time of the message (or, equivalently, the Markov chain that defines the message location) to a
small area around target t . We show in Theorem 2.1 that this expected hitting time is at most
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polylogarithmic in the relative size of the sphere if and only if a = 1. On the other hand, for all
other nonnegative values of a, this expected hitting time is at least polynomial in the relative
size of the sphere (Theorem 2.2). Thus, the model with a = 1 performs exponentially better
than all the other models. We also prove that a = 1 is the only power-law exponent that imparts
two structural properties to the probability density of long-range contacts—scale-invariance
(Proposition 4.1) and significant improvement (Proposition 4.2).

2. A family of message-forwarding models

We build our models on the surface of a sphere of radius R, denoted SR . Choose an arbitrary
point s ∈ SR called the source and an arbitrary point t ∈ SR called the target. As is common in
the literature, our family of models have three main components: local as well as long-range
contacts and a decentralized message delivery procedure. Suppose that the message is currently
at point u ∈ SR .

2.1. Local contacts

Let ε > 0 be a fixed constant such that R/ε � 1, and let Gπε(u) be the set of points in SR that
are at a geodesic distance less than or equal to πε from point u. Moreover, let ∂Gπε(u) be the
circle of points in SR that are at a geodesic distance πε from u. Point u has four local contacts
equally spaced, i.e. at an angular separation π/2 each, on ∂Gπε(u). It will soon be clear that
using a radius of πε instead of ε is without loss of generality and only motivated by the resulting
simplicity of several algebraic expressions in the sequel. The model can easily be generalized
to more than four local contacts; however, we focus on four local contacts for concreteness. It
is not necessary for the four local contacts to be equally spaced; however, we do need them to
be placed so that the conclusion of Lemma A.1 holds. Nevertheless, the assumption of equally
spaced deterministically generated local contacts is consistent with models in the literature [7],
[8]. We use v1(u), v2(u), v3(u), and v4(u) to denote the locations of the four local contacts of
u on ∂Gπε(u).

2.2. Long-range contacts

In addition to the above four local contacts, u has one long-range contact placed on SR outside
Gπε(u) placed using geodesic distance-based probabilities parameterized by a nonnegative real
number a. It is placed on a uniformly chosen great circle passing through u, at geodesic distance
ρ from u, independent of the choice of the great circle and having density

f (ρ) = 1

C(a; R, ε)ρa
, πε < ρ ≤ πR, (2.1)

with the normalization constant

C(a; R, ε) =
∫ πR

πε

1

sa
ds =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

log

(
R

ε

)
if a = 1,

π1−a

1 − a
(R1−a − ε1−a) if a ≥ 0, a �= 1.

(2.2)

As the notation suggests, C(a; R, ε) does not depend on the choice of the great circle. The para-
meter a will be called ‘the power-law exponent’. We use v5(u) ∈ {SR \ Gπε(u)} to denote u’s
long-range contact.
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2.3. Decentralized search algorithm

A decentralized search algorithm is a message-passing procedure where message holder u

only knows

1. the location of t ; and

2. the locations of its own local and long-range contacts, i.e. v1(u), v2(u), v3(u), v4(u),
and v5(u).

Most importantly, a message holder does not have any information about the local and long-
range contacts of other points, and, hence, must forward the message to one of its own
contacts. A message holder does not know where the message has been in the past. For
notational simplicity, we focus on deterministic decentralized algorithms that can be character-
ized by functions gt : S5

R → SR with the property that gt (v1(u), v2(u), v3(u), v4(u), v5(u)) ∈
{v1(u), v2(u), v3(u), v4(u), v5(u)}. That is, the function value is just one of the contact points.
Specifically, if the message reaches point u with contacts v1(u), v2(u), v3(u), v4(u), and v5(u),
it is forwarded to contact point gt (v1(u), v2(u), v3(u), v4(u), v5(u)). We will use the terms
‘function gt ’ and ‘decentralized algorithm gt ’ interchangeably. We will say that the message
has been ε-delivered when it reaches a point within geodesic distance ε from t , i.e. when it
reaches the set Gπε(t).

Let Xn denote the location of the message after it has been forwarded n times using a
decentralized algorithm. Then Xn is a Markov chain (we call this the small-world Markov
chain) with state space SR . Given the source s and target t , this Markov chain is parameterized
by a and the function gt . The main quantity of interest, the expected ε-delivery time, is the
expected value E(τs,t (a, gt )) of the hitting time τs,t (a, gt ) of this Markov chain to the set
Gπε(t), i.e.

τs,t (a, gt ) = min{n ≥ 1 : Xn ∈ Gπε(t)}.
Research question. For what values of parameter a (if any) does there exist a decentralized

message-passing algorithm, i.e. a function gt with the above-defined properties, such that

E(τs,t (a, gt )) ≤ c

(
log

(
R

ε

))b

(2.3)

for any source s ∈ SR and any target t ∈ SR , where b and c are constants that do not depend
on R, ε, s, and t?

A decentralized message-passing algorithm that results in a small-world Markov chain with
a bound as in (2.3) on its expected hitting time will be called polylogarithmic. We call such a
polylogarithmic algorithm efficient. Note that polylogarithmic performance is an appropriate
measure of efficiency in this context since a model with no long-range contacts can trivially
deliver the message from a source to a target in a number of steps proportional to R/ε.
Consequently, the quantity R/ε is of key interest in the remainder of the paper and can be
interpreted as the relative size of the sphere, denoted L for brevity.

Consider the following greedy decentralized algorithm g∗
t : whenever the message reaches

a point u, u forwards the message to one of its contacts that is closest to the target point t

(breaking ties arbitrarily). For example, when ties are broken by the smallest index rule, the
greedy decentralized algorithm is characterized by a function g∗

t with the property that, when
the message reaches a point u, g∗

t (v1(u), v2(u), v3(u), v4(u), v5(u)) = vi(u), where

i = min{j : d(vj (u), t) = min{d(v1(u), t), d(v2(u), t), d(v3(u), t), d(v4(u), t), d(v5(u), t)}}
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and d(x, y) denotes the geodesic distance between x, y ∈ SR . Lemma A.1 in Appendix A
shows that our greedy algorithm is well defined in the sense that point u has at least one local
contact that is closer to the target than u itself. This has the important implication that, under g∗

t ,
the message is moved from one point to another (sometimes the negligible distance ε) at every
step and, in particular, never gets stuck. In the next section we prove the following key theorems
that answer the above research question.

Theorem 2.1. For any s, t ∈ SR , E(τs,t (1, g∗
t )) ≤ c(log L)2, where c is a constant that does

not depend on R, ε, s, or t . That is, for any source s and target t on the sphere SR , the expected
ε-delivery time of the greedy algorithm g∗

t is at most polylogarithmic in L = R/ε if a = 1.

Theorem 2.2. If a �= 1, there exist s, t ∈ SR for which the expected ε-delivery time of every
decentralized algorithm is at least polynomial in L = R/ε. In particular, the following
statements hold.

(i) If 0 ≤ a < 1, there exist s, t ∈ SR for which E(τs,t (a, gt )) ≥ αL(1−a)/2 for every
decentralized algorithm gt , where α is a constant that does not depend on R, ε, or gt .

(ii) If a > 1, there exist s, t ∈ SR for which E(τs,t (a, gt )) ≥ βL(a−1)/a for every decentral-
ized algorithm gt , where β is a constant that does not depend on R, ε, or gt .

3. Proofs of expected hitting time bounds

The two key theorems in Section 2 are proven here. The preliminary results required for
these proofs are deferred to Appendix A. To geometrically indicate the location of point u’s
long-range contact v5(u), we use the geodesic coordinate system (θ, ρ) centered at u. Here θ

is the angle between two great circles passing through u—one through the north pole and the
other through v5(u). Also, ρ is the geodesic distance between u and v5(u). Recall that v5(u)

is determined by randomly selecting both θ and ρ—the former uniformly from [0, 2π ] while
the latter according to the density in (2.1). We begin with a simple lemma.

Lemma 3.1. Let u ∈ SR , let πε ≤ r1 < r2 ≤ πR, and let 0 ≤ θ1 < θ2 ≤ π . Let S denote
the spherical segment between geodesic distances r1 and r2 from u and the great circles at
spherical angles θ1 and θ2 with respect to the great circle passing through u and the north pole.
Let P(u, S) be the probability that u’s long-range contact v5(u) is in S. Then

P(u, S) = θ2 − θ1

2π

∫ r2

r1

1

C(a; R, ε)ρa
dρ.

Proof. The probability of interest is given by

P(u, S) = P(θ1 ≤ θ ≤ θ2 ∩ r1 ≤ ρ ≤ r2)

= P(θ1 ≤ θ ≤ θ2) P(r1 ≤ ρ ≤ r2) (since θ and ρ are chosen independently)

= θ2 − θ1

2π
P(r1 ≤ ρ ≤ r2) (since θ is chosen uniformly from [0, 2π ])

= θ2 − θ1

2π

∫ r2

r1

1

C(a; R, ε)ρa
dρ (from (2.1)).

This completes the proof.
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3.1. Proof of Theorem 2.1

For this proof, we use a geometric trials argument. Suppose that the current message holder
u is at a geodesic distance r , πR ≥ r ≥ 2πε, from t . Let Pr (u, t; 1) be the probability that
u’s long-range contact is within a geodesic distance r/2 from t , where the 1 emphasizes that
we are considering the case in which a = 1. Equation (2.2), Lemma 3.1, Corollary A.1 in
Appendix A, and spherical symmetry imply that

Pr (u, t; 1) ≥ 2
π/12 − 0

2π

∫ r

3r/4

1

(log L)ρ
dρ = log(4/3)

12 log L
.

Therefore, the probability that the distance between the message and t is decreased by a factor
of 2 in one step of g∗

t is at least log(4/3)/12 log L. As a result, the expected number of steps
of g∗

t before the distance is decreased by a factor of 2 is at most 12 log L/ log(4/3). Since
the initial distance of the message from t can be at most πR, we need at most log2 L such
improvements to bring the message within distance 2πε from t . Once the message is within
2πε from t , we need at most two more steps to bring it within πε from t , even if the message is
passed on to local contacts in these steps. Thus, we need a total of at most c(log L)2 expected
number of steps of g∗

t to ε-deliver the message to t for a constant c independent of R and ε.
This completes the proof.

Recall that d(x, y) denotes the geodesic distance between any two points x, y ∈ SR , and
Gr(x) is the geodesic cap {y ∈ SR : d(x, y) ≤ r}.
3.2. Proof of Theorem 2.2

Let s be at the north pole, let t be at the south pole, and consider any decentralized
algorithm gt .

(i) Here 0 ≤ a < 1. The proof uses Lemmas 3.2 and 3.3, below.

Lemma 3.2. For u, v ∈ SR , let P(u, Gr(v)) denote the probability that u’s long-range contact
is inside a geodesic cap Gr(v) of radius r around v, where r = πεL(1−a)/2. Then

P(u, Gr(v)) ≤ 4L(a−1)/2.

Proof. Equation (2.2), Lemma 3.1, and spherical symmetry imply that

P(u, Gr(v)) ≤ 2
π − 0

2π

∫ 2r+πε

πε

1 − a

π1−a(R1−a − ε1−a)

1

ρa
dρ

≤ 2r(1 − a)

π1−a(R1−a − ε1−a)(πε)a

= 2r(1 − a)

πεa(R1−a − ε1−a)

≤ 4(1 − a)

πR
Lar

= 4(1 − a)L(a−1)/2

≤ 4L(a−1)/2.

Lemma 3.3. Let A be the event that a message starting at s is delivered by gt to a point u that
has its long-range contact in Gr(t) in at most T = 1

8L(1−a)/2 steps, where r is as defined in
Lemma 3.2. Then P(A) ≤ 1

2 .
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Proof. Let Ai be the event that the long-range contact of the message holder in the ith step
of decentralized algorithm gt is in Gr(t). Note that A = ⋃T

i=1 Ai , and P(Ai) ≤ 4L(a−1)/2 by
Lemma 3.2. Therefore, subadditivity implies that

P(A) ≤
T∑

i=1

P(Ai) ≤
T∑

i=1

4L(a−1)/2 = 4L(a−1)/2T = 4L(a−1)/2 1
8L(1−a)/2 = 1

2 .

This proves the lemma.

Let B be the event that the message starting at s is ε-delivered to t in at most T steps. The
event B cannot occur if A (as defined in Lemma 3.3) does not occur. Suppose that A does not
occur, but the message is ε-delivered to t in at most T steps. Note that T < L = πR/πε.
Thus, a message that is ε-delivered to t starting at s in at most T steps must be passed to a
long-range contact at least once. Moreover, the last time this happens, the long-range contact
must be in Gr(t) since r/πε = 8T > T . This contradicts our hypothesis that A does not
occur. Note that E(τs,t (a, gt )) = E(τs,t (a, gt ) | A) P(A) + E(τs,t (a, gt ) | Ac) P(Ac). Hence,
E(τs,t (a, gt )) ≥ E(τs,t (a, gt ) | Ac) P(Ac) ≥ 1

2 E(τε(s, t) | Ac), where the last inequality
follows because P(A) ≤ 1

2 by Lemma 3.3. Note that E(τs,t (a, gt ) | Ac) > T . As a result,

E(τs,t (a, gt )) > 1
2T = 1

2
1
8L(1−a)/2 = 1

16L(1−a)/2.

This completes the proof of Theorem 2.2(i).

(ii) Here a > 1. The proof uses Lemmas 3.4 and 3.5, below.

Lemma 3.4. For u, v ∈ SR , let P(u, Gc
r (u)) denote the probability that u’s long-range contact

is outside a geodesic cap of radius r around u, where r = πεL1/a . Then P(u, Gc
r (u)) ≤

2(1/L)(a−1)/a .

Proof. Equation (2.2), Lemma 3.1, and spherical symmetry imply that

P(u, Gc
r (u)) ≤ 2

π − 0

2π

∫ πR

r

1 − a

π1−a(R1−a − ε1−a)

1

ρa
dρ

= 1

π1−a(R1−a − ε1−a)
((πR)1−a − r1−a)

= (r1−a − (πR)1−a)εa−1Ra−1

(Ra−1 − εa−1)π1−a

≤ r1−aεa−1Ra−1

(Ra−1 − εa−1)π1−a

≤ 2
r1−aεa−1

π1−a

= 2
1

L

(a−1)/a

.

Lemma 3.5. Let A be the event that a message starting at s is delivered by gt to a point u that
has its long-range contact in Gc

r (u) in at most T = 1
4L(a−1)/a steps, where r is as defined in

Lemma 3.4. Then P(A) ≤ 1
2 .
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Proof. Let Ai be the event that the message holder in step i (say u) of decentralized algorithm
gt has a long-range contact in Gc

r (u). Lemma 3.4 implies that P(Ai) ≤ 2(1/L)(a−1)/a . Since
A = ⋃T

i=1 Ai , we have

P(A) ≤
T∑

i=1

P(Ai) ≤
T∑

i=1

2
1

L

(a−1)/a

=
(

1

4
L(a−1)/a

)(
2

1

L

(a−1)/a)
= 1

2
.

This proves the lemma.

Now let B be the event that the message is ε-delivered to t in at most T steps. The event B

cannot occur if A (as defined in Lemma 3.5) does not occur. To see this, if A does not occur,
the message covers at most distance r = πεL1/a in each of the first T = 1

4L(a−1)/a steps of the
decentralized algorithm. Thus, the total distance covered is at most πεL1/a 1

4L(a−1)/a = πR/4.
Thus, the message cannot be ε-delivered from s to t in at most T steps since d(s, t) = πR. By
calculations similar to the proof of part (i) above we obtain

E(τs,t (a, gt )) ≥ E(τs,t (a, gt ) | Ac) P(Ac) ≥ T

2
≥ 1

8
L(a−1)/a.

This completes the proof of Theorem 2.2(ii).

4. Structural properties: scale invariance and significant improvement

In this section we define two structural properties of long-range contacts, i.e. properties
that do not depend on any algorithmic message-passing procedure, but rather are intrinsic to
probability density (2.1). These are scale invariance and significant improvement. We show
that the model with a = 1 is the only model within our family that possesses these properties.
Thus, these two structural properties are equivalent to the existence of an efficient decentralized
search algorithm.

Definition 4.1. Without loss of generality, let ε 	 1 and R = 2M for some integer M � 1.
For j = 0, 1, 2, . . . , M − 1 and a ≥ 0, let Pu

j (a) be the probability that the geodesic distance
between u and its long-range contact v5(u) is between π2j and π2j+1. We say that the
probability density in (2.1) is scale invariant if and only if Pu

j (a) does not depend on j .

The intuition behind scale invariance is similar to Kleinberg’s original grid lattice model and
its extensions. The long-range contact of u is equally likely to belong to any one of the ‘rings’
of width 2j at geodesic distance 2j from u if the probability density in (2.1) is scale invariant.

Proposition 4.1. The probability density in (2.1) is scale invariant if and only if a = 1.

Proof. From Lemma 3.1 we have

Pu
j (a) = 2π − 0

2π

∫ π2j+1

π2j

1

C(a; R, ε)ρa
dρ.

Then, using (2.2), we obtain

Pu
j (1) = 1

log L

∫ π2j+1

π2j

1

ρ
dρ = log 2

log L
.
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On the other hand, for a ≥ 0, a �= 1, we have

Pu
j (a) = 1 − a

π1−a(R1−a − ε1−a)

∫ π2j+1

π2j

1

ρa
dρ = 2j (1−a)(21−a − 1)

R1−a − ε1−a
,

proving that the probability density in (2.1) is scale invariant if and only if a = 1.

Definition 4.2. Let u and v be two points in SR such that the geodesic distance between u and
v is l ≥ 2πε. Let Pl (u, v; a) be the probability that this long-range contact is within geodesic
distance l/2 from v. We say that the probability density in (2.1) exhibits steady improvement
if and only if Pl (u, v; a) ≥ α/ log L, where α is a constant that does not depend on u, v, or
distance l.

Proposition 4.2. The probability density function in (2.1) exhibits steady improvement if and
only if a = 1.

Proof. Lemma 3.1 and Corollary A.1 in Appendix A imply that

Pl (u, v; 1) ≥ log(4/3)

12 log L
,

i.e. the probability density in (2.1) exhibits steady improvements if a = 1. From Lemma 3.1
we obtain, for a �= 1,

Pl (u, v; a) ≤ 1 − a

π1−a(R1−a − ε1−a)

∫ l

l/2

1

ρa
dρ = l1−a

π1−a(R1−a − ε1−a)

(
1 − 1

21−a

)
,

which is bounded above by (l/πR)1−a when 0 ≤ a < 1. On the other hand, when a > 1, it is
bounded above by (2πR/l)a−1(2/La−1), implying that

PπR(u, t; a) ≤ 2

(
2

L

)a−1

for a > 1.

In summary, when a �= 1, there cannot exist a constant α such that Pl (u, v; a) ≥ α/log L.
Therefore, the density does not exhibit steady improvements when a �= 1.

Appendix A. Auxiliary geometric results

Recall that d(x, y) denotes the geodesic distance between any two points x, y ∈ SR and that
0 ≤ d(x, y) ≤ πR. The great circle that passes through points x, y ∈ SR will be denoted by
O(x, y), and the (shorter) great circle arc connecting x and y will be denoted by A(x, y).

Lemma A.1. Let u ∈ SR , and let v1(u), v2(u), v3(u), and v4(u) be its local contacts evenly
spaced (in that order) on ∂Gπε(u), as described in Section 2. Let z be any point in SR \Gπε(u).
Then

min{d(v1(u), z), d(v2(u), z), d(v3(u), z), d(v4(u), z)} ≤ d(u, z).

Proof. The claim is obvious when d(u, z) = πR. For the other cases, it suffices to show
that there exists a local contact of u such that the geodesic distance between this local contact
and z is less than or equal to the distance between u and z. Let a local contact of u (say v1(u))
be such that the angle between O(u, z) and O(u, v1(u)) is strictly positive (the claim is obvious
when this angle is 0) and at most π/4. Such a local contact clearly exists because the angular
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separation between great circle pairs O(u, v1(u)) − O(u, v2(u)), O(u, v2(u)) − O(u, v3(u)),
and O(u, v3(u)) − O(u, v4(u)) is π/2 each. We will show that d(v1(u), z) ≤ d(u, z). Toward
this end, let m be any point on the geodesic arc A(u, z). Then d(u, z) = d(u, m) + d(m, z).
Now if m is such that d(u, m) ≥ d(v1(u), m) then we have d(u, z) ≥ d(v1(u), m)+d(m, z) ≥
d(v1(u), z) by the triangle inequality, completing the proof. Thus, it suffices to show the
existence of an m on A(u, z) such that d(u, m) ≥ d(v1(u), m). We show that choosing m as
the point of an orthogonal intersection between O(u, z) and a great circle through v1(u) serves
this purpose. In particular, we show that, for m chosen this way, d(u, m) ≤ d(u, v1(u)) = πε

(claim 1), proving that m is on A(u, z) since d(u, z) ≥ πε = d(u, v1(u)), and that d(u, m) ≥
d(v1(u), m) (claim 2). The proof of claim 1 is as follows. Consider the geodesic triangle
	uv1(u)m. With some abuse of notation, we will use the vertices u, v1(u), and m of this
triangle to denote the measure of the corresponding angles. Using the geodesic law of cosines
for this triangle implies that

cos

(
πε

R

)
= sin

(
d(v1(u), m)

R

)
cos

(
π

2

)
sin

(
d(u1(u), m)

R

)

+ cos

(
d(v1(u), m)

R

)
cos

(
d(u, m)

R

)

= cos

(
d(v1(u), m)

R

)
cos

(
d(u, m)

R

)
.

Since ε/R 	 1
2 , cos(d(v1(u), m)/R) �= 0; that is, d(v1(u), m)/R �= π/2, implying that

cos

(
d(u, m)

R

)
= cos(πε/R)

cos(d(v1(u), m)/R)
. (A.1)

Now using the geodesic law of cosines one more time yields

sin(d(u, v1(u))/R)

sin(d(u, m)/R)
= cos(u)

cos(d(v1(u), m)/R)
.

But the geodesic law of sines implies that

sin(d(u, v1(u))/R)

sin(d(u, m)/R)
= sin(m)

sin(v1(u))
= 1

sin(v1(u))
> 0,

where the last strict inequality follows from the fact that 0 < d(u, m) < π implies that
0 < v1(u) < π . As a result,

cos(u)

cos(d(v1(u), m)/R)
> 0,

implying that d(v1(u), m)/R < π/2, since cos(u) > 0 as 0 ≤ u ≤ π/4. Then (A.1) implies
that cos(d(u, m)/R) ≥ cos(πε/R). Therefore, d(u, m) ≤ πε, proving claim 1.

The proof of claim 2 is as follows. The only nontrivial situation is when d(v1(u), m) > 0.
The geodesic law of sines implies that

sin(d(u, m)/R)

sin(d(v1(u), m)/R)
= sin(v1(u))

sin(u)
. (A.2)

Observe that u + v1(u) + m ≥ π , since 	uv1(u)m is geodesic. Recall that m = π/2 and
u ≤ π/4. Thus, v1(u) ≥ π/4. Since d(u, m)/R and d(v1(u), m)/R are both acute, (A.2) then
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implies that d(u, m) ≥ d(v1(u), m), proving claim 2, as long as v1(u) ≤ π/2. Thus, it remains
to show that v1(u) is acute. The geodesic law of cosines yields

cos(v1(u)) = cos(d(u, m)/R) − cos(d(v1(u), m)/R) cos(πε/R)

sin(d(v1(u), m)/R) sin(πε/R)
.

Substituting for cos(d(u, m)/R) using (A.1) along with some algebraic simplification leads to

cos(v1(u)) = cos(d(v1(u), m)/R) cos(πε/R)

sin(d(v1(u), m)/R) sin(πε/R)
> 0,

where the last strict inequality follows since 0 < d(v1(u), m)/R < π/2. This shows that v1(u)

is acute, completing the proof of the lemma.

Lemma A.2. The lemma has two parts.

1. Define h1(φ, θ) ≡ cos(θ) sin2(φ) + cos2(φ) − cos(φ/2). Then h1(φ, θ) ≥ 0 for all
0 ≤ φ ≤ π if 0 ≤ θ ≤ arccos( 7

8 ). In particular, since π/12 ≤ arccos( 7
8 ),

cos(θ) sin2(φ) + cos2(φ) ≥ cos(φ/2) (A.3)

for all 0 ≤ φ ≤ π if 0 ≤ θ ≤ π/12.

2. Define h2(φ, θ) ≡ cos(θ) sin(φ) sin(3φ/4) + cos(φ) cos(3φ/4) − cos(φ/2). Then
h2(φ, θ) ≥ 0 for all 0 ≤ φ ≤ π if 0 ≤ θ ≤ arccos( 7

8 ). In particular, since
π/12 ≤ arccos( 7

8 ),

cos(θ) sin(φ) sin(3φ/4) + cos(φ) cos(3φ/4) ≥ cos(φ/2) (A.4)

for all 0 ≤ φ ≤ π if 0 ≤ θ ≤ π/12.

Proof. We begin with the first claim. Note that

h1(φ, θ) = cos(θ) sin2(φ) + 1 − sin2(φ) − cos(φ/2)

= sin2(φ)(cos(θ) − 1) + 1 − cos(φ/2)

= sin2(φ)(cos(θ) − 1) + 2 sin2(φ/4)

= [2 sin(φ/2) cos(φ/2)]2(cos(θ) − 1) + 2 sin2(φ/4)

= [4 sin(φ/4) cos(φ/4) cos(φ/2)]2(cos(θ) − 1) + 2 sin2(φ/4)

= 2 sin2(φ/4)8 cos2(φ/4) cos2(φ/2)(cos(θ) − 1) + 2 sin2(φ/4)

= 2 sin2(φ/4)[8 cos2(φ/4) cos2(φ/2)(cos(θ) − 1) + 1].

Thus, h1(φ, θ) ≥ 0 if and only if h̄1(φ, θ) ≡ 8 cos2(φ/4) cos2(φ/2)(cos(θ) − 1) + 1 ≥ 0. We
will show that if 0 ≤ θ ≤ arccos( 7

8 ), i.e. if 1 ≥ cos(θ) ≥ 7
8 , then h̄1(φ, θ) ≥ 0. For in this case,

cos(θ)−1 ≥ − 1
8 , implying that 8 cos2(φ/4) cos2(φ/2)(cos(θ)−1) ≥ − cos2(φ/4) cos2(φ/2),

which in turn is bounded below by −1, proving the first claim.
For the second claim, note that

cos(φ/4) = cos(φ − 3φ/4) = cos(φ) cos(3φ/4) + sin(φ) sin(3φ/4).

https://doi.org/10.1239/aap/1231340160 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1231340160


Small-world Markov chains on spheres SGSA • 977

As a result, cos(φ) cos(3φ/4) = cos(φ/4) − sin(φ) sin(3φ/4). Therefore,

h2(φ, θ) = sin(φ) sin(3φ/4)(cos(θ) − 1) + cos(θ/4) − cos(θ/2)

= sin(φ) sin(3φ/4)(cos(θ) − 1) + 2 sin(3φ/8) sin(φ/8)

= 2 sin(φ) sin(3φ/8) cos(3φ/8)(cos(θ) − 1) + 2 sin(3φ/8) sin(φ/8)

= 2 sin(3φ/8)[sin(φ) cos(3φ/8)(cos(θ) − 1) + sin(φ/8)].
Since sin(3φ/8) is nonnegative for 0 ≤ φ ≤ π , h2(φ, θ) is nonnegative if and only if
sin(φ) cos(3φ/8)(cos(θ) − 1) + sin(φ/8) is nonnegative. That is, if and only if sin(φ/8) ≥
sin(φ) cos(3φ/8)(1−cos(θ)). We will show that this inequality holds when 0 ≤ θ ≤ arccos( 7

8 ).
For in this case, (1 − cos(θ)) ≥ 1

8 . Moreover, 0 ≤ φ ≤ π implies that sin(φ) ≥ 0 and
cos(3φ/8) ≥ 0. Therefore, sin(φ) cos(3φ/8)/8 ≥ sin(φ) cos(3φ/8)(1 − cos(θ)). In addition,
sin(φ)/8 ≥ sin(φ) cos(3φ/8)/8. Thus, it suffices to prove that 8 sin(φ/8) ≥ sin(φ). To see
that this inequality holds, observe that, for 0 ≤ φ ≤ π ,

8 sin(φ/8) ≥ 8 sin(φ/8) cos(φ/8) cos(φ/4) cos(φ/2)

= 4 sin(φ/4) cos(φ/4) cos(φ/2)

= 2 sin(φ/2) cos(φ/2)

= sin(φ),

completing the proof.

Corollary A.1. Consider a geodesic triangle 	uvt on a sphere of radius R such that the
geodesic angle � vut = θ ≤ π/12.

1. If d(u, v) = d(u, t) = s then point v is inside the geodesic cap of radius s/2 centered
at t .

2. If d(u, t) = s and d(u, v) = 3s/4 then point v is inside the geodesic cap of radius s/2
centered at t .

Proof. Let d(v, t) = x. For the first case where d(u, v) = d(u, t) = s, the spherical law of
cosines implies that

cos(x/R) = cos(θ) sin2(s/R) + cos2(s/R).

Equation (A.3) then yields

cos(x/R) ≥ cos

(
s/2

R

)
.

In other words, x ≤ s/2, proving the first claim. For the second case, where d(u, t) = s and
d(u, v) = 3s/4, the spherical law of cosines implies that

cos(x/R) = cos(θ) sin(s/R) sin(3s/4R) + cos(s/R) cos(3s/4R).

Equation (A.4) yields

cos(x/R) ≥ cos

(
s/2

R

)
.

In other words, x ≤ s/2, proving the claim.
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