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Let G be a finite group, °IL(ZG) the group of units of the integral group ring ZG and
%(ZG) the subgroup of units of augmentation 1. In this paper, we are primarily
concerned with the problem of describing constructively %(ZG) for particular groups G.
This has been done for a small number of groups (see [11] for an excellent survey), and
most recently Jespers and Leal [3] described °ti(ZG) for several 2-groups. While the
situation is clear for all groups of order less than 16, not all groups of order 16 were
discussed in their paper. Our main aim is to complete the description of °U{ZG) for all
groups of order 16. Since the structure of the unit group of abelian groups is very well
known (see for example [10]), we are only interested in the non-abelian case.

Note that there are 7 indecomposable non-abelian groups of order 16:

P=(a,b\a4 = l = b\ba = a3b),

Ql6 = (a, b | a8 = 1, a4 = b2, ba = a7b),

D= (a,b,c | a2 = b2 = c4 = \,ac = ca, be = cb,ba = c2ab),

Di6=(a,b \a* = b2 = l,ba = a7b),

H={a,b\a4 = bA = (ab)2 = (a2, b) = 1).

There are also 2 decomposable non-abelian groups of order 16:

Q x C2 and DH x C2,

where Q is the quaternion group, C2 the cyclic group of order 2 and

Ds=(a,b \a4 = b2 = l,ba = a3b),

the dihedral group of order 8.
Now, a description of <&(ZG) has been given for G = P, D, Dtf, and H in [3]. It is

well known that Z(Q x C2) has only trivial units. So in this paper we will deal with the
groups G = Dfe, £>i6, Gi6 and D8 x C2.

Secondly there is the question of whether the bicyclic and Bass cyclic units generate a
subgroup of finite index in °U(ZG). Recall that a bicyclic unit in ZG is a unit of the form
1 + (1 —x)y(l + x + . . . +JC"~ ' ) , where x,y 6 G and n is the order of x. For the definition
of Bass cyclic unit, the reader is referred to [9]. For finite nilpotent groups G, Ritter and
Sehgal [9] showed that under some restrictions the Bass cyclic and the bicyclic units
generate a subgroup of finite index in °U(ZG). The restrictions are on the 2-Sylow
subgroups, and the situation for 2-groups is still unclear.

In [1] it is proved that the Bass cyclic units generate a subgroup of finite index in
%(ZG) for all finite abelian groups G. Further, it was shown in [8] that the Bass cyclic
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and the bicyclic units generate a subgroup of finite index in %(Z£>2") for all dihedral
groups D2" of order 2". So, again, the first difficulties arise with the non-abelian groups of
order 16 (different from D)6). We will show that D,ft is the only indecomposable
non-abelian group of order 16 for which the Bass cyclic and bicyclic units generate a
subgroup of finite index in the unit group. The groups P and Ql(, were dealt with in [9],
and D and D^ were treated in [4]. So in this paper we complete the story by handling the
groups D^6 and H.

Since Q x C2 has only trivial units the above problem is trivial for this group and the
only group left is Z)8 x C2. It seems that this should be an easy group to deal with,
especially as we obtain a nice description of the full unit group. However we are unable to
answer the question concerning the Bass cyclic and bicyclic units for this group.

Throughout we follow the notation of [10].
Crucial to our work is the following result of Jespers and Leal about ^(ZDX).

THEOREM 1 ([3]). In %,(ZD8), Z)x has a torsion-free normal complement

W = {u = 1 + ar(l - a2) | u a unit, a e AZ(DX)}.

Further, W is a free group of rank 3 generated by any 3 of the 4 distinct (up to inverses)
bicyclic units ofZDH.

The proof given in [3] relies on a method to concretely describe the Wedderburn
decomposition of the rational group algebra for a class of 2-groups. For the dihedral
group of order 8, another more direct proof of the theorem was given in [6].

1. Description of %(Z£>r6).
 H e r e w e w i " describe %(ZG), where

First we examine closely the Wedderburn decomposition of the rational group
algebra QG. We note that QG(^(1 -a 4 ) ) is 8-dimensional over Q and Z(QG(£(1 -a4)))
is 2-dimensional over Q. Observe that (a + a3)^(l - a4) is in Z(QG(j(l-a4))) and
[(a + a3H(l - a4)]2 = -2( |(1 - a4)). Hence Z(QG(|(1 - a4))) is the field

Next note that the following 4 elements of QG(^(1 -a 4 ) ) are linearly independent
over Q[(a + a3)^(l — a4)] and, in fact, form an elementary matrix basis:

b\(l-a4\ 2(l-b\(\-a4

l - 6 \ / l - a '

2 A 2 / ' zz V 2 A 2

Hence QG(3(1 - a4)) = A/2,2(Q[V-2]) and the above remarks indicate exactly how this
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isomorphism works. Specifically, we set X = (a + «3)2(1 — a4), and obtain

l - a 4 \ X.

I-a

369

a [—— J=e2i-e,2,

Jl-a4\ X

-a\ X
j = — (e,, - e22 - el2 - e2 1),

= e2] + e12,

X

Next we show how Z C ( 1 - a4) is embedded in A/2 , 2(Q[V-2])- Any element in
Z G ( 1 — a4) can be written in the form

(2o-() + 2o-,fl + 2o-2a2 + 2a-3a"1 + 2<5O6 + 26tab + 262a
2b + 2 8 ^ ( ^ \

where all a,-, 6, e Z . Such an element corresponds to the matrix

Ji o
Hi -l

i -n

l J

l -iJ)
X(a] + a-.-, + 6,

2{-a2+52)
+ X{ax -

2(an-6tt)

It is convenient to conjugate A by the matrix , obtaining

2{a{) -a,- a2+ a?

+ 60-6l-62+63)
<52)

2{<x2 + b2) + X(—(X\ + a-3 — 5, + 83) 2(ait + a , + ar2 — a-3 — 6,, + <
+ 2^(0-2 + 0-3-6,+ 62)

82 —
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This is a matrix of the type

n + n'X)l
f+f'X)Y2e + e'X 2(f+f'X)

where m,m',n,n',e,e',f,f'eZ.
Solving a system of 8 linear equations in 8 unknowns, we discover that a matrix of

the above type comes from an element in ZG(1 — a-4) if and only if m — / i s divisible by 2.
We conclude that

ZG(1-*) = ([ 2e + eVZ2 2 t f+

m,m',n,n',e,e',f,f'eZ, and 2 | (m - / ) [ •

Now, an element in ZG(1 — a4) is in AZ(G)(1 — a4) if and only if it can be written in
the form

a2a
2 + a3a

3 + 5nb + <5,a6 + 62a
2b + 63a

3b)(l -a4),

where a-() + ax + a2 + <*3 + <5() + 6, + d2 + 63 is divisible by 2. By the previous work, it is
easy to see that these elements correspond exactly to matrices of the form

2(/+/'V=2)J'
w h e r e 2 | m a n d 2 \f, i . e .

^m'V^ 4n + 4i

We are now ready to describe %(ZG).

THEOREM 2. /AJ ^^ZD^) , D^6 /jfl* a torsion-free normal complement which is the
semi-direct product of the matrix group

H 1 +
2

2m'VC2 4n + 4
l + 4/ + 2/'Vz2

m,m',n,n',e, e',f,f e Z, and det(a) = 1

by a free group of rank 3.

Proof. We again set G = Di6. Let V = {u = 1 + a-(l - a2) | u a unit, a- e AZ(G)}. It
is not hard to prove, and also well known [2], that V is a torsion-free normal complement
for G in %(ZG). Under the natural epimorphism / :ZG->ZD 8 (mapping a4 to 1), V
is mapped into the group W mentioned in Theorem 1. Further W is freely generated
by the three bicyclic units x, = 1 + (1 -b)a(l + b), x2 = 1 + (1 - ab)a{\ + ab) and

2 2
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Note that *, and x3 are also bicyclic units when viewed as elements of ZG. In ZG,

1 + (1 - b)a{\ + b) = l + (a- ba){\ - a2),
and

1 + (1 - a2b)a{\ + a2b) = 1 + (a - ba7)(l - a2).

So both of these elements are in V.
Although x2 is not the image of a bicyclic unit in ZG, it still turns out that there is a

unit

u. = 1 + (-1 + a - a2 + a2b){\ - a2) + (2 + a - a2 - a3 - b - ab + a2b + a3b - a4){\ - a4)

in V (with inverse

«"' = 1 + (1 - a + a1 - a2b)(\ - a2) + (-a + a2 + a3 + b + ab - a2b - a3b - a4)(l - a4))

such that f(u)=x2. We are able to see this because of the constructive isomorphism
between (AZ(G))(1 — a4) and a set of matrices.

Hence/(V) = W, and the freeness of W tells us that V is then the semi-direct product
of {v e V \f(v) = 1} by a free group of rank 3.

Now {v e V \f(v) = 1} is the set of units which can be written in the form
l + o-(l-a2), Q-eAz(G), and also in the form l + /3( l -a4) , fi e ZG. This means that
a — P(l + a2) = y(l + a2 + a4 + a6) for some y e ZG. Therefore the sum of the coefficients
of P is divisible by 2. Since (/3 + 6(1 + a4))(l - a4) = /3(1 - a4) for any 6 e ZG, we can
assume that /? e AZ(G). Our previous remarks then yield that {v e V \f(v) = 1} is
faithfully represented by invertible matrices of the form

[ 2e + e'VZ2 1+ 4 /+ 2/ 'VC2J'

where m,tn',n,n',e,e',f,f'eZ.
Since the only units in Z[V^2] are ±1, the form of the given matrices forces the

determinant to be 1. We note, however, that any such matrix of determinant 1 has an
inverse matrix of the same type, and so must represent a unit of the form 1 +/3(1 -a4)
where (i e AZ(C).

The proof of the theorem is complete.

2. Description of %(ZD,6). In this section we describe °U{ZG), where

G = £>16= (a, b | a8 = b2 = 1, ba = a7b).

The argument follows the same pattern as with D^.
First we look again closely to the Wedderburn decomposition. Let

X = (a - a3H(l - a4). Since X is central in QG( | ( l - a 4 ) ) , and X2 = 2(^(1 - a4)),
Q[(a - a3){{\ - a4)] is a field isomorphic to Q[V2]. We have QG( | ( l - a 4 ) ) =
M2 2(Q[\/5]) and the following elements form an elementary matrix basis for
QG(i(l - a4)) over Q[(a - a3)i(l - a4)]:

-6\/l-r4^

\-b\(\-a4
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InQG( i ( l - a 4 ) ) , we have

X
'' ,-, ( e l l ~*~ ^22 e\2 + e 2 l ) ;

a"'1-'

X.
= ^ ( ~ e i i ~~ e22 ~ el2 + e2i),

l-a4\ X

2

-^ X

Next we show how ZG(1 — a4) is embedded in M2.2(Q[V2]). An element in
ZG(1 - a4) can be written in the form

(2a0 + 2axa + 2a2a
2 + 2a3a

3 + 260b + 26,ab + 262a
2b

where all ah 6, e Z. Such an element corresponds to the matrix

o -n x\-\ -

i 0] A-ri n ro

Conjugating A by , we obtain

, — or, — a2 — a3 + 8() — 8t 4(—or, — 2ar2— a/
3 + 6,, — 82 — 28T)

{—cx2 — a?, — 62 — ST) +4X(—<X\ — a2— a3 + 5() — 52 — 83)

3) +82+83) + 2X(al +a2 +62 +83) _

This is a matrix of the type

\2(m+m'X) 4(n+n'X)

2e + e'X 2(f+f'X)\'

where m,m',n,n',e,e',f,f eZ.
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Solving a system of 8 linear equations in 8 unknowns, we find that a matrix of the
above type comes from an element of ZG(1 - a4) if and only if m —f is divisible by 2.
We conclude that

2e + ,'V2 2 ( /+ / 'V2)

m,m',n,n',e,e',f,f'eZ, and 2 | (m - / ) } .

Exactly as with Z)J~6, we then deduce that

Let V be the set of units in ZG of the form 1 + a{\ — a2), a e AZ(G). Again, V is a
torsion-free normal complement for G in %(ZG), and if f:ZG —*ZDH is the natural
epimorphism, f(V) c W, where W is the group determined in Theorem 1. But all of the
bicyclic units in ZD8 are images of bicyclics in ZG, and these bicyclics are, in fact, in V.
Hence f(V) = W follows from Theorem 1, and the freeness of W tells us that V is the
semi-direct product of {v e V \f(v) = 1} by a free group of rank 3.

As before, we see that {v e V \f(v) = 1} is precisely the set of all units which can be
written in the form l + j8( l -a4) , /J e AZ(G). Our previous remarks tell us that this
group is faithfully represented in invertible matrices of the form

+4m+2m'V2 4n + 4rt'V2 1
2e + e'V2 1 + 4/ + 2/'V2.r

w h e r e m , m ' , n , n ' , e, e',f,f e Z .
Recall now that the units of Z[V2] are precisely those elements s + t\Jl, with s, t € Z,

for which s2 — 2t2 = ±1. A matrix of the type we are considering has determinant

(1 + Am + 2w'V2)(l + 4/ + 2/'V5) - (An + An'\f2){2e + e'\fl)

= 1 + Am + Af + 16mf + Sm'f - 8ne - 8n'e'

+ (2f + 8mf + 2m' + 8m'f- Am' - 4n'e)V2.

For such an element to be a unit 5 + f\/2, we note that s2 - 2t2 = 1 is the only possibility.
We also note that 5 = 1 (mod 4).

Recall further that the units of Z[V2] consist precisely of the elements ±kp, p eZ ,
where A = 1 + V2 (cf. [7]). Such a unit satisfies s2 -2t2=\ and s = \ (mod 4) if and only if
it is in the cyclic subgroup generated by —A2 = —3 - 2\/2 (or equivalently, its inverse
-3 + 2V2).

Finally, note that if we take a matrix B of the form

'V2 1
2/'V§J'2e + e'V2 l + 4/ + 2/ '

then (-3 - 2\/2)B and (-3 + 2y/2)B are of the same form. We conclude that the inverse
of any such matrix is of the same form, and hence all of these matrices represent units of
the type 1 + )3(1 - a4), where )3 e AZ(G).
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We have proved the following theorem.

THEOREM 3. In %,(ZDI6), D](t has a torsion-free normal complement which is the
semi-direct product of the matrix group

\A~[ 4/ + 2/'V2

m,m',n,n',e,e',f,f'eZ, and del(A) e ( - 3 - 2\/2>]

by a free group of rank 3.

3. Description of °U(ZQ16). Now we describe <&(ZG), where

G = Ql6=(a,b \a*=l,a4 = b2,ba = a7b).

As before it is easy to see that Z(QG(i(l -a4))) = Q[X] is a field isomorphic to Q[V2],
where X = (a- a3)|(l - a4) is such that X2 = 2(|(1 - a4)). Further if we let 1 = |(1 - a4),
\ = a2{(\-a4), j = H ( l - « 4 ) , k = a2b^(l-a4), then one easily verifies that
QG(2(l-a4)) is a quaternion algebra over Q[X] (with basis 1, i,j,k). In
QG(3(l-fl4)) we have:

l - a 4

Next we look closely to the embedding of ZG(1 - a4) in QG(i(l - a4)) =
An element in ZG(1 - a4) can be written in the form

a , a + a 2 a 2 + a 3 a 3 + 8{)b + 8 , a b + 6 2 a 2 b 6 3 b ) (

= 2o-ol + ff,(A"l + Xi) + 2a2i + a3(-Xl + Xi)

+ 26()j + 6,(Jfj + ^rk) + 2d2k + 63(-A

= (2a() + (a, - 0-3)^)1 + (2a2 + (a, + a

+ (26,, + (6, - <5,)^)j + (262 + (6, + 63)Jf )k
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for some cr0, <xt, a2, a3, 60, 6t, <52, <53 e Z. Such an element corresponds to a quaternion
element of the form

(2s + ty/2)l + (2c + dy/2)i + (2e +/V2)j + (2m +

Solving a system of 8 linear equations in 8 unknowns it follows that a quaternion
element of the above type comes from an element of ZG(1 — a4) if and only if 2 divides
t + d and 2 divides/ + n. It follows that AZ(G)(1 — a4) is isomorphic with

{(2s + /V2)l + (2c + <A/2)i + (2e +/V5)j + (2m + n^2)k \ 2 | (/ + d),
2 | (/ + n) and 2 | (s + c + d + e + m + n)}.

Let V be the set of all units of ZG of the form 1 + a(\ - a1), a e AZ(G). Again, V is
a torsion-free normal complement for G in %,(ZG). Under the natural epimorphism
f.ZG—*ZD8 (mapping a4 to 1), V is mapped into the group W mentioned in Theorem 1.
Recall that W is generated by

x, = 1 + (1 - b)a{\ + b) = l + (a + ab-a3b- a3),
x2 = 1 + (1 - ab)a{\ + ab) = l + (a + a2b-b- a3),
JC3 = 1 + (1 - a2b)a{\ + a2b) = 1 + (a + a3b - ab - a3).

Note that any unit u = 1 + 2a(l — a2) e W is an image of a unit in V, namely of
1 + a(l - a2)(l + a4). Also W2 = {u = 1 + 2a(l - a2) \ u e %(Z£>K)} is a normal subgroup
of W and W/W2 is an abelian group of order 4 (note that JC,XJ' e W2). Hence f(V) is of
finite index 1, 2 or 4 in W. We claim it is of index 4 and thus f(V) = W2. For this it is
sufficient to show that x{ $f(V), x2 $f(V) and JC,X2 $f(V).

We will constantly use the fact that the only units in the quaternion algebra with
coefficients in Z[V5] are of the form al, a'\, a\ and ak, where a is a unit in Z[V5].
Assume first that x, ef(V). In other words, there exists a unit u in ZG such that
u = 1 + (a + ab - a3b - a3) + a(\ - a4) for some a e ZG. Note that

u~l = l-(a + ab- a3b - a3) + 0(1 - a4)

for some j3sZC. Now « ( | ( l - a 4 ) ) is a unit in ZG( | ( l - a 4 ) ) , and the element of the
quaternion algebra corresponding to it is of the form

1 + |(V21 + V2i) + £(V2j + V2k) - i(-V2j + V2k) - £(-V21 + V5i)

+ (2s + A/5)l + (2c + dV2)i + (2e +/V2)j + (2m + «V2)k,

where s, t, c, d, e,f, m, n e Z, 2 | (/ + d) and 2 | (/ + n). This element can be written as

(1 + 2s + (/ + 1)V2)1 + (2c + dV2)i + (2e + (/ + l)V5)j + (2m + *V2)k.

Since the inverse of this element corresponds to ""'(2(1 - «4)) and also has all coefficients
in Z[V2], we conclude that 1 + 2s + (t + 1)V2 must be a unit in Z[V2] and 2c = d = 2e =
f + 1 = 2m = n = 0. This contradicts 2 | (/ + n), so we conclude that x, $f(V).

Next assume x2 ef(V), so there exists a unit u in ZG such that

u = 1 + (a + a2b - b - a3) + a{\ - a4)

for some a-eZG. Note that w"1 = 1 - (a +a2b -b -a3) + /3(1 -a4). In this
case, u(^(l - a4)) corresponds to the quaternion algebra element

(1 + 2s + (t + 1)V2)1 + (2c + dy/2)i + (2e - 1 +/V2)j + (2m + 1 + rc\/2)k.
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Since the coefficients of u~\{-(\-a4)) are also in Z[V2], we conclude that either
1 + 2s = 0 or 2e — 1 = 0, a contradiction. Hence x2 $f(V).

Finally, assume that x]x2ef(V). Now

xtx2 = (1 + (a + ab — a?b — a3))(l + (a + a2b — b — a3))
= 1 + (-2 + b - ab){\ - a2).

So we conclude that there is a unit u in ZG of the form u = 1 + (—2 + b - ab)(\ — a1) +
a(l — a4) for some a e ZG. Also (x\X2)~

x = 1 + (—2 — b +afc)(l - a2), so M~' is of the
form «"' = 1 + (-2-b + ab)(l - a 2 ) + /3(l - a 4 ) . In this case, u ( i ( l - a 4 ) ) corresponds
to the element

(-1 + 2s + /V2)l + (2(c + 1) + dyji)\ + (2e + 1 +/V2)j + (2m - 1 + (n - l)V2)k.

Since the coefficients of «~'(^(l-a4)) are also in Z[V2], we conclude that either
- 1 + 2s = 0 or 2e + 1 = 0, a contradiction. Hence xxx2 $f(V).

We have now shown that f{V) is a subgroup of index 4 in a free group of rank 3.
Hence/(K) is a free group of rank 9.

THEOREM 4. In %,(Z<2i6)> Q\6 has a torsion-free normal complement which is the
direct product of an infinite cyclic group and a free group of rank 9.

Proof. By the previous work, it is clear that/(V) is a free group of rank 9 and that V
is a semi-direct product of

{veV \f(v) = 1} = {v = 1 + a(l - a4) | a e AZ(G), v a unit}

by a free group of rank 9. We also know that an element 1 + a(\ - a4), a e AZ(G), is
faithfully represented by a quaternion element of the form

(1 + 2s + ty/2)l + (2c + dy/2)i + {2e +/V2)j + (2m + «V5)k,

where 2\(t + d), 2 | (/ + n) and 2 | (s + c + d + e + m + n). But as before, if such an
element is a unit, we must have 1 + 2s + +1\/2 a unit in Z[V2] and c = d = e=f = m =
n = 0. The conditions 2\s, 2\t say precisely that 1 + 2s + /Vz is in the cyclic subgroup
generated by - 3 + 2\/2. Since central elements of AZ(G)(1 - a 4 ) are central in ZG, the
result follows.

4. Description of aU(Z(C2 x Dx)). We consider <%(ZG), where G = C x DK, C2 =
{he}.

Let W = {u = 1 + (1 - a2)a \ ae AZ(G), u a unit}. Again by the result of Cliff,
Sehgal and Weiss [2] (or directly), it follows that W is a torsion-free normal complement
for G in %(ZG).

Let/:ZG—»ZD8 be the natural epimorphism (mapping c to 1). Because of Theorem
1, f(W) is a free group of rank 3. It follows that W is a semi-direct product of
K = {u = 1 + (1 - a2)(l - c)a | a e ZG, u a unit} by a free group of rank 3. Hence we will
study the structure of K.

The following form an elementary matrix basis for QG(2(\ — a2))(5(l — c)) over Q:

_ fab-a\(\-a2\(\-c

2 A 2 / ' " \ 2 /V 2 ) \ 2
\-a2\/l-c\ (I - b\(\ -a2\(\ -c \
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Note that
1-aVl-c

—X l-c

Next we look again more closely at the embedding of ZG(1 — a2)(l — c) in
1 - a2))(Kl - c)) = M22(Q). A typical element of ZG(1 - a2)(l - c) is

(a-(l+ a",a + a2b + a3ab)(l - a 2 ) ( l - c) = (4a-,, + 4a,a + 4a2b + 4a3ab)i )(- 1.

As a matrix, this is
[4(al)+a2) 4(-al + a3)~\

L4(a-, + a3) 4(a-(l-o-2) J'

Conjugating by Lwe obtain

|"4(a'o - a-, + a2 - <x3) 8(-a-, + a2) "1
L 4(a-, + a3) 4(a-,, + a, — a2 + a-3) J'

These are all matrices of the form

[4c 8/-I
L4c 4d\'

with e,f, c, d e Z.
By solving equations, we see that such a matrix is obtained from an element in

ZG(1 — a2)(l - c) if and only if 2 | ( e + d). So units in K are faithfully represented by
invertible matrices of the form

+ 4e 8/
4c 1 + 4.

with 2 | (e + d), e,f, c,d eZ. But such matrices must have determinant 1, and this forces
2 | (e + d). Also the inverse of any such matrix is of the same type. Hence

. e,f,c,deZ,det(A) =
4c 1+ 4dJ

This group is of index 2 in T(4), the principal congruence subgroup of level 4. As T(4) is a
free group of rank 5 [5], K is a free group of rank 9. So we have proved the following
theorem.

THEOREM 5. In aU,(Z(C2 x £>8)), C2 x D8 /IOS a torsion-free normal complement which
is a semi-direct product of a free group of rank 9 by a free group of rank 3.
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5. Bicyclic and Bass cyclic units. We now turn our attention to the subgroup of
%(ZG) generated by the Bass cyclic and bicyclic units. The following is a slight extension
of Proposition 6.3 in [9].

THEOREM 6. Let G be a finite 2-group and let f:G—> DH be an epimorphism. If at least
2 of b, ab, a2b, a3b do not have preimages in G of order 2, then the Bass cyclic and bicyclic
units in ZG do not generate a subgroup of finite index in °U(ZG).

Once this has been proved, we have settled the problem for all indecomposable
groups of order 16.

COROLLARY 7. The Bass cyclic and bicyclic units do not generate a subgroup of finite
index in %ZG), where G = P, £>,6, D^ or H.

Proof of the theorem. We will abuse notation and also use / to denote the ring
epimorphism ZG —>ZDg and the group homomorphism <&(ZG)—» %(Z/?K).

Since ZD8 has no non-trivial Bass cyclic units, any Bass cyclic in ZG must map to a
trivial unit in ZD8. In fact, it is not hard to see that all Bass cyclic units map to 1 in ZDH.

Next consider a bicyclic unit y=l + (l-g)hg in ZG, where g = l+g + . . . +
g"~\n =o(g). Then either/(y) = 1 or

/(y) = 1 + c(l -/(g))/(/O/Gf) = (1 + (1 -f(g))f{h)fte)y,

where c = o(g)/o(f(g)). The bicyclic units of ZD8 are X\ = 1 + (1 - b)a{\ + b), x2
 =

1 + (1 - ab)a(\ + ab), x> = 1 + (1 - a2b)a(\ + a2b) and x4 = 1 + (1 - a*b)a(l + a3b). Fur-
ther x4

 = xJlX21x~[>. The given condition on G yields that at least two of these bicyclic
units are not images of bicyclic units in ZG.

Let B be the subgroup of °U(ZG) generated by the Bass cyclic and the bicyclic units.
From the remarks above, and the fact that G is a 2-group, it follows that/(B) is a proper
subgroup of W (as described in Theorem 1) requiring at most 4 generators. Since W is a
free group of rank 3, we conclude that/(fi) must be of infinite index in W.

Next recall (from Theorem 1) that W is also the set of units in ZDX of the form
1 + a(\ - a2), where a e AZ(D8). Let V̂  be the subgroup of W consisting of those units
which can be written in the form 1 + 2'/?(l - a2) for some /? e ZDX. Note that W,^ c W
because ( 2 - ( 1 - a 2 ) ) ( l + a2) = 2(1+ a2). Also note that for all i, Wt is a normal sub-
group of W and that W/W, and WJWi+l are of exponent 2 and hence are abelian. Since
W is finitely generated, it follows that W/W, and all Wi/Wi+X are finite, so W'IW, is finite.

Let K be the kernel o f / : G ^ D 8 . We know that \K\ = 2' for some / > 1 , and let
1 + 2'j3(l - a2) be any element of W,. Choose a,, j3, to be any preimages of a, /? in ZG,
and define K- Ei>e^g. It is easy to see that u = 1 + £/3,(l -a\) is a unit in ZG and that
/(«) = 1 + 2'j3(l - a2). Hence W, c/(<ft(ZC)).

Now assume the contrary of the result we wish to prove, namely B is of finite index
in °U(ZG). It follows that/(fl) is of finite index \nf(%ZG)). Since f(B) c W, this yields
f(B) is of finite index in / (%(ZG))nW. However it is shown above that the latter
subgroup is of finite index in W, contradicting our earlier result that f(B) is of infinite
index in W.
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