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Abstract

Let X i be transient βi -stable processes on Rdi , i = 1, 2. Assume further that X1 and X2 are independent.
We shall find the exact Hausdorff measure function for the product sets R1(1)× R2(1), where R1(1)
× R2(1)= {(X1(t1), X2(t2)) | 0≤ t1, t2 ≤ 1}. The result of Hu generalizes [Some fractal sets determined
by stable processes, Probab. Theory Related Fields 100 (1994), 205–225].
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1. Introduction

A Lévy process {X (t) | t ≥ 0} on Rd is called an α-stable process with α ∈ (0, 2] if
the distribution of X (1) is not degenerate (that is, it cannot be supported on any proper
subspace of Rd ) and for any t > 0,

X (t)= t1/αX (1)

in law. An α-stable process on Rd is transient if and only if α < d . It is well known
that X (1) has a bounded continuous density p(1, x) (see [5]). An α-stable process on
Rd is said to be of type A if p(1, 0) > 0; and type B otherwise. If an α-stable process
with α 6= 1 is of type B, then 0< α < 1.

Before we give the main result, we recall briefly the definition of the Hausdorff
measure function by referring to Falconer [1].

A function φ is said to belong to the class 8 if there exists a δ > 0 such that φ is a
right continuous and increasing function on (0, δ) with φ(0+)= 0 and there exists a
finite constant K > 0 such that

φ(2s)

φ(s)
≤ K , for 0< s <

1
2
δ.
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For φ ∈8, the φ-Hausdorff measure of E ⊆Rd is defined by

φ-m(E)= lim
ε→0

inf
{ ∞∑

i=1

φ(diam(Ei ))

∣∣∣∣ E ⊆
∞⋃

i=1

Ei , diam(Ei ) < ε

}
,

where diam(Ei ) denotes the diameter of Ei . A function φ ∈8 is called an exact
Hausdorff measure function for E if 0< φ-m(E) <∞.

We recall some previous results concerning Hausdorff measure related to stable
processes. It was proved in [5] that for a transient α-stable process X with α 6= 1, 2, an
exact Hausdorff measure function of R(t) is φ(a)= aα log log 1

a if X (t) is of type A
or φ(a)= aα(log log 1

a )
1−α if X is of type B, where R(t)= {X (s) | s ∈ [0, t]}. Then,

in 1994, the product of range of two independent stable subordinators (or one-sided
stable processes) was considered in [2]. Specifically, it was shown that

φ(a)= aβ1+β2

(
log log

1
a

)2−β1−β2

is an exact Hausdorff measure function for the product set

R1(1)× R2(1)= {(X1(t1), X2(t2)) | 0≤ t1, t2 ≤ 1},

where X i are independent βi -stable subordinators on R with 0< βi < 1, i = 1, 2.
In this paper, we consider the more general case by a different method. We

aim to find the exact Hausdorff measure function for R1(1)× R2(1), where X i are
independent transient βi -stable processes on Rdi with βi ∈ (0, 2) and βi 6= 1, i = 1, 2.
The main result is the following theorem.

THEOREM 1.1. Let X i be transient βi -stable processes on Rdi with βi 6= 1, 2,
i = 1, 2. Assume that X1 and X2 are independent and let φi (a)= aβi log log 1

a if X i

is of type A or φi (a)= aβi (log log 1
a )

1−βi if X i is of type B. Then, with probability 1,

0< φ-m(R1(1)× R2(1)) <∞,

where φ(a)= φ1(a)φ2(a).

We note that any stable subordinator on R with index 0< α < 1 is of type B (see, for
example, [5]). Therefore the result in [2] is a special case of Theorem 1.1. The proof
of Theorem 1.1 is divided into two parts. In Section 2 we prove the lower bound and
in Section 3 we prove the upper bound for φ-m(R1(1)× R2(1)). Though our result
is stated for two independent stable processes, its method is valid for finitely many
independent stable processes. Throughout this paper, we use c1, c2, . . . to denote
positive finite constants whose values may or may not be known.
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2. Lower bound for φ-m(R1(1)× R2(1))

We start with the following lemma. It can be easily derived from the results in [4],
which gives a way to get a lower bound for φ-m(E). For any Borel measure µ on Rd

and φ ∈8, the upper φ-density of µ at x ∈Rd is defined by

D
φ

µ(x)= lim sup
r→0

µ(B(x, r))

φ(2r)
,

where B(x, r) denotes the closed ball with radius r and center x .

LEMMA 2.1. For a given φ ∈8, there exists a positive constant C1 such that for any
Borel measure µ on Rd and every Borel set B ⊆Rd ,

φ-m(E)≥ C1µ(E) · inf
x∈E

1

D
φ

µ(x)
.

We now give the proof for the lower bound for φ-m(R1(1)× R2(1)) in
Theorem 1.1.

PROOF. Define the random Borel measure µ on Rd1+d2 and µi on Rdi with i = 1, 2
by

µ(B) =
∫ 1

0

∫ 1

0
IB(X1(t1), X1(t2)) dt1 dt2, B ⊆Rd1+d2;

µi (Bi ) =

∫ 1

0
IBi (X i (ti )) dti , Bi ⊆Rdi , i = 1, 2,

where IB is the indicator function of the set B. For any fixed (s1, s2) ∈ [0, 1]2,

lim sup
r→0

µ(B((X1(s1), X2(s2)), r))

φ(r)

≤ lim sup
r→0

µ(B1(X1(s1), r)× B2(X2(s2), r))

φ(r)

≤ lim sup
r→0

µ1(B1(X1(s1), r))

φ1(r)
lim sup

r→0

µ2(B2(X2(s2), r))

φ2(r)
, (2.1)

where B((X1(s1), X2(s2)), r) denotes the closed ball of radius r and center
(X1(s1), X2(s2)), while Bi (X i (si ), r) denotes the closed ball of radius r and center
X i (si ), i = 1, 2. Define

Y i (t)=

{
X i (si )− X i (si − t) if 0≤ t < si ,

X i (t) if t ≥ si ,

https://doi.org/10.1017/S0004972708001081 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708001081


204 Y.-Y. Hou and M.-Z. Zhao [4]

and

Yi (t)= X i (si + t)− X i (si ), t ≥ 0.

Then Y i and Yi are βi -stable processes, i = 1, 2. By (2.1),

lim sup
r→0

µ(B((X1(s1), X2(s2)), r))

φ(r)

≤

(
lim sup

r→0

T 1(r)

φ1(r)
+ lim sup

r→0

T1(r)

φ1(r)

)
·

(
lim sup

r→0

T 2(r)

φ2(r)
+ lim sup

r→0

T2(r)

φ2(r)

)
,

where T i (r) and Ti (r) are the sojourn times of Y i and Yi in the closed ball Bi (0, r)⊆
Rdi respectively, i = 1, 2. Applying [5, Theorems 4 and 5], it follows that there exists
a constant K1 such that with probability 1,

lim sup
r→0

µ(B((X1(s1), X2(s2)), r))

φ(r)
≤ K1. (2.2)

Let

E = {(X1(s1), X2(s2)) | s1, s2 ∈ [0, 1] and (2.2) holds}.

Then

Eµ(E) = E
∫ 1

0

∫ 1

0
IE (X1(s1), X2(s2)) ds1 ds2

=

∫ 1

0

∫ 1

0
P{(X1(s1), X2(s2)) ∈ E} ds1 ds2

= 1,

which implies that µ(E)= 1 almost surely. By Lemma 2.1, φ-m(E)≥ C1/K1 > 0
almost surely. Since E ⊆ R1(1)× R2(1), then with probability 1,

φ-m(R1(1)× R2(1))≥ φ-m(E) > 0.

That completes the proof for the lower bound. 2

3. Upper bound for φ-m(R1(1)× R2(1))

Before we give the proof for the upper bound, we prove an important lemma.

LEMMA 3.1. Under the condition of Theorem 1.1, put Pi (a)= inf{t : ‖X i (t)‖ ≥ a},
where i = 1, 2. Then there are positive constants K2, K3, γ0 such that
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P
(

sup
γ≤a≤δ

P1(a)P2(a)

φ(a)
≤ K2

)
< exp

{
−K3

(
log

1
γ

)1/8}

provided that 0< γ ≤ γ0 and δ ≥ γ 1/5.

PROOF. We only consider the case where X1(t) is of type A and X2(t) is of type B,
the proofs for the other cases being similar. By [5, Lemmas 5 and 6] it can be seen
directly that there exist positive constants c3, c4, λ0 such that for 0< λ < λ0,

P
{

sup
0≤t≤τ

|X1(t)| ≤ τ
1/β1λ

}
≥ exp(−c3λ

−β1) (3.1)

and

P
{

sup
0≤t≤τ

|X2(t)| ≤ τ
1/β2λ

}
≥ exp{−c4λ

−β2/(1−β2)}. (3.2)

We consider the sequence

ak = exp (−k2), k = 1, 2, . . .

which tends to zero very rapidly as k→∞. Put

t1,k = φ1(ak)= aβ1
k log log

1
ak

and

t2,k = φ2(ak)= aβ2
k

(
log log

1
ak

)1−β1

.

Let c1 = (6c3)
1/β1 and c2 = (6c4)

(1−β2)/β2 . For any t ≥ 0, let Yi = 2ci X i ((2ci )
−βi t)

with i = 1, 2. Then Yi (t)= X i (t) in law for i = 1, 2. Therefore {Yi (t), t ≥ 0} is still
a βi -stable process on Rdi , {Y1(t)} is of type A, {Y2(t)} is of type B, and they are also
independent. Further, for 0< λ < λ0, (3.1) and (3.2) hold respectively for Y1 and Y2.

For any k ≥ 1, let

Di,k =

{
sup

0≤t≤ti,k
|Yi (t)| ≥ 2ci ak

}
,

Gi,k =

{
sup

ti,k+1≤t≤ti,k
|Yi (t)− Yi (ti,k+1)| ≥ ci ak

}
,

Hi,k =

{
sup

0≤t≤ti,k+1

|Yi (t)|> ci ak

}
.
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Then Di,k ⊂ Gi,k ∪ Hi,k with i = 1, 2. Consequently,

P
{ 2m⋂

k=m+1

(D1,k ∪ D2,k)

}
≤ P

{ 2m⋂
k=m+1

[(G1,k ∪ H1,k) ∪ (G2,k ∪ H2,k)]

}

= P
{ 2m⋂

k=m+1

[(G1,k ∪ G2,k) ∪ (H1,k ∪ H2,k)]

}

≤ P
{ 2m⋂

k=m+1

(G1,k ∪ G2,k) ∪

( 2m⋃
k=m+1

(H1,k ∪ H2,k)

)}

≤

2m∏
k=m+1

P(G1,k ∪ G2,k)+

2m∑
k=m+1

P(H1,k ∪ H2,k),

where the events {G1,k ∪ G2,k | k ≥ 1} are independent.
Put P(Gi,k)= 1− pi,k and P(Hi,k)= qi,k with i = 1, 2. Then by (3.1), for

sufficiently large k,

p1,k ≥ P
(

sup
0≤t≤t1,k

|Y1(t)|< c1ak

)
= P

(
sup

0≤t≤t1,k
|Y1(t)|< t1/β1

1,k c1ak t−1/β1
1,k

)
≥ exp{−c3[c1ak t−1/β1

1,k ]
−β1}

= k−1/3.

Simultaneously, by [3, Lemma 4.3] and [5, Lemma 7], for sufficiently large k,

q1,k = P
(

sup
0≤t≤t1,k+1

|Y1(t)|> c1ak t−1/β1
1,k+1 t1/β1

1,k+1

)
≤ 2d1P

(
|Y1(t1,k+1)|>

c1

2d1
ak t−1/β1

1,k+1 t1/β1
1,k+1

)
≤ 2d1c5

(c1ak t−1/β1
1,k+1

2d1

)−β1

= c6φ1(ak+1)ak
−β1

= c6 exp{−(k + 1)2β1} log(k + 1)2 exp (k2β1)

≤ exp (−kβ1).

Similarly, for the β2-stable type B process Y2, by (3.2), [3, Lemma 4.3] and
[5, Lemma 7], we obtain, for sufficiently large k,

p2,k > k−1/3, q2,k < exp (−kβ2).
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Thus there exists m0 such that for m > m0,

P
{ 2m⋂

k=m+1

(D1,k ∪ D2,k)

}

≤

2m∏
k=m+1

P(G1,k ∪ G2,k)+

2m∑
k=m+1

P(H1,k ∪ H2,k)

=

2m∏
k=m+1

(1− p1,k p2,k)+

2m∑
k=m+1

(q1,k + q2,k)

≤ exp
(
−

2m∑
k=m+1

p1,k p2,k

)
+

∞∑
k=m+1

exp (−kβ1)+

∞∑
k=m+1

exp (−kβ2)

≤ exp(−2−2/3m1/3)+ c7 exp (−β1m)+ c8 exp (−β2m)

≤ exp(−m1/4).

Recall that Pi (a)= inf{t ≥ 0 : |X i (t)| ≥ a} with i = 1, 2. Then

P
{ 2m⋂

k=m+1

(D1,k ∪ D2,k)

}

= P
{ 2m⋂

k=m+1

[(
sup

0≤t≤t1,k
|Y1(t)| ≥ 2c1ak

)
∪

(
sup

0≤t≤t2,k
|Y2(t)| ≥ 2c2ak

)]}

= P
{ 2m⋂

k=m+1

[(
sup

0≤t≤(2c1)
−β1 t1,k

|X1(t)| ≥ ak

)
∪

(
sup

0≤t≤(2c2)
−β2 t2,k

|X2(t)| ≥ ak

)]}

= P
{ 2m⋂

k=m+1

[(P1(ak)≤ (2c1)
−β1 t1,k) ∪ (P2(ak)≤ (2c2)

−β2 t2,k)]

}

≥ P
{ 2m⋂

k=m+1

[
P1(ak)P2(ak)

φ1(ak)φ2(ak)
≤ (2c1)

−β1(2c2)
−β2

]}
≥ P

{
sup

a2m≤a≤am

P1(a)P2(a)

φ(a)
≤ (2c1)

−β1(2c2)
−β2

}
.

Therefore

P
(

sup
a2m≤a≤am

P1(a)P2(a)

φ(a)
≤ K2

)
≤ exp(−m1/4),

where K2 = (2c1)
−β1(2c2)

−β2 . Choose γ0 > 0 such that

1
2

√
log

1
γ0
− 1>

1
√

5

√
log

1
γ0
> m0.
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For any 0< γ ≤ γ0 and δ ≥ γ 1/5,(
1
2
−

1
√

5

)√
log

1
γ
≥

(
1
2
−

1
√

5

)√
log

1
γ0
> 1,

and hence there is a positive integer

m ∈

(
1
√

5

√
log

1
γ
,

1
2

√
log

1
γ

)
.

It follows that

m >
1
√

5

√
log

1
γ
≥

1
√

5

√
log

1
γ0
> m0

and γ < a2m < am < γ
1/5
≤ δ. Thus

P
(

sup
γ≤a≤δ

P1(a)P2(a)

φ(a)
≤ K2

)
≤ P

(
sup

a2m≤a≤am

P1(a)P2(a)

φ(a)
≤ K2

)
≤ exp(−m1/4) < exp

{
−K3

(
log

1
γ

)1/8}
,

where K3 =
1

8√5
. The lemma is proved. 2

We may actually prove that Lemma 3.1 holds for finitely many independent
transient stable processes. The proof of Lemma 3.1 has a direct consequence.

COROLLARY 3.1. Under the conditions of Theorem 1.1, let

Ti (a, 1)=
∫ 1

0
IBi (0,a)(X i (t)) dt

be the sojourn time of X i in the closed ball Bi (0, a)(⊂Rdi ) up to time 1. Then there
exist positive constants K2, K3, γ0 such that

P
(

sup
γ≤a≤δ

T1(a, 1)T2(a, 1)
φ(a)

≤ K2

)
< exp

{
−K3

(
log

1
γ

)1/8}
provided that 0< γ ≤ γ0 and δ ≥ γ 1/5.

Now we introduce another lemma, which is exactly [5, Lemma 9].

LEMMA 3.2. If E =
⋃m

i=1 Ii , where each Ii is an interval of 3k for some integer k.
Here 3k is the collection of cubes of side 21−k and center at a lattice point
( j1/2k, j2/2k, . . . , jd/2k), where jl are integers, closed on the left and open on right.
Then we can find a subset { jr } such that E =

⋃
I jr and no point of E is in more than 2d

of the intervals I jr .

https://doi.org/10.1017/S0004972708001081 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708001081


[9] Product fractal sets determined by stable processes 209

We now come to the proof of the upper bound for φ-m(R1(1)× R2(1)) in
Theorem 1.1.

PROOF. Let 3(i)n be the collection of cubes closed on the left and open on right of
side 21−n with centers at a lattice point ( j1/2n, j2/2n, . . . , jdi /2

n) where the jl are

integers, i = 1, 2. Consider 3
(i)
n , the collection of cubes of side 2−n and centers the

same as those of3(i)n , i = 1, 2. Put3n =3
(1)
n ×3

(2)
n and3n =3

(1)
n ×3

(2)
n . Suppose

δ = 2−r is given where r is a positive integer, and γn = 2−n
≤min{γ0, 2−5r

}. We say

that a cube I i,n = I
(1)
i,n × I

(2)
i,n of 3n is bad if the following conditions hold.

(1) R1(1)× R2(1) meets I i,n , where R j (1) meets I
( j)
i,n at τ j ≤ 1 with j = 1, 2. In

detail, for j = 1, 2, τ j = inf{t ≥ 0 | X j (t) ∈ I
( j)
i,n } ≤ 1.

(2) For all a satisfying γn ≤ a ≤ δ,∫ τ1+1

τ1

IB(X1(τ1),a)(X1(t1)) dt1

∫ τ2+1

τ2

IB(X2(τ2),a)(X2(t2)) dt2 ≤ K2φ(a),

where the closed ball B(X i (τi ), a) ∈Rdi with i = 1, 2.

If (1) holds and (2) does not, then we say that I i,n is good. For any cube I 1,n of 3n ,

P(I i,n is bad | 0≤ τ1, τ2 ≤ 1)

= P
{

sup
γn≤a≤δ

∫ τ1+1
τ1

IB(X1(τ1),a)(X1(t1)) dt1
∫ τ2+1
τ2

IB(X2(τ2),a)(X2(t2)) dt2

φ(a)

≤ K2 | 0≤ τ1, τ2 ≤ 1
}

= P
{

sup
γn≤a≤δ

∫ τ1+1
τ1

IB1(0,a)(X1(t1)− X1(τ1)) dt1
∫ τ2+1
τ2

IB2(0,a)(X2(t2)− X2(τ2)) dt2

φ(a)

≤ K2 | 0≤ τ1, τ2 ≤ 1
}

= P
{

sup
γn≤a≤δ

∫ 1
0 IB1(0,a)(X1(t1 + τ1)− X1(τ1)) dt

∫ 1
0 IB2(0,a)(X2(t2 + τ2)− X2(τ2)) dt2

φ(a)

≤ K2 | 0≤ τ1, τ2 ≤ 1
}
,

where the closed ball B1(0, a) ∈Rd1 and B2(0, a) ∈Rd2 . Put

Y1(t)= X1(t + τ1)− X1(τ1), Y2(t)= X2(t + τ2)− X2(τ2), t ≥ 0.

Then Y1, Y2 are independent and have exactly the same law as X1 and X2 respectively
by the strong Markovian property. Hence we may apply Corollary 3.1 to Y1, Y2 to
obtain

P(I i,n is bad | 0≤ τ1, τ2 ≤ 1) < exp(−c9n1/8).
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Let Mi,n denote the number of cubes in 3
(i)
n hit by the path X i (t) in one unit of time,

i = 1, 2. Then by [3, Lemma 6.1] and the fact that X1 is transient,

EM1,n ≤ c10

[
ET

(
2−n

3
, 1
)]−1

= c10

[∫ 1

0
P
(
|X1(t)| ≤

2−n

3

)
dt

]−1

≤ c10

[
2−n

3

]−β1
[∫
∞

0
P(|X i (t)| ≤ 1) dt

]−1

≤ c112nβ1 .

Similarly, EM2,n ≤ c122nβ2 . Now we can deduce that Nn , the number of bad cubes
I i,n , has expectation

ENn ≤ EM1,nEM2,n exp(−c9n1/8)

≤ c132n(β1+β2) exp(−c9n1/8).

Then, by the Markov inequality,

P{Nn ≥ 2n(β1+β2) exp (−n1/10)}< c14 exp(−n1/10).

Furthermore, we obtain∑
n

P{Nn ≥ 2n(β1+β2) exp (−n1/10)}<∞.

Applying the first Borel–Cantelli lemma, there exists �0 such that P(�0)= 1, and for
all ω ∈�0 there exists an integer n1 = n1(ω) such that for n ≥ n1,

Nn ≤ 2n(β1+β2) exp(−n1/10).

It is easy to obtain
φ(d1/22−n)≤ c152−n(β1+β2)(log n)2.

Thus for any n ≥ n1,∑
I i,n :bad

φ(diam(I i,n))= Nnφ(d
1/22−n)≤ c15 exp (−n1/10)(log n)2. (3.3)

Now consider the good squares I i,n = I
(1)
i,n × I

(2)
i,n of the mesh 3

(1)
n ×3

(2)
n . We have

to show that the set of all good squares can be covered economically. For each good
square I i,n , there exist a ∈ [γn, 2−r

] such that

φ(a) <
1

K2

∫ τ1+1

τ1

IB(X1(τ1),a)(X1(t1)) dt1

∫ τ2+1

τ2

IB(X2(τ2),a)(X2(t2)) dt2.
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Furthermore, we can find an integer ki with 2−ki > 5a ≥ 2−ki−1 and a square

Ii = I (1)i × I (2)i of 3ki such that I (1)i contains I
(1)
i,n and B(X1(τ1), a), while I (2)i

contains I
(2)
i,n and B(X2(τ2), a). Then ki > r − 4 and

φ(diam(Ii )) = φ(
√

d21−ki )≤ φ(20
√

da)≤ c16φ(a)

≤ c17

∫ 2

0
I

I (1)i
(X1(t1)) dt1

∫ 2

0
I

I (2)i
(X2(t2)) dt2.

Now
⋃

I i,n :good Ii is a finite collection of squares to which we can apply Lemma 3.2.
Hence there is a subset, denoted by {Ii }i∈3, which still covers all the good squares,
but no point is covered more than 2d times. For this subset, it must be the case that∑

i∈3

φ(diam(Ii )) ≤
∑
i∈3

c17

∫ 2

0
I

I (1)i
(X1(t1)) dt1

∫ 2

0
I

I (2)i
(X2(t2)) dt2

≤ c17

∫ 2

0

∫ 2

0

∑
i∈3

IIi ((X1(t1)), X2(t2)) dt1 dt2

≤ c172d+2. (3.4)

Using all the bad squares together with this covering of the good squares, we obtain a
covering of R1(1)× R2(1) by squares all of diameter less than

√
d2−r+5, that is,

R1(1)× R2(1)⊆
( ⋃

I i,n : bad

I i,n

)
∪

(⋃
i∈3

Ii

)
.

On the other hand, for sufficient large n, by (3.3) and (3.4),∑
I i,n : bad

φ(diamI i,n)+
∑
i∈3

φ(diam(Ii )) < c172d+2
+ 1.

Thus with probability 1,
φ-m[R1(1)× R2(1)]<∞.

That completes the proof. 2
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