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POTENTIAL THEORETIC PROPERTIES OF THE GRADIENT

OF A CONVEX FUNCTION ON A FUNCTIONAL SPACE

NOBUYUKI KENMOCHI AND YOSHIHIRO MIZUTA

Introduction

In the previous paper [11], introducing the notions of potentials and
of capacity associated with a convex function Φ given on a regular
functional space 3i(X;ζ), we discussed potential theoretic properties of
the gradient FΦ which were originally introduced and studied by Calvert
[5] for a class of nonlinear monotone operators in Sobolev spaces. For
example:

( i ) The modulus contraction operates.
( ii ) The principle of lower envelope holds.
(iii) The domination principle holds.
( iv) The contraction Tk onto the real interval [0, k] (k > 0)

operates.
( v ) The strong principle of lower envelope holds.
( vi) The complete maximum principle holds.
In this paper we shall investigate relations among the properties

mentioned above. For this purpose, we shall consider an operator A
from a subset of L\X; ξ) Π dc(X; f) into L\X\ ξ) associated with FΦ and
its resolvent Rλ = (/ + λA)~\ λ > 0.

One aim is to show (in Theorem A) that each of properties (i) ~ (iii)
is equivalent to:

(vii) for any λ > 0, Rλ is order-preserving in L2(X;ξ). Another
aim is to show (in Theorem B) that if (i) is satisfied, then each of pro-
perties (iv)~(vi) holds if and only if

(viii) Rλ(f + Tkg) <RJ + k holds for any λ > 0 and any/,g e L\X ξ).
These assertions are nonlinear analogues of results in the Dirichlet

space (cf. Deny [7; Theoremes 1 et 2] and Itδ [8; Theorems 3 and 5]).
The crucial step in the proofs is to deduce both (i) and (iv) from (vii)
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and (viii). The key tool is the fact that if feL2(X;ξ) and if

is bounded, then fe%(X;ξ). This fact is a nonlinear extension of a
result in [7]. At the end of this paper we shall consider the nonlinear
contraction semigroup S = {S(t) t > 0} on L\X\ ξ) generated by —A and
show (in Theorem C) that each of properties (i) ~ (iii) and (vii) is
necessary and sufficient for S to be order-preserving in L2(X;ξ).

§ 1. Preliminaries

Let X be a locally compact Hausdorff space with a countable base
and ξ be a positive (Radon) measure on X. Let 36 = 36(X ξ) be a real
reflexive Banach space whose elements are real-valued locally f-summable
functions defined f-a.e. on X. We denote by 36* the dual space of 36,
by ||ft|| (resp. \\u*\\) the norm of ueX (resp. ft*e36*) and by <ft*,ft> the

value of u* e 36* at u e 36. By "—•" (resp. "—•") we mean the strong
(resp. weak) convergence. For functions ft,v eL\0(i(X; ξ), we write uVv,
uAv, u+ and u~ for max(u,v), mm(u,v), max (ft, 0) and —min(ft, 0),
respectively, and for a f-measurable set S in X we write simply "u > v
(resp. ft = v) on S" for "ft > v (resp. u = v) f-a.e. on S". Especially we
write "ft > v (resp. u = v)" for "ft > v (resp. u = v) on X".

Throughout this paper, let 1 < p < oo and Φ be a strictly convex
function on 3£ such that

(1.1) \φ^ = 0 ,
lφ(ft) > CUftlp , for any u e 36,

where C is a positive constant. Suppose that Φ is bounded on each
bounded subset of 36 and is everywhere differentiable in the sense of
Gateaux, that is, there is an operator G: 36 —> 36* such that for any ft,
veX,

, v} = lim ^ + to) - 060
ί io

This operator G is called the gradient of Φ and denoted by VΦ. We
shall use the following properties of Φ and VΦ without proof:

(Φi) Φ is weakly sequentially lower semicontinuous in 36.
(Φ2) Let ft e 36 and ft* e 36*. Then ft* = ΓΦ(ft) if and only if
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POTENTIAL THEORETIC PROPERTIES 201

(u*, v — u} < Φ(v) — Φ(u) for any v e 3£ .

(Φ3) PΦ is strictly monotone, i.e.,

(VΦ(u) — VΦ(y)> u — Vs) > 0 for any u, v e 3£, u Φ v .

(Φ4) ΓΦ is* bounded, i.e., it maps bounded sets in 3£ to bounded

sets in 36*.

(Φ5) PΦ is demicontinuous, i.e., if un—>u in 36 as n - * o o , then
I/O

PΦ{un) — > PΦ(u) in £* as n -+ oo.
(Φ6) For each u e 36, (PΦ(v),v — te>/||i;|| —> oo as | | Ί ; | | -> oo.

(Φ7) For any u,vedi,

Φiu) — Φ(v) = (PΦ{v + t(u — #)), % — t;>d£ .
Jo

Remark. PΦ is one to one and onto. For a proof, see Browder [2

Theorem 3].

LEMMA 1.1. Let {un} be a sequence in 36 which converges weakly
w

to u in 36. // limsup,^ (PΦ{un), un — u} < 0, then PΦ(un) — > PΦ(u) in

36* and Φ(un) —> Φ(^) as n —• oo.

Proof. From (Φ2) and our assumption it follows that

0 > limsup (PΦ(un), un — u} > limsup Φ(un) — Φ(u) .

On account of (Φ2) we obtain

(1.2) lim Φ{un) = Φ(u) .

Next, by (Φ3), liminf^..^ <PΦ(un), nn-u}> lim^..^ <PΦ(u), un — u} = 0.

Hence

(1.3) l i m < F Φ ( ^ ) , ^ - - ^ > = 0 .

The sequence {PΦ(un)} is weakly relatively compact in 3£*, since it is

bounded in 3£* on account of (Φ4). Now, let {unj} be any subsequence of

{un} such that ΓΦ(wn/) — > u* in 3e* as j -» oo for some ^* e 3£*. Then,

using (Φ2), (1.2) and (1.3), we see that for any v e 36
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(u*, v-u} = lim <yΦ{un), v - u

< lim {Φ(v) - Φ{un)}

= Φ(v) — Φ(u) ,

wwhich implies that u* = FΦ(u), and simultaneously that F*Φ(un) — > FΦ(u)
in 36* as n —> oo. Q.e.d,

DEFINITION 1.1. (cf. [7], [8]) % = X(X;ζ) is called a functional
space if the following axiom is satisfied:

AXIOM (a) For each compact subset K of X, there is a constant
M(K) > 0 such that

f
JK

\u\ dξ < M(K) \\u\\ for all u e 96 .
K

Henceforth let 3ί be a functional space satisfying the following axiom:

AXIOM (bθ U Π £ is dense both in U and in 3E, where L2 = L2(X; ?).

We consider an operator A from a subset of L2 into L2 associated
with FΦ which is defined as follows: If v is a function in U Π 3£ and
/ is a function in L2 such that

(1.4) <FΦ{v), w} = f w/df for any ^ e U D X ,

then we put Av = /. By Axiom (bθ, such an / is uniquely determined
by v. Thus we can define an operator A: Do —> L2, where Do = {v e U Π 36
there is a function feL2 such that (1.4) holds}. By (Φ3), A is strictly
monotone, i.e.,

(1.5) (Au — Av,π — v) > 0 for any u,v eD0,uΦv ,

where ( , •) denotes the inner product in L2, i.e., Oy,w) = vwdξ for

any v,w e U.

§2. The resolvent of A

In order to show that the resolvent of A exists, we prove

LEMMA 2.1. Given ^ > 0 and feU, we find a unique function

ueU Π 36 such that
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(2.1) 2λΦ(u) + \\u~ /|B = inf {2λΦ(v) + \\v - f\\\ ;veL2f)X},

where by \\v\\2 we mean the norm of v in L2.

Proof. Set F(v) = 2λΦ(v) + \\v - / |g for v e U Π 36 and a = inf {FW

i; e L2 Π 36}. Then, clearly, 0 < a < oo. We find a sequence {t;n} c L2 Π £
such that F(vn) | α: as n->oo. Since {vn} is bounded in 36 by (1.1) as
well as L2, it is weakly relatively compact both in 36 and in L2 and
hence, by Axiom (a), there exists a subsequence {vnj} of {vn} such that

ΊV

vnj — > u both in 36 and in L2 for some u e U Π 36. Noting (Φx) and the
weak lower semicontinuity of the functional: v —> ||t; — /||a relative to
the topology of L2, we have

Φ(u) < liminf Φ(^ny)

and

||^ - /HI < liminf \\vnj - / | | J ,

so that F('w) < lim^^ F(vnp = a. This implies that F(u) = α. The
uniqueness of such a w follows from the strict convexity of Φ. q.e.d.

For any λ > 0, we denote by Rλ the operator from L2 into L2 which
assigns the function u satisfying (2.1) to each feL2.

LEMMA 2.2. Let λ be any positive number. Then:
( i ) Φ(RJ) < Φ(f) for any fe U Π 36.
(ii) <FΦ(RJ), v} = (f- RJ, v)/λ for any feL2 and veL2Γ) 3£.
(iii) RJ e DQ and ARJ = (/ - RJ)/λ for any fe L\
(iv) Ril + λA) (the range of I + λA) = U and Rλ = (/ + λA)'\
(v) | | β , / - β ^ | | 2 < | | / - ^ | | 2 /or α̂ τ/ fygeL\ especially \\RJ\\2 <

II/II2 for any feL2.

Proof, (i) is clear. For any feL2, veL2Γ\di and t > 0, setting
^ r= î jf, we observe that

2λΦ(u + tv) + \\u + tv- f\\l > 2λΦ(u) + \\u- f\\t ,

that is

λ{φ(u + tv) - Φ(u)} > -^-~{\\u - /HI - | | u + tv- /HI} .

Letting t [ 0 in this inequality, we obtain
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Hence we have (ii) and at the same time (iii). Besides, we see that

f=Rj + λARj = (7 + λA)RJ for any fe U .

From this we infer (iv), since (7 + λA) is one to one by (1.5). Finally
we shall show (v). Let / and g be any functions in L2, and set u = Rλf
and v = Rλg. Then, as was seen above, / = u + λAu and g — v + λAv.
From (1.5) it follows that

11/ - QhWu - v\\2 >(f -g,u-v)

= (u + λAu — v — λAv, u — v)

= \\u — v\\l + λ(Au — Av,u — v)

>\\u-v\$,

so we have (v). q.e.d.
The fact (iv) of Lemma 2.2 says that Rλ is the (nonlinear) resolvent

(at λ) of A for each λ > 0.

LEMMA 2.3 (cf. [9; Lemma 4.3]). If veD0, then \\ARχv\\2 < \\Av\\2

for any λ > 0.

Proof. We have v = 72,(7 + λA)v = Rλ(v + λAv), since Rλ = (7 +
by (iv) of Lemma 2.2. From (iii) and (v) of Lemma 2.2 it follows that

\\ARλv\\2 = l | | t ; - Rλv\\2 = h\Bχ(v + λAv) - #^ | | 2 < \\Av\\2 . q.e.d.
Λ Λ

LEMMA 2.4. (1) For any feL\ Rj-l+f in L2 as λ [ 0.

(2) For any fe U Π 36, i?,/ •/ m 3E αβ ί | 0.

Proof. First, let / be any function in L2 Π 36. We observe from

(1.1) and (i), (v) of Lemma 2.2 that

C\\RJ\\* < Φ(RJ) < Φ(f) for any λ > 0

and

(2.2) \\RJ\\2 < | |/||2 for any ̂  > 0 .

Therefore {β,/ ^ > 0} is bounded in % as well as in 7Λ From (ii) of
Lemma 2.2 and (Φ4) we derive that for each v e U Π 26
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(/ - RJ, v) = λ<VΦ{RJ), v} - 0 as λ [ 0 .

This fact and the boundedness of {Rλf λ > 0} in U imply that

(2.3) RJ > f in L2 as z1 j 0

and \immiλlQ\\RJ\\2 > | |/ | | 2. On the other hand, we have by (2.2)

limsupai0\\RJW* < II/II2. Hence, l im i l 0 \\RJ\\% = | |/ | | 2. This together with
(2.3) implies that

(2.4) RJ -?-+ f in U as ^ \ 0 .

Now, let {̂ j} be any sequence tending to 0 such that {Rλjf} is weakly

convergent in X. Then, denoting the weak limit by g, we see from

(2.4) and Axiom (a) that g = /. This shows that # , / — > / in £ as

A I 0. Finally we can obtain (1) by using Axiom (bθ and (v) of Lemma

2.2 and noting the fact that RJ - % / in U as λ [ 0 for / e U Π 36.

q.e.d.

Remark. By the above lemma, Z)o is dense in Zλ Also, we can

prove that Do is weakly sequentially dense in 3£.

7/?

LEMMA 2.5. // /eL2Π3e, then FΦ(RJ)—>VΦ{f) in 36* and

Φ(RJ) -* Φ(f) as λ I 0.

Proof. Let / s L 2 Π 36. Then we see from (ii) of Lemma 2.2 that

limsup {VΦ{RJ), RJ - /> = limsup - 1 | | / - ΛJIg < 0 .

Applying Lemma 1.1, we obtain the lemma. q.e.d.

Following Deny (cf. [7; Theoreme 2]), we define

Hλ(f) = \(f - RJ,f) , feU.

We note that the following relations hold:

(2.5) HJLf) > i ( / - RJ, RJ) = (VΦ{RJ), RJ> > ΦiRj) .

LEMMA 2.6. If feU and if {Hλ(f) λ > 0} is bounded, then fe%.

Proof. Let feL2 and assume that {Hx(f);λ > 0} is bounded. Then
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we see from (2.5) and (1.1) that {Rλf;λ>0} is bounded in 36. Hence

there is a sequence {λj} tending to 0 such that Rλjf — > g in 36 for some
g e 9£. By (1) of Lemma 2.4 and Axiom (a), we have g = /, so that
fe%. q.e.d.

§3. Potential theoretic properties and their equivalence

In this section, we state potential theoretic properties of Φ, A and
Rλ and our main results about their equivalence.

DEFINITION 3.1 (cf. [5], [11]). Let k be a positive number or oo.
We say that the contraction Tk operates in 3£ with respect to Φ if the
following two conditions are satisfied:

(Ck) Tkv = v+ A k e £ for all v e £, where Tkv = v+ if k = oo.

(ΦCk) For any u,v e%,

Φ(u + Tk(v - u)) + Φ(v - Tk(v - u)) < Φ(u) + Φ(v) .

In particular, we say that the modulus contraction operates in £ with
respect to Φ, when ΓM operates in 36 with respect to Φ.

Remark. It was shown in [11; Proposition 2.1] that under (Ck),
condition (ΦCk) is equivalent to the following:

(ΦCkY <VΦ(u + 2 » - PΦ(u), v - Tkv) > 0 for any u, v e X.

In particular, (ΦCJ)' is of the form:

(VΦ(u + v+) — VΦ{u), v~} < 0 for any u, v e 3£ .

DEFINITION 3.2 (cf. [5], [11]). We say that the principle of lower
envelope with respect to Φ holds if (CJ and the following are satisfied :

(ΦL) If u and v are functions in DQ, then

(FΦ(u Λv),w}> (An /\Av,w)

for any non-negative function w e U Π 3£.

DEFINITION 3.3 (cf. [5], [11]). We say that the domination principle
with respect to Φ holds, if the following is satisfied:

(ΦD) If u and v are functions in Do and if there is feL2 such
that An > /, Av > f and (Au — f, (u — v)+) = 0, then u < v.

DEFINITION 3.4 (cf. [5], [11]). We say that Rx, λ>0, is order-
preserving in L2, if the following holds:

(ΦO) RJ < Rλg for any f,geL2 such that f < g.
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Now, we are in a position to state one of main theorems.

THEOREM A. The following statements are equivalent to each other:

(αO The modulus contraction operates in 3£ with respect to Φ.

(α2) The principle of lower envelope with respect to Φ holds.

(α3) The domination principle with respect to Φ holds.

(α4) For any λ > 0, the resolvent Rx is order-preserving in U.

Next, to state another main theorem we give some definitions.

Throughout the remainder of this section, let k be a positive number.

DEFINITION 3.5 (cf. [5], [11]). We say that the strong principle of

lower envelope with respect to Φ and k holds, if the following two con-

ditions are satisfied:

(C*)* u A (v + k) e £ for any u,vedi.

(ΦSLk) If u and v are functions in Do, then

<J7Φ(u Λ (v + k)), w} > {An Λ Av, w)

for any non-negative function w e U ΓΊ 36.

It should be noticed that under (Cm), conditions (Ck)* and (Ck) are

equivalent.

DEFINITION 3.6 (cf. [5], [11]). We say that the complete maximum

principle with respect to Φ and k holds, if the following is satisfied:

(ΦCMk) If u and v are functions in Do and if there is / e U such

that Au>f, Av >f and (Au — f,(u — v — k)+) = 0, then u < v + k.

The second main theorem is stated as follows:

THEOREM B. Assume that the modulus contraction operates in 36

with respect to Φ. Then the following statements are equivalent to each

other:

(&x) The contraction Tk operates in 96 with respect to Φ.

(b2) The strong principle of lower envelope with respect to Φ and

k holds.

(63) The complete maximum principle with respect to Φ and k holds.

(64) For any λ > 0 and any f,geL2

Rzif + Tkg) <RJ + k.

§ 4. Proofs of Theorems A and B

Before proving the theorems, we recall an existence theorem for
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nonlinear variational inequalities. Let g be a real reflexive Banach space

and P be a (nonlinear) semicontinuous monotoneυ operator from £) into

§)* (the dual space of g)). Let f b e a lower semicontinuous convex func-

tion on g) with values in (—00,00].

THEOREM (cf. [3; Theorem 3], [10; Theorem 4.1]). Let ^ be a non-

empty closed convex subset of g) and assume that for some w e ίΐ with

Ψiw) < 00,

where we denote by <( , ) 9 the natural pairing between $* and $) and

by II IID the norm in g). Then, there is ue® such that

<Pu, u — v\ < ¥(v) — ¥(u) for all v e ® .

Moreover, if P is strictly monotone, then such a u is unique.

LEMMA 4.1. The function Ψ on U defined by

loo , otherwise,

is lower semicontinuous on L2.

Proof. Let {vn} be a sequence in U which converges to vQ in U,

and assume that a = liminf ^ ^ ?R>W) < oo. Then, by (1.1) there is a

subsequence {vnj\ of {vn} such that vnj — > v in 26 for some v e % and

)—><* as i-^00. By Axiom (a), #0 = ^ e 36. Hence, from (Φj) it

follows that a > Φ(v0) = ^(^o)- Thus Ψ is lower semicontinuous on L2.
q.e.d.

Proof of (dj) -^ (α2): Let u e Do and v e Do, and set / = An and

g = Av. Define an operator P: U -+ U by Pw = w — u Λv — f Λ g and

let Ψ be the same function as in Lemma 4.1. Obviously, P is a demi-

continuous monotone operator from U into U and Ψ is a convex func-

tion on U with values in [0, 00] such that {(Pw,w — u) + Ψ(w)}/\\w\\2 -> 00

as ||w||2 —• °° By Lemma 4.1, Ψ is lower semicontinuous on ZΛ Further-

more, setting S = {w e U w > u Λ v}, we see that ίΐ is closed and convex

in L2, ^ e ^ and Ψ(u) = Φ(^) < 00. By virtue of the existence theorem

1) An operator P from $ into $* is called monotone, if for any u, v e g), <P% — Pv,
u-v)% > 0.

https://doi.org/10.1017/S0027763000016883 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000016883


POTENTIAL THEORETIC PROPERTIES 209

mentioned above, there is u0 e ® such that (Pu0, u0 — w) < Ψ(w) — ¥(u0)

for all w e ίΐ. Clearly, u0 e ® Π 36, so we have (P^o> ̂ o — w) < $(w) — $ ( O

for all w e S Π X. Since ^0 + t(w - ^0) e S Π 96 for any w e ίΐ Π 36 and

1 > t > 0, we see that

(P^o, u0 — w) < —{Φ(u0 + t(w — u0)) — Φ(u0)} .
V

As 11 0, we have

(4.1) (Ptto, ̂ o — ̂ ) < <ΓΦ(^o), w — <> for any w e ̂  Π 36.

By (αj), w 0 Λ w e S n i Hence, taking w = u0 An in (4.1)

(4.2) (Pw0, M O - W Λ W O ) < <f7Φ(^0), u ΛuQ- uoy .

Since f + Pu = u-uΛv+f-fΛg>0, it follows from (ΦCJ' that

<ΓΦ(^ Λ <), uQ — u AuQy = <VΦ(u — (u — uo)
+), (u — uQ)-} > <VΦ(u), (u —

uQ)-y = (/, u0 — u Λ u0) > (—Pu, u0 — u Λ O Hence, by (4.2), <VΦ(uQ) —

VΦiu A uQ), u0 — u ΛuQy < —(Pu0 — Pu, (u0 — u)+) < 0, so we have by (Φ3)

u0 = u0 A n, that is, ^0 < u. In a similar manner, we have u0 < v.

Therefore u0 < u Av, while u0 > u A v because uQ e ®. Consequently,

UQ — UAV and hence (4.1) yields (ΦL). q.e.d.

Proof of {(aλ), (6^} —* (62) Let ^ and v be any functions in Z)o, and

set / = An and g — Av. Define an operator P from U into L2 by

Pw = w — u A(v + k) — f A g and denote by ® the set of all w eL2

such that w > u A (v + k). Then, in the same manner as in the proof

of (αj -> (α2), we can find u0 e ® Π 36 such that u0 < u and

(4.3) (P^o, ô - w) < <f7Φ(^0), w - uoy for any w e ® Π 36 .

Moreover, w0 = ̂ 0 Λ (v + k) holds. In fact, by using (ΦCk)' we observe

that

A (v + k))9 uo-uoA(v + k)y

A v + Tk((u0 - v)+)), (u0 - vY - Tk((u0 - v)+)y

A v), (u0 - vY - Tk((u0 - vY)y

= (VΦ(v -(v- u0Y), (uo-v- kYy .

Now, putting z = (v — uQ)+ — (u0 — v — k)+, we see that w+ = (v — uo)
+

and w~ = (uQ — v — k)+, so by (ΦC^Y the right hand side of the above

inequalities is
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> <FΦ(v - (v - uo)
+ + w+), w~y = (g, uo-uoΛ(v + k)) .

From this and (4.3) it follows that

(VΦ(uQ) - FΦ(u0 A (v + k)), uo~uoΛ(v + fc)>

< ~(Pu0 + g, M0 - u0 A (v + k)) < 0 .

By (Φ3), u0 = u0 A(v + k). Hence we see that u0 = u A (v + k) and

obtain (ΦSLk) from (4.3). q.e.d.

Proof of (b2) -+ (63): Let u and v be any functions in Do and / be

a function in U such that An > /, Av > f and (Au — f,(u — v — k)+) = 0.

Then it follows from (ΦSLk) that

(VΦ{u A (v + k)), wy > (/, w) for any non-negative w e U Π 96 .

Hence

<yφ(u) — FΦ(u A (v + k)), u — u A (v + k)}

= <VΦ{u) - VΦ{u A (v + &)), (u - v - kyy

<{Au-f,{u-v-kY)

-0 .

From this and (Φ3) we obtain u = u A (v + fc), that is, u < v + k.

Proof of (a2) -> (α3): By taking 0 instead of k in the above proof,

we have the proof of (α2) —> (α3).

Proof of (&3) -»(64): Let λ be any positive number and / and g

be any functions in L2. Set u = Rλ(f + Tkg) and v — R2f. Then we

see by (iii) of Lemma 2.2 that Au > λ~ι{f — (u — Tkg) V v) and Av >

λ~ι{f — (u — Tkg) V v}. Moreover,

(An- f - ( u

Hence, we obtain from (ΦCMk) that u < v + k, i.e., Rλ{f + Tkg) < RJ + k.

q.e.d.

Proof of (a3) -»(α4): In the above proof, replace k by 0 and Tkg

by - # + . Then, by (ΦD) we have Rλ(f — g+) < RJ. Since this inequality

holds for any /, g e U, Rλ is order-preserving in L2.

Remark. The proofs of (α2) -> (α3) —> (α4) and of (ί>2) -> (δ3) -»(64)

given above are essentially due to Calvert [5; §2].
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In order to prove the assertions (α4) -> (α^ and {(α4), (64)} —> (ί^), we

prepare some lemmas. In the rest of this section, let k be a positive

number.

LEMMA 4.2. (i) // (α4) and (64) are satisfied, then Tkf e X for any

(ii) // (α4) is satisfied, then f+ e 36 for any feD0.

Proof. Assume (α4) and (64). Let feD0 and set g = Tkf. Then

{(/ - g) - RJJ - g)}(f -

where X1 = {x eX f(x) <0}, X2 = {xeX O < f(x) < k} and Xz = {xeX;
f(x) > k}. By (α4) and (&4) we have

so that ( / - # ) - Rλ(f - g)>f~Rχf on X, and < / - RJ on Xz.
Moreover, / - g = f < 0 on X19 f - g = 0 on X2 and 0 < / - ^ < / o n
Z 3 Hence we have Hλ{f - g) < λ~ι\\f - RJ\\2\\f\\2 < \\Af\\2\\f\\2 because

of (iii) of Lemma 2.2 and Lemma 2.3, so from Lemma 2.6 it follows

t h a t / — gedί, i.e., geX. Thus (i) is obtained, (ii) is similarly proved.

q.e.d.

LEMMA 4.3. (i) // (α4) and (b4) are satisfied, then

(4.4) <yΦ(u + Tkv) - FΦ(u), v - Tkv} > 0 for any ueX and v e DQ .

(ii) // (α4) is satisfied, then

(FΦ(u + v+) — FΦiu), v~y < 0 for any uedί and v eD0 .

Proof. Assume (a4) and (64). According to Axiom (&') and property

(Φ5), it is sufficient to show the inequality in case u e U Π 36 and 'V 6 Z>0

By Lemma 4.2 we see that Tkv e U Π 3£. Furthermore we have

- FΦ(Rλu),v -

- Rλ(u + Tkv) - (u - β,^), v - Tkv)

- β ^ + Γfcv),^ = Tkv) .
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Now, Tkv + Rλu — Rλ(u + Tkv) > 0 on Xx = {x e X v(x) > k} by (64) and
<0 on X2 = {x e X (̂a?) < 0} by (α4). Moreover, v — T7^ > 0 on X19 < 0 on
Z2 and = 0 on {xeX O < v(x) < k}9 so the right hand side of the above
equalities is non-negative. Hence, by Lemma 2.5,

y 2 » - VΦ{u), v -
= lim (VΦ(Rλ{u + 2 » ) - VΦ(Rλu)9 u - 2 »

no

> 0 .

The assertion (ii) is similarly proved. q.e.d.

LEMMA 4.4. (i) // (α4) and (δ4) are satisfied, then

(4.5) ΦO0 + Φ(u + v)> Φ(u + Tkv) + Φ(u + v - Tkv)
for any uedi and v e Do.

(ii) // (a4) is satisfied, then

Φiu) + Φ(u + v) > Φ(u + v+) + Φ(u — v~)

for any uedi and v eDQ.

Proof. We shall show (i). By using property (Φ7) and (i) of Lemma
4.3 we have

Φ(u + v) — Φ(u + Tkv)

= Γ <VΦ(u + Tkv + t(v - Tkv))> v — Tkv>dt
Jo

> Γ <VΦ(u + t(v - 2 » ) , v - Tkv>dt
Jo

= Φ(u + v — Tkv) — Φ(u)

for any u e 3£ and v e Do. Similarly from (Φ7) and (ii) of Lemma 4.3 we
obtain (ii). q.e.d.

Proof of {α4), (64)} -> (bj: Let v be any function in U Π 3£. Then
Rλv eJ)0, ^ > 0, because of (iii) of Lemma 2.2. Taking 0 and Rλv for u
and v in (4.5) respectively and using (i) of Lemma 2.2, we have

Φ(Tk(Rλv)) < Φ(Rλv) < Φ(v) ,

so by (1.1), {Tk(Rλv) λ > 0} is bounded in 36 and hence it is weakly re-
latively compact in 3£. Now, let {Tk(Rλnv)} be any sequence weakly con-
vergent in 36 such that λn j 0 as n —> oo, and denote by g the weak limit.
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Then, since Tk(Rλnv) > Tkv in U as n —• oo by (i) of Lemma 2.4, it
follows that g = Tkv. This shows that Tkv e 3£. Thus we have seen
that Tkv e 36 for any v e U Π 3£. Moreover, just as Lemma 4.3, we can
prove that

<VΦ(u + Tkv) - PΦ(u), v - Tkv} > 0 for any u e X and v e U Π 3£ .

From this, by the same calculation as in the proof of Lemma 4.4, we
deduce that

Φiu + Tkv) + Φ(u + v - Tkv) < Φ(u) + Φ(u + v)

for any u e 36 and v e U Π 36 .

Again by the limit process, we see from (4.6) that Tkv e X for any vedί,
i.e., (Ck) holds, and simultaneously that

Φ(u + Tkv) + Φ(u + v - Tkv) < Φiu) + Φ(u + v)

for any u,ve3i. Clearly, this inequality is equivalent to (ΦCk). q.e.d.

Proof of (α4) —> (α^: We can prove the assertion just as {(α4), (b4)}

§6. The nonlinear contraction semigroup generated by —A

In this section we discuss the nonlinear contraction semigroup on
L2 generated by —A. In view of the generation theorem for contrac-
tion semigroups due to Kδmura [12; Theorem 4], there is a unique
contraction semigroup S = {S(t) t > 0} on U whose infinitesimal generator
is —A. Here we mean by a contraction semigroup S = {S(t); t > 0} on
U a one-parameter family of operators S(t), t > 0, from U into U with
the following properties:

(sλ) S(t)S(s) = S(t + s) for t, s > 0.

(S3) II S(t)v - iS(t)w||2 < II v - w\\2 for t > 0 and v, w e IΛ

(s4) For each v e L2, t-> S(t)v is continuous on [0, 00).

The contraction semigroup S = {S(t); t>0} on L2 generated by —A
is in fact given by

S(t)v = limJB?/nι; for t > 0 and v e L 2
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(see Crandall-Liggett [6; Theorem I]).

THEOREM C. The following statements (ct) ~ (c3) and (aj ~ (α4) (in
Theorem A) are equivalent to each other:

(Cj) A is T-accretive (or —A is dispersive) (cf. [4], [13]), i.e.,

(An — Av, (u — vY) > 0 for any u,v eDQ .

(c2) For any t,s e [0, oo), s < t, and any u,v e U,

\\(S(t)u - s(t)vy\\2 < \\(S(s)u - S(s)vy\\2.

(c3) For any λ > 0 and any u,v e L2,

\\(Rλu-Rλvy\\2<\\(u-vy\\2.

Proof. From (αx) we see that
(cΊ) Condition (C^) is satisfied and VΦ is Γ-monotone (cf. [1]), i.e.,

for any u, v e 36,

<VΦ(u) - FΦ(v), (u - v)+> > 0 .

In fact, from (ΦC^Y and the monotonicity of VΦ we derive that

(VΦ(u) - FΦ(v), (u - ^)+>

= <VΦ(u) - VΦ(v), (v - u)-}

> (VΦ(u + (v — u)+) — FΦ(v), (v — u)~y

> (VΦ(u V v) — VΦ(v), u V v — v}

>o

for any u,v eX (cf. [5 Proposition 1.2]). The assertions (c£) -• (cx) and

(c3) —> (α4) are trivial, and (cx) -> (c2) and (c2) —> (c3) are known (cf. [13]).
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