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POTENTIAL THEORETIC PROPERTIES OF THE GRADIENT
OF A CONVEX FUNCTION ON A FUNCTIONAL SPACE

NOBUYUKI KENMOCHI AND YOSHIHIRO MIZUTA

Introduction

In the previous paper [11], introducing the notions of potentials and
of capacity associated with a convex function @ given on ‘a regular
functional space X(X; &), we discussed potential theoretic properties of
the gradient F® which were originally introduced and studied by Calvert
[5] for a class of nonlinear monotone operators in Sobolev spaces. For
example:

(i) The modulus contraction operates.

(il ) The principle of lower envelope holds.

(iii) The domination principle holds.

(iv) The contraction T, onto the real interval [0, k] (k> 0)
operates.

(v ) The strong principle of lower envelope holds.

(vi) The complete maximum principle holds.

In this paper we shall investigate relations among the properties
mentioned above. For this purpose, we shall consider an operator A
from a subset of L*(X; &) N %(X; &) into LA(X ;&) associated with @ and
its resolvent R, = (I 4+ 14)™, 1> 0.

One aim is to show (in Theorem A) that each of properties (i) ~ (iii)
is equivalent to:

(vii) for any 2>0, R, is order-preserving in L*(X;£&). Another
aim is to show (in Theorem B) that if (i) is satisfied, then each of pro-
perties (iv) ~ (vi) holds if and only if

(viii) R(f + T»9) < R,f + kholds for any 2> 0 and any f,g € L*(X; ).

These assertions are nonlinear analogues of results in the Dirichlet
space (cf. Deny [7; Théorémes 1 et 2] and 1t6 [8; Theorems 3 and 5]).
The crucial step in the proofs is to deduce both (i) and (iv) from (vii)
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and (viii). The key tool is the fact that if fe L¥X ;&) and if

{L NS — Rf)fde; 2> 0}

is bounded, then feX(X;¢). This fact is a nonlinear extension of a
result in [7]. At the end of this paper we shall consider the nonlinear
contraction semigroup S = {S(?); t > 0} on L¥X ; &) generated by — A and
show (in Theorem C) that each of properties (i) ~ (iii) and (vii) is
necessary and sufficient for S to be order-preserving in L*(X; &).

§1. Preliminaries

Let X be a locally compact Hausdorff space with a countable base
and & be a positive (Radon) measure on X. Let X = X(X; &) be a real
reflexive Banach space whose elements are real-valued locally &-summable
functions defined £-a.e. on X. We denote by X* the dual space of %,
by ||u| (resp. [|[u*|)) the norm of ue X (resp. u* ¢ ¥*) and by <{u*,u) the

value of u*cX* at ue¥. By « 2om (resp. “—w—>”) we mean the strong
(resp. weak) convergence. For functions u,v € L} (X ; &), we write u Vv,
u A v, ut and u~ for max (u,?v), min (%, v), max (#,0) and —min (%, 0),
respectively, and for a &-measurable set S in X we write simply “u > v
(resp. u = v) on S§” for “u > v (resp. u = v) &-a.e. on S”. Especially we
write “u > v (resp. 4 = v)” for “u > v (resp. 4 = v) on X”.

Throughout this paper, let 1 <p < oo and @ be a strictly convex
function on X such that

o0) =0,
(1) {di(u) > Cllul?, for any ue ¥,

where C is a positive constant. Suppose that @ is bounded on each
bounded subset of ¥ and is everywhere differentiable in the sense of
Gateaux, that is, there is an operator G: X% — ¥* such that for any u,
vVeX,

(Gu, vy = lim 2@+ 1) — 0@)
t10 t
This operator G is called the gradient of @ and denoted by F'd. We
shall use the following properties of @ and F® without proof:
(@) @ is weakly sequentially lower semicontinuous in X.
(@,) Let ueX and u*e ¥*. Then u* = F@(u) if and only if
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u*, v — uy < O(w) — d(u) for any veX .
(@,) V@ is strictly monotone, i.e.,
Fou) — Vo), u — vy >0 for any u,veX,u #v.
(@) F® is bounded, i.e., it maps bounded sets in X to bounded
sets in X*.
(9;) Vo is demicontinuous, i.e., if un—s+u in X as n — oo, then

rFo(u,) N Fo(w) in X* as n — oo.
(@) For each ueX, Fow),v — uy/||v|| — o as ||v|| = co.
(@) For any u,veZ,

D) — O(v) = j: (FPOW + tu — ), u — v>dt .

Remark. V® is one to one and onto. For a proof, see Browder [2;
Theorem 3].

LEMMA 1.1. Let {u,} be a sequence in X which converges weakly
to w in %. If limsup,.. PO), un — 4> < 0, then VO(u,) —s VO) in
x* and O(u,) — O(u) as n — oo.

Proof. From (@,) and our assumption it follows that

0 > limsup <FoO(u,), u, — uy > limsup d(u,) — O(u) .

On account of (9,) we obtain

1.2) lim &(u,) = o(u) .

n—co

Next, by (@), liminf,..<Fo(u,),n, —uy > lim,.., FO(w),u, — u) = 0.
Hence

1.3) lim <Fo(u,), u, — uy =0 .

n—rc0

The sequence {F®(u,)} is weakly relatively compact in X*, since it is
bounded in X* on account of (&,). Now, let {u,} be any subsequence of

{u,} such that VFé(u,) s u* in X* as j— oo for some u*ec X*. Then,
using (@,), (1.2) and (1.8), we see that for any ve ¥
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u*, v — uy = Im FO(Uy), v — Uy,
Jooo
< lim {&() — O(u, )}
J—oo

= 0() — O(w) ,
which implies that «* = F@(x), and simultaneously that Fd(u,) —> Vd(x)
in X* as n — oo. q.e.d,

DEFINITION 1.1. (cf. [7], [8]) X = X(X;¢&) is called a functional
space if the following axiom is satisfied:

AXIOM (a) For each compact subset K of X, there is a constant
M(K) > 0 such that
j lu|de < M(K)||u|  for all ueX .
K

Henceforth let X be a functional space satisfying the following axiom :
AxioMm (b)) L?*N X is dense both in L? and in X, where L?* = L X ; &).

We consider an operator A from a subset of L? into L? associated
with F@ which is defined as follows: If v is a funection in IL2N X and
f is a function in L? such that

1.4) I, w = j wfde  for any we !N %,

then we put Av = f. By Axiom (b’), such an f is uniquely determined
by ». Thus we can define an operator A: D, — L? where D, = {ve L* N X;
there is a function fe L? such that (1.4) holds}. By (9,), A is strictly
monotone, i.e.,

1.5) (Au — Av,u —v) >0 for any u,veDy,u+ v,

where (., .) denotes the inner product in L? i.e., (v, w) =I vwdé for
p.q
any v,w e L2
§2. The resolvent of A
In order to show that the resolvent of A exists, we prove

LEMMA 2.1. Given 1>0 and fel? we find o unique function
ue L?NX such that
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2.1 220(w) + ||lu — Sl = inf {220(v) + ||v — flE;ve L’ N X},
where by ||v|, we mean the norm of v in L.

Proof. Set F(v) =210(w) + ||lv — fliforve L*N X and « = inf {F(v);
veL*N¥%X}. Then, clearly, 0 < a« < co. We find a sequence {v,} CL*NX
such that F(v,) | « as n — co. Since {v,} is bounded in X by (1.1) as
well as L?, it is weakly relatively compact both in X¥ and in L? and
hence, by Axiom (a), there exists a subsequence {v,} of {v,} such that

Vy ji> % both in X and in L? for some ue L*NX%X. Noting (@, and the
weak lower semicontinuity of the functional: v — ||v — f|} relative to
the topology of L?, we have

O(u) < liminf &(v,,)

jooo

and

lw — flz < li?ninf V0, = SIE »

so that F(u) <lim,.. F(v,) =« This implies that F(u) =«. The
uniqueness of such a u follows from the strict convexity of @. q.e.d.

For any 2> 0, we denote by R, the operator from L? into L? which
assigns the function u satisfying (2.1) to each fe L

LEMMA 2.2. Let 2 be any positive number. Then:

(i) O(R,f) < O(f) for any fe L’ NX.

(i) FOR,f),v> = — R,f,v)/A for any feL* and ve L*N X.

(iii) R,feD, and AR,f = (f — R,f)/2 for any fe L

(iv) R + 24) (the range of I + 1A) = L7 and R, = (I + 24)7.

(v) B — Rl <|If — 9gl. for any f,geL? especially |R,fll, <
| fll. for any fe L

Proof. () is clear. For any fel? veL’*N¥% and ¢t >0, setting
u = R,f, we observe that

220(u + tv) + |lu + tv — fli = 220(w) + |lu — Sl ,
that is

1 11 s AR
—t—{Q(u + tv) — @(’LL)} > E;T{HH — Sl lu + tv JIE} -

Letting £ | 0 in this inequality, we obtain
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PO, vy > %(f — ).

Hence we have (ii) and at the same time (iii). Besides, we see that
f=R,f + 1AR,f = (I + 1A)R,f for any felL?.

From this we infer (iv), since (I + 14) is one to one by (1.5). Finally
we shall show (v). Let f and g be any functions in L?, and set u = R,f
and v = R,9g. Then, as was seen above, f = u + 1Au and g = v + 14w.
From (1.5) it follows that

If=9llle—2, > —g,u—v)
=W + 1Au — v — 2Av,u — v)
= |lu — v} + (Au — Av,u — v)
> lu— o3,

so we have (v). q.e.d.
The fact (iv) of Lemma 2.2 says that R, is the (nonlinear) resolvent
(at 2) of A for each 2> 0.

LEMMA 2.3 (c¢f. [9; Lemma 4.31). If veD, then |ARw|, < ||Av|.
for any 2> 0.

Proof. Wehavev = R(I + 1A)v = R,(v + 14Av), since B, = (I + 14)!
by (iv) of Lemma 2.2. From (iii) and (v) of Lemma 2.2 it follows that

lARw], = -:ILT“'U — Rpll, = —]-Z—HRA(W + 24Av) — Rpl, < |Av]|, . q.e.d.

LEMMA 2.4. (1) For any feL®, R.f —» f in L? as 1 0.
) For any feL*NZX, Rif—z]»fin X as 2)0.

Proof. First, let f be any function in L*NX. We observe from
(1.1) and (@), (v) of Lemma 2.2 that

CIRfIP <O, ) <O(f) for any 2> 0
and
2.2) RSl < fl.  for any 2>0.

Therefore {R,f;2> 0} is bounded in X as well as in L?. From (ii) of
Lemma 2.2 and (@§,) we derive that for each veL?’N X
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(f = R,f,v) = 2FVOR,[),v>—0 as 1]}0.
This fact and the boundedness of {R,f; >0} in L? imply that

2.3 Rf-2>f inL*as2al|0

and liminf, | R,f|, > || fl.- On the other hand, we have by (2.2)
limsup,,, | R:f|l. < || fl.. Hence, lim, o [|E.f |, = [ fll.. This together with
(2.3) implies that

2.4) Rf-Ssf inL as2l0.

Now, let {2;} be any sequence tending to 0 such that {R,f} is weakly
convergent in X. Then, denoting the weak limit by g, we see from

(2.4) and Axiom (a) that g = f. This shows that R, f—g f in X as
210. Finally we can obtain (1) by using Axiom (b’) and (v) of Lemma

2.2 and noting the fact that sz—s>f in L? as 20 for feL*NX.
q.e.d.

Remark. By the above lemma, D, is dense in L’ Also, we can
prove that D, is weakly sequentially dense in X%.

LEMMA 2.5. If feL’N%, then FVOR,f) —>Vd(f) in %* and
O(R.f) — B(f) as 2} 0.

Proof. Let feL*NX. Then we see from (ii) of Lemma 2.2 that
limsup <FO(R,f), Rof — f> = limsup — %n F—RJIE<O.
210 aL0

Applying Lemma 1.1, we obtain the lemma. q.e.d.
Following Deny (cf. [7; Théoréme 2]), we define

H() = —}(f — RSP, fel’.
We note that the following relations hold:
2.5) H(f) > %(f — R,f,R,f) =<VOR,[), R,f)> > O(R.f) .

LEMMA 2.6. If feL* and if {H,(f); 2> 0} is bounded, then fecX.
Proof. Let feL* and assume that {H,(f); 2> 0} is bounded. Then
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we see from (2.5) and (1.1) that {R,f; 1> 0} is bounded in X¥. Hence

there is a sequence {1;} tending to 0 such that R, f N ¢ in X for some
ge¥%. By (1) of Lemma 2.4 and Axiom (a), we have g = f, so that
feZX. q.e.d.

§ 3. Potential theoretic properties and their equivalence

In this section, we state potential theoretic properties of @, A and
R, and our main results about their equivalence.

DEFINITION 3.1 (cf. [56], [11]). Let k be a positive number or oo.
We say that the contraction T, operates in X with respect to @ if the
following two conditions are satisfied:

Cy) Tw=v"NkeX for all ve X, where T, v = v* if k = oo.
(@C,) For any u,veX,
Ou + Th(v — w) + O(v — Tp(v — w) < O(w) + D(v) .

In particular, we say that the modulus contraction operates in X with
respect to @, when T, operates in X with respect to @.

Remark. It was shown in [11; Proposition 2.1] that under (C,),
condition (@C,) is equivalent to the following:

@C,) <Fou + Tyw) —VO(w),v — Tyv) >0 for any u,v e X.

In particular, (#C.) is of the form:
Fow + v*) —VFo(w),v><L0 for any u,veX .

DEFINITION 3.2 (cf. [5], [11]). We say that the principle of lower
envelope with respect to @ holds if (C.) and the following are satisfied:

(®L) If u and v are functions in D,, then

Fo(u N\ v),w> > (Au N\ Av, w)

for any non-negative function we L*N X.

DEFINITION 3.3 (cf. [5], [11]). We say that the domination principle
with respect to @ holds, if the following is satisfied:

(@®D) If w and v are functions in D, and if there is fe L? such
that Au > f, Av > f and (Au — f, (u — v)*) = 0, then u < v.

DEFINITION 3.4 (cf. [5], [11]). We say that R,, 2>0, is order-
preserving in L?, if the following holds:
(@0) R,f < R,9 for any f,ge L? such that f < g.
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Now, we are in a position to state one of main theorems.

THEOREM A. The following statements are equivalent to each other:
(a;)) The modulus contraction operates in X with respect to @.

(a,) The principle of lower envelope with respect to @ holds.

(a;) The domination principle with respect to @ holds.

(a,) For any 2> 0, the resolvent R, is order-preserving in L2

Next, to state another main theorem we give some definitions.
Throughout the remainder of this section, let & be a positive number.

DEFINITION 3.5 (cf. [5], [11]). We say that the strong principle of
lower envelope with respect to @ and k holds, if the following two con-
ditions are satisfied:

Co)* uN@W+hkekX for any u,veX.
(@SL,) If u and v are functions in D,, then
Fou N (w + k), w) > (Au N\ Av, w)

for any non-negative function we L*N %.
It should be noticed that under (C.), conditions (C,)* and (C,) are
equivalent.

DEFINITION 3.6 (cf. [5], [11]). We say that the complete maximum
principle with respect to @ and %k holds, if the following is satisfied:
(@CM;) If u and v are functions in D, and if there is fe L* such
that Au > f, Av>fand (Au — f,(u —v — k)*) =0, then u < v + k.
The second main theorem is stated as follows:

THEOREM B. Assume that the modulus contraction operates in X%
with respect to @. Then the following statements are equivalent to each
other:

(b)) The contraction T, operates in X with respect to @.

(b)) The strong principle of lower envelope with respect to @ and
k holds.

(b,) The complete maximum principle with respect to @ and k holds.

(b) For any 2> 0 and any f,ge L?

R(f+Tw) <RSf+Ek.

§4. Proofs of Theorems A and B

Before proving the theorems, we recall an existence theorem for

https://doi.org/10.1017/50027763000016883 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016883

208 NOBUYUKI KENMOCHI AND YOSHIHIRO MIZUTA

nonlinear variational inequalities. Let § be a real reflexive Banach space
and P be a (nonlinear) semicontinuous monotone” operator from 9 into
9* (the dual space of §). Let ¥ be a lower semicontinuous convex func-
tion on § with values in (—co, co].

THEOREM (cf. [3; Theorem 3], [10; Theorem 4.1]). Let & be a non-
empty closed convex subset of § and assume that for some we & with
T(w) < oo,

P, v — wHy + T (W) .
12l

oo as |v|ly— o0, vER,

where we denote by (-, >y the natural pairing between P* and 9 and
by ||+ |ly the norm in 9. Then, there is ue R such that

{Puy,u — vy < U(w) — ¥(w) for all ve & .
Moreover, if P is strictly monotone, then such a u is unique.
LEMMA 4.1. The function ¥ on L* defined by

o(v) , if vel*NZ%,
, otherwise,

T(v) = {

(ee]
18 lower semicontinuous on L2

Proof. Let {v,} be a sequence in L’ which converges to v, in L?
and assume that « = liminf,..?(®,) < . Then, by (1.1) there is a

subsequence {v,} of {v,} such that fvnj—w—m; in ¥ for some veX and
9(v,) »a as j— co. By Axiom (a), v, =veX. Hence, from (@) it
follows that « > @(v)) = ¥(v,). Thus ¥ is lower semicontinuous on L*

q.e.d.

Proof of (&) »(a): Let ueD, and veD, and set f= Au and
9 = Av. Define an operator P: L) - L* by Pw =w —uAv — fA g and
let ¥ be the same function as in Lemma 4.1. Obviously, P is a demi-
continuous monotone operator from L? into L? and ¥ is a convex funec-
tion on L* with values in [0, o] such that {(Pw,w — «) + T(w)}/|w|, — oo
as ||w|, —» co. By Lemma 4.1, ¥ is lower semicontinuous on L?. Further-
more, setting ® = {we L*; w > u A v}, we see that & is closed and convex
in L?, ue&® and ¥(u) = ®(u) < co. By virtue of the existence theorem

1) An operator P from 9 into 9* is called monotone, if for any u,v e, (Pu — P,
u—vyy > 0.
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mentioned above, there is u,e¢ & such that (Puy, u, — w) < T(w) — T(u,)
for all we ®. Clearly, u,¢ & N X, so we have (Pu,, u, — w) < O(w) — O(u,)
for all we®NZX. Since u, + t(w —u)eRNX for any we K NX and
1>t>0, we see that

(P, 1y — W) < %{@(uo T tw — ) — Oy} -

As t | 0, we have

“4.1) (Pug, ug — w) < FO(uy), w — Uy for any we RN X.
By (@), uy, NueR® NX. Hence, taking w = u, A # in (4.1)
4.2) (Pugy tty — u N\ ) < FO(ug), u N\ Uy — Uy -

Since f+Pu=u—uAv+f—fANg=>0, it follows from (@C,)" that
FDu N\ ups uy — u N\ Uy = FVO(u — (U — u)*), (u — u)™> > Fo(w), (u —
)™ = (fyuty — u N\ %) > (—Pu,u, — u \ u,). Hence, by (4.2), <F®(u,) —
PO N up), g — u N\ Uy < —(Puy — Pu, (4, — u)*) < 0, so we have by (9,
Uy = Uy A\ %, that is, #,<u. In a similar manner, we have u, < v.
Therefore u, < u A v, while 4, >u A v because u,e¢ &  Consequently,
u, = 4 A v and hence (4.1) yields (PL). q.e.d.

Proof of {(a),(d)} — (b): Let u and v be any functions in D,, and
set f=Au and g = Av. Define an operator P from L’ into L* by
Pwo=w—uAN®+k —fAg and denote by & the set of all wel?
such that w >u A (v 4+ k). Then, in the same manner as in the proof
of (a,) — (1), we can find #,€¢ & N X such that «, < u and

4.3) (Puy, uy — w) < FO(y), w — Uy for any we&NX.
Moreover, #, = u, A (v + k) holds. In fact, by using (@C,) we observe
that

PDug N\ (@ + B),uy — ug A (0 + k)
= FO(uy N v + Ti((uy — 0)%), (U — V)" — Ti((ty — 0)))
> FO(uy N\ v), (uy — v)* — Ti((uy — v)*))
=T — (v — u)?), (uy — v — k)*> .
Now, putting z = (v — u)* — (4, — v — k)*, we see that w* = (v — uy)*
and w™ = (4, — v — k)*, so by (@C.) the right hand side of the above
inequalities is
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>Fow — (W —u)t + w), w D =(9,u —u N\ @+ k).
From this and (4.3) it follows that

FO(ug) —VO(uy \ (v + k), uy — ug A (v + k)>
< —Puy+ gyuy—uy N (v + k) <0.

By @), uy,=u, \N (v + k). Hence we see that u,=u A (v + k) and
obtain (#SL,) from (4.3). q.e.d.

Proof of (b,) — (by): Let u and v be any functions in D, and f be
a function in L? such that Au > f, Av > fand (Au — f,(u — v — k)*) = 0.
Then it follows from (&®SL,) that

FOou N\ @+ k), w> > (f,w) for any non-negative we L*NX .
Hence
Fo(uw) —VFo(u N (w + B)),u —uN @+ k)
=FO(u) —Vo(u N @ + k),(u —v — k)*>
<(Au—f,(u —v —k)?)
=0.
From this and (@,) we obtain v = u A (v + k), that is, u < v + k.

Proof of (a,) — (a): By taking 0 instead of k£ in the above proof,
we have the proof of (a,) — (a,).

Proof of (b;) — (b,): Let A be any positive number and f and g
be any functions in L2 Set u = R (f + T,9) and v = R,f. Then we
see by (iii) of Lemma 2.2 that Au > 2"{f — (u — T,9) V v} and Av >
AYf — (u— Tyg) V v}. Moreover,

(Au— f_(u~2T"g)vv,(u—v-—k)+)=0.

Hence, we obtain from (0CM;) thatu < v + k,i.e., R (f + Tr9) < R,f + k.
q.e.d.

Proof of (a;) — (a): In the above proof, replace ¥ by 0 and T.g
by —g*. Then, by (#D) we have R,(f — g*) < R,f. Since this inequality
holds for any f,g¢ L? R, is order-preserving in L2

Remark. The proofs of (a,) — (a;) — (a,) and of (b,) — (b)) — (b))
given above are essentially due to Calvert [5; §2I.
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In order to prove the assertions (a) — (a) and {(a), (b)} — (b)), we
prepare some lemmas. In the rest of this section, let £ be a positive
number.

LEMMA 4.2. () If () and (b,) are satisfied, then T.f e X for any
feD,.
(i) If (a,) is satisfied, then f*eX for any fe D,.

Proof. Assume (a,) and (b). Let feD, and set ¢ = T, f. Then

H -9 =2 -0 —R( —9nf—9)

o

5 (-9 - RO~ - 0z,
where X, = {eX; f(®) <0}, X, ={xecX;0< f(x) < k} and X; = {xe X;
f(@) > k}. By (a,) and (b,) we have

ER(f—9<Rf<R(f—9+F,

so that (f —9) —R(f—g9)>f—R,f on X, and <f— R,f on X,
Moreover, f—g=f<0on X, f—g=0o0on X, and 0<f—9g<f on
X;. Hence we have H,(f — 9) < 27| f — Euf Il < |ASILIIS]l. because
of (iii) of Lemma 2.2 and Lemma 2.3, so from Lemma 2.6 it follows
that f — geX, ie.,, geX. Thus (i) is obtained. (ii) is similarly proved.

q.e.d.

LEMMA 4.3. (i) If (a) and (b) are satisfied, then
4.4) Fou + Tw) —Vow),v — Tyw) >0 for any ue¥X and velD,.
(i) If (a,) is satisfied, then
Fou + v*) —Vo(w),v > <0 for any ue X and veD,.

Proof. Assume (a,) and (b,). According to Axiom (»’) and property
(®,), it is sufficient to show the inequality in case ue L*NX and ve D,.
By Lemma 4.2 we see that Txve L*N X. Furthermore we have

FORu + Tyv) — FORw),v — Tyv)
- ‘11‘((” + Tw0) — Ryw + Tiv) — @ — Ra), v — Ty)

= _}(Tkv + R — R + Ty),v = Tyw) .
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Now, T'wv + Ru — R(u + Tyv) > 0 on X, = {xc X; v(x) > k} by (b) and
<0on X, = {x e X; v(x) < 0} by (a,). Moreover,v — T,v >0o0n X,, <0 on
X, and =0 on {xeX;0<w() <k}, so the right hand side of the above
equalities is non-negative. Hence, by Lemma 2.5,

Fowu + Tyw) — FOow),v — Tyv)
= lim FOR(u + Tyw) — VO(Ruw),u — T,v)
210

>0.
The assertion (ii) is similarly proved. g.e.d.
LEMMA 4.4. () If (a) and (b) are satisfied, then
4.5) o) +O0(u+v)>0u+Tw + 0w +v—T,w)

for any ue X and veD,.
(i) If (a,) is satisfied, then

O(u) + O(u + v) > O(u + v*) + O(u — v7)
for any ueX and v e D,.

Proof. We shall show (i). By using property (@,) and (i) of Lemma
4.3 we have

O(u + v) — O(u 4 Tyo)
- f : PO + Tew + tw — T0)), v — Tewddt

> ﬁ FO@ + tw — Tyv)), v — Tywddt

for any ueX and ve D, Similarly from (&#,) and (ii) of Lemma 4.3 we
obtain (ii). q.e.d.

Proof of {a,), (b))} — (b): Let v be any function in L*NX. Then
RweD, 2> 0, because of (iii) of Lemma 2.2. Taking 0 and R,» for u
and v in (4.5) respectively and using (i) of Lemma 2.2, we have

O(Ty(Rw) < O(Rw) < O(v)

so by (1.1), {Tx(Bw); 2> 0} is bounded in X and hence it is weakly re-
latively compact in X. Now, let {T\(R, v)} be any sequence weakly con-
vergent in ¥ such that 1, | 0 as n — co, and denote by ¢g the weak limit.
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Then, since T(R,v) —> Ty in I* as n— oo by (i) of Lemma 2.4, it
follows that g = T,v. This shows that T,veX. Thus we have seen
that T,veX for any ve L?’N%. Moreover, just as Lemma 4.3, we can
prove that

Fou + Tywv) — FO(w),v — Tpvy >0 for any ueX and ve ’NX.

From this, by the same calculation as in the proof of Lemma 4.4, we
deduce that

Ou + Tyv) + O(u + v — Tv) < O(w) + (v + v)

(4.6)
for any ueX and vel*NX.

Again by the limit process, we see from (4.6) that T,v ¢ X for any ve X,
i.e., (Cp) holds, and simultaneously that

O(u + Tyv) + O(u + v — Tyv) < Ow) + O(u + v)
for any u,veX. Clearly, this inequality is equivalent to (@C,). a.e.d.

Proof of (a,) — (¢,): We can prove the assertion just as {(a), (D)}
nd (bl)'

§ 6. The nonlinear confraction semigroup generated by — A4

In this section we discuss the nonlinear contraction semigroup on
L? generated by —A. In view of the generation theorem for contrac-
tion semigroups due to Komura [12; Theorem 4], there is a unique
contraction semigroup S = {S(¢); ¢ > 0} on L? whose infinitesimal generator
is —A. Here we mean by a contraction semigroup S = {S(¥); ¢ > 0} on
L? a one-parameter family of operators S(¢), ¢ > 0, from L? into L? with
the following properties:

8D SW®S(s) = St + s) for ¢t,s > 0.

(s SWO) =1

sy IS@v — SHwl, < |lv — wll, for t > 0 and v, we L
(s) For each vecL? t— S(t)v is continuous on [0, co).

The contraction semigroup S = {S(¢¥);t > 0} on L? generated by —A
is in fact given by

S@wv = lim R},v for t > 0 and v e L?

n-r00
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(see Crandall-Liggett [6; Theorem IJ).

THEOREM C. The following statements (c) ~ (¢) and (o) ~ (@) (in
Theorem A) are equivalent to each other:
(¢) A is T-accretive (or —A 1is dispersive) (c¢f. [4], [13]), i.e.,

Au — Av,(u —v)*) >0 for any u,veD,.
(c,) For any t,se[0,0), s<t, and any u,v € L?,

[(S@®u — S@v)*[, < [[(S(s)u — S(v)* [,

(¢;) For any 2> 0 and any u,v e L,
”(R,{M — R, < |[(w — ), .

Proof. From (a,) we see that
(¢)) Condition (C.) is satisfied and V@ is T-monotone (cf. [1]), i.e.,
for any u,veX,

Fo(w) —VFo®@),(u —v)*>>0.
In fact, from (@C.) and the monotonicity of F® we derive that

Fowu) — Vo), (u — v)*>
= PO(u) — Vo), (v — uw)~>
>Fou+ (v —w*) — Vo), (v — w™)
>TFo(uvVv) —Vro@w,uV v — vy
>0

for any u,veX (cf. [5; Proposition 1.2]). The assertions (c}) — (¢;) and
(¢;) — (a,) are trivial, and (¢) — (¢,) and (¢,) — (¢;) are known (cf. [13]).

REFERENCES

[ 1] H. Brezis and G. Stampacchia, Sur la régularité de la solution d’inéquations ellip-
tiques, Bull. Soc. Math. France 96 (1968), 153-180.

[2] F. k. browder, On a theorem of Beurling and Livingston, Canad. J. Math. 17
(1965), 367-372.

[3] F. E. Browder, Nonlinear variational inequalities and maximal monotone map-
pings in Banach spaces, Math. Ann. 183 (1969), 213-231.

[ 4] B. Calvert, Nonlinear equations of evolution, Pacific J. Math. 39 (1971), 293-350.

[ 5] B. Calvert, Potential theoretic properties for nonlinear monotone operators, Boll.
Un. Mat. Ital. 5 (1972), 473-489.

[61 M. G. Crandall and T. M. Liggett, Generation of semigroups of nonlinear trans-
formations on general Banach spaces, Amer. J. Math. 93 (1971), 265-298.

https://doi.org/10.1017/50027763000016883 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016883

POTENTIAL THEORETIC PROPERTIES 215

[ 71 J. Deny, Sur les espaces de Dirichlet, Sém. théorie du potentiel, Paris, 1957.

[ 8] M. It3, A note on extended regular functional spaces, Proc. Japan Acad. 43 (1967),
435-440.

[9] T. Kato, Accretive operators and nonlinear evolution equations in Banach spaces,
Proc. Symp. Pure Math., A. M. S. 18, Part 1 (1970), 138-161.

[10] N. Kenmochi, Nonlinear operators of monotone type in reflexive Banach spaces
and nonlinear perturbations, Hiroshima Math. J. 4 (1974), 229%263.

[11] N. Kenmochi and Y. Mizuta, The gradient of a convex function on a regular funec-
tional space and its potential theoretic properties, Hiroshima Math. J. 4 (1974),
748-763.

[12] Y. Komura, Nonlinear semigroups in Hilbert space, J. Math. Soc. Japan 19 (1967),
493-507.

[18] Y. Konishi, Nonlinear semigroups in Banach lattices, Proc. Japan Acad. 47 (1971),
24-28.

N. KENMOCHI
Department of Mathematics
Faculty of Education

Chiba University

Chiba, Japan

Y. MIZUTA

Department of Mathematics
Faculty of Science
Hiroshima University
Hiroshima, Japan

https://doi.org/10.1017/50027763000016883 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016883



