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Abstract. In 1997, M. Cho, M. Ito and S. Oshiro showed that Weyl’s theorem
holds for p-hyponormal operators, for any p > 0. In this note we give another proof
of this result. Also, it is shown that Weyl’s theorem holds for M-hyponormal
operators. Further, in 1962, Stampfli showed that if T is hyponormal and its Weyl
spectrum is {0} then T is compact and normal. We show that this result remains true
if the hypothesis of hyponormality is replaced by either (a) p-hyponormality or (b)
M-hyponormality.
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1. Introduction. We denote the set of all bounded linear operators on a
Hilbert space H by B(H). For a T 2 B Hð Þ and for some p > 0, if (T*T )p �(TT*)p,
then T is said to be p-hyponormal. T 2 B Hð Þ is called M-hyponormal if there exists a
positive constantM for each z 2 C such that (T�zI) (T�zI)*�M2(T�zI)*(T�zI). If
p=1, then T is called simply hyponormal and it is equivalent to the case where
M=1.

T 2 B Hð Þ is called a Fredholm operator if TH is closed and both
KerT ¼ x 2 H : Tx ¼ 0f g and KerT* are finite-dimensional. To any Fredholm
operator T there corresponds an integer i(T)=dimKerT�dimKerT*, called the index
of T. Let F 0 denotes the class of all Fredholm operators in B(H) of index 0. Then
w Tð Þ ¼ � 2 C : T� �I 62 F 0

� �
is called theWeyl spectrum of T. It is known that, for

a T 2 B Hð Þ, w(T) is non-empty and w Tð Þ ¼ \
K2C Hð Þ

� Tþ Kð Þ, where �(T) and C(H)

denote the spectrum of T and the set of all compact operators in B(H) respectively.
For a T 2 B Hð Þ, let �p(T) and �00(T) denote the point spectrum and the set of

all isolated eigenvalues of finite multiplicity of T respectively. According to Coburn
[3], we say that Weyl’s theorem holds for T if � Tð Þnw Tð Þ ¼ �00 Tð Þ. He showed that
Weyl’s theorem holds for hyponormal operators and this result was generalized to p-
hyponormal operators by Cho-Ito-Oshiro [4]. Also, by Stampfli [8], it is known that
if T is hyponormal and if w(T)={0}, then T is compact and normal. In this paper,
we shall give another proof of the result of Cho-Ito-Oshiro and prove that Weyl’s
theorem holds for M-hyponormal operators and that Stampfli’s result above is also
applicable to p-hyponormal or M-hyponormal operators.
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2. Preliminaries. According to Berberian [2], we say that T is isoloid if every
isolated point of �(T) is in the point spectrum or T. Also if every restriction T jM to
its reducing subspaceM is isoloid, then we say that T satisfies the condition (�000).

The following result was given by Berberian [2].

Theorem A. If T 2 B Hð Þ satisfies the condition �000ð Þ and if every finite-dimen-
sional eigenspace of T reduces T, then Weyl’s theorem holds for T.

Definition 1. If Txk k2� T2x
�� �� xk k, for all x 2 H, then we say that T is para-

normal.

The following results are well known.

Proposition 1. If T is paranormal, then Tk k ¼ sup �j j ; � 2 � Tð Þ
� �

.

Proposition 2. (Heinz’s, inequality [6]) If A � B � 0, then A� � B�, for all
� 2 0; 1ð �.

Proposition 3. (Hansen’s inequality [5]) If A � 0 and Bk k � 1 then (B*AB)d �
B* Ad B, for all � 2 0; 1ð �.

Proposition 4. (Hölder-McCarthy inequality [7]) If A � 0, then for each x 2 H
we have

Arx; xh i
� Ax; xh ir xk k2 1�rð Þ 0 < r � 1ð Þ;
� Ax; xh ir xk k2 1�rð Þ r � 1ð Þ:

�

Proposition 5. [12] Let T be p-hyponormal with its polar decompositon T ¼ U Tj j.
Then, for any s and t such that s � 0 and t � 0,

Tj jsU Uj jt is
1-hyponormal max s; tð Þ � pð Þ;
pþmin s;tð Þ

sþt -hyponormal max s; tð Þ > pð Þ:

�

Proposition 6. ([11]) The restriction T jM of an M-hyponormal operator T to its
invariant subspaceM is also M-hyponormal.

Definition 2. For a T 2 B Hð Þ, we say that T belongs to the class Y� for some
� � 1 if there is a positive number K� such that T�T� TT�j j�� K2� T� zIð Þ

�

T� zIð Þ, for all z 2 C. Also, let Y ¼
S
��1

Y�.

The following results are known.

Proposition 7. [10] If T is M-hyponormal, then T 2 Y2 � Y.

Proposition 8. [10] If T 2 Y, then Tx ¼ �x implies T�x ¼ ���x.

Proposition 9. [10] If T 2 Y and if � Tð Þ ¼ 0f g, then T ¼ 0.
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Corollary 1. If T is M-hyponormal and � Tð Þ ¼ �f g, then T ¼ �I.

Proof. Let T be aM-hyponormal operator such that �(T)={�}, then T��I is also
M-hyponormal and �(T��I)={0}. Therefore T��I=0 by Propositions 7 and 9.

3. Main theorems.

Lemma 1. If T is invertible and p-hyponormal, then T�1 is also p-hyponormal.

Proof. Since T is an invertible p-hyponormal operator, we have Tj j2p� T�j j2p

and Tj j�2p� T�j j�2p. It is easy to verify the equalities T�1
�

�� ��2p¼ Tj j�2p and
T�j j�2p¼ T�1

�� ��2p, and the assertion of Lemma 1 holds.
Remark. It is well known that the inverse operator T�1 of an invertible para-

normal operator T is also paranormal.

Lemma 2. If T is p-hyponormal, then T is paranormal.

Proof. Let x 2 H be an arbitrary non-zero vector. Then we have

T2x
�� ��2 ¼ T�Tð Þ

p�1pTx;Tx
D E

� Txk k
2 1�1p

	 

T�Tð Þ

pTx;Tx
� �1

p by Proposition 4ð Þ

� Txk k
2 1�1p

	 

T� TT�ð Þ

pTx;Tx
� �1

p since T is p-hyponormalð Þ

¼ Txk k
2 1�1p

	 

T�Tð Þ

1þpx; x
D E1

p

� Txk k
2 1�1p

	 

xk k�2 Txk k

2 1þ1pð Þ
by Proposition 4ð Þ

¼ Txk k4 xk k�2:

Hence, we have Txk k2� T2x
�� �� xk k, for all x 2 H, and the proof of Lemma 2 is

complete.

Corollary 2. If T is p-hyponormal and if � Tð Þ ¼ 0f g, then T ¼ 0.

Proof. By Lemma 2 and by Proposition 1, we have the conclusion.

Lemma 3. [9] If T is p-hyponormal for a p such that 0 < p � 1, then the restriction
T jM to its invariant subspaceM is also p-hyponormal.

Proof. Let P be the orthogonal projection onto M. Then T jM ¼ TP on M.
Thus we obtain

Tð jM
� 
�

Tð jMÞ
p
g ¼ PT�TPð Þ

p
� P T�Tð Þ

pP by Proposition 3ð Þ;

and
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Tð jM
� 


Tð jMÞ
�
gp ¼ TPT�ð Þ

p
¼ P TPT�ð Þ

pP � P TT�ð Þ
pP by Proposition 2ð Þ:

Since T is p-hyponormal

Tð jM
� 


Tð jMÞ
�
gp � P TT�ð Þ

pP � P T�Tð Þ
pP � Tð jM

� 
�
Tð jMÞg

p

and this inequality shows that T jM is p-hyponormal.

Theorem 1. If T is p-hyponormal or M-hyponormal, then T is isoloid and satisfies
the condition �000ð Þ by Lemma 3 or Proposition 6 respectively.

Proof. Let � be an isolated point of �(T). Then the range of the Riesz projection
E ¼ 1

2�i

R
@D zI� Tð Þ

�1dz is a closed invariant subspace for T and � Tð jEHÞ ¼ �f g. Here
D is a closed ball with center � that satisfies � Tð Þ \D ¼ �f g, and @D is the boundary
of D described once counterclockwise.

First, we prove that every M-hyponormal operator is isoloid.
If T is M-hyponormal, then T jEH is also M-hyponormal, by Proposition 6.

Since � T jEH
	 


¼ �f g, we have T jEH ¼ �E, by Corollary 1. Hence, the assertion of
Theorem 1 holds for M-hyponormal operators.

Next, we prove that every p-hyponormal operator is isoloid.
If �=0, then � Tð jEHÞ ¼ 0f g and T jEH is paranormal, by Lemma 3. T jEH=0 by

Corollary 2. Therefore 0 is in the point spectrum of T.
If �6¼0, T jEH is an invertible paranormal operator and hence Tð jEHÞ

�1 is also
paranormal by Lemmas 1 and 2. By Proposition 1, we see that Tk jEHk ¼ �j j and
Tð jEH

�� 
�1
k ¼ 1

�j j. Let x 2 EH be an arbitrary vector. Then

xk k � Tð jEH
�� 
�1

k Tk jEHxk ¼
1
�j j Tk jEHxk �

1
� �j j xk k ¼ xk k:

This implies that 1�T jEH is unitary. Therefore T jEH is normal and equal to �E.
Hence, the assertion of Theorem 1 holds for p-hyponormal operators. This com-
pletes the proof of Theorem 1.

Lemma 4. For any T 2 B Hð Þ with its polar decomposition T ¼ U Tj j and
� ¼ rei� 6¼ 0, T� �Ið Þx ¼ T� �Ið Þ

�x ¼ 0 if and only if Tj j � rIð Þx ¼ U� ei�I
	 


x ¼ 0.

Proof. If (T��I)x=(T��I)*x=0, then Tj j2x ¼ T�T ¼ r2x and Tj jx ¼ rx
because Tj j þ rI is invertible. By the assumption, rei�x ¼ Tx ¼ U Tj jx ¼ rUx and we
have (U�eiyI)x=0 because r 6¼0.

Conversely, if Tj j � rIð Þx ¼ U� ei�I
	 


x ¼ 0, then (U�eiyI)*x=0 by the general
theory and we obtain that Tx ¼ U Tj jx ¼ Urx ¼ rei�x ¼ �x and T�x ¼ Tj jU�x ¼
Tj je�i�x ¼ re�i�x ¼ �x.

Lemma 5. If T is p-hyponormal for p ¼ 1
2, then T� �Ið Þx ¼ 0 implies that

T� �Ið Þ
�x ¼ 0.

Proof. If �=0, then the assertion is trivial since KerT � KerT*, for every p-
hyponormal operator T.

For a p-hyponormal operator T with p ¼ 1
2 and a �=re�iy 6¼0, we have
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T� �Ið Þ
� T� �Ið Þ ¼ Tj j � �j jIð Þ

2
þ �j j U� ei�I

	 

Tj j U� ei�I

	 
�
þ �j j Tj j � T�j jð Þ

� Tj j � �j jIð Þ
2:

Therefore, if (T��I)x=0, then Tj j � �j jIð Þx ¼ 0 and hence (U�eiyI)x=0 because
r 6¼ 0. We have (T��I)*x=0 by Lemma 4.

Lemma 6. If T is p-hyponormal with the polar decomposition T ¼ U Tj j, then
every eigenspace of U is invariant under Tj j and U�.

Proof. If � 2 C is an eigenvalue of U and x is a non-zero eigenvector with
respect to �, then � ¼ 0 or �j j ¼ 1, since the range of U is a subspace of the domain
space of U.

If �=0, then the assertion follows from KerU=Ker Tj j � Ker T�j j ¼ KerU�.
If �=eiy and ðU� ei�IÞx ¼ 0, then ðU� ei�I Þ�x ¼ 0 by the general theory and,

since

Tj j2p� T�j j2p
� �1

2

x

����
����
2

¼ Tj j2p� T�j j2p
� �

x; x
D E

¼ Tj j2p�U Tj j2pU�
	 


x; x
� �

¼ Tj j2p�Ue�i� Tj j2p
	 


x; x
� �

¼ �e�i� Tj j2px; U� ei�I
	 
	 
�

x
D E

¼ 0;

it follows that U� ei�I
	 


Tj j2px ¼ �ei� Tj j2p� T�j j2p
	 


x ¼ 0. Therefore KerðU� ei�IÞ
is invariant under Tj j2p and hence invariant under Tj j.

Corollary 3. If T is p-hyponormal, then T� �Ið Þx ¼ 0 implies that T� �Ið Þ
�x ¼ 0.

Proof. Since KerT � KerT� for every p-hyponormal operator T, the assertion
holds for �=0.

By Propositions 5 and 2, if T is a p-hyponormal operator and
~TT ¼ Tj j1=2U Tj j1=2; then ~TT is always p-hyponormal with p ¼ 1

2 and j
~TT�j � Tj j � j ~TTj.

Hence if (T��I)x=0, for some �=reiy 6¼0, then ~TT� �I
	 


Tj j
1
2x ¼ 0 and

j ~TTj Tj j
1
2x ¼ j ~TT�j Tj j

1
2x ¼ r Tj j

1
2x, by Lemmas 5 and 4. From the inequality j ~TT�j �

Tj j � j ~TTj it is easy to show that Tj j Tj j
1
2x ¼ r Tj j

1
2x. Hence we have Tj j � rIð Þx 2

Ker Tj j ¼ KerU and Ux ¼ 1
r U Tj jx ¼ 1

r Tx ¼
1
r �x ¼ ei�x. Also x ¼ U�Ux 2 Tj jH½ �

�.
Since Tj j � rIð Þx 2 Ker Tj j \ Tj jH½ �

�
¼ 0f g, Tj jx ¼ rx and T�x ¼ Tj jU�x ¼

e�i� Tj jx ¼ re�i�x ¼ ���x.

Remark. In the proof of Corollary 3 (the case � 6¼ 0), we only used the fact that
T was w-hyponormal (i.e., T satisfies the condition j ~TT�j � Tj j � j ~TT j). In [1],
Aluthge-Wang proved that every w-hyponormal operator is paranormal and it is
easy to show that every w-hyponormal operator T with KerT � KerT� satisfies the
condition (�000). Hence Weyl’s theorem holds also for a w-hyponormal operator T
which satisfies the property KerT � KerT�, by Berberian’s result (Theorem A).

Theorem 2.Weyl’s theorem holds for p-hyponormal or M-hyponormal operators.

Proof. If T is p-hyponormal or M-hyponormal, then every eigenspace of T is a
reducing subspace of T, by Corollary 3 or Propositions 7 and 8, respectively. Also T

p-HYPONORMAL AND M-HYPONORMAL OPERATORS 379

https://doi.org/10.1017/S0017089501030014 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089501030014


satisfies the condition �000, by Theorem 1, and therefore Berberian’s result (Theorem
A) shows that Weyl’s theorem holds for T.

Theorem 3. For a w-hyponormal operator T, � Tð Þnw Tð Þ � �00 Tð Þ. Moreover,
Weyl’s theorem holds for T if KerT j TH½ �� ¼ 0f g.

Proof. Firstly, we shall show that � Tð Þnw Tð Þ � �00 Tð Þ, for every w-hyponormal
operator T. It follows from the Remark after Corollary 3 that we have
� Tð Þn w Tð Þ

S
0f g

� �
¼ �00 Tð Þn 0f g. Also it suffices to show that if 0 2 � Tð Þnw Tð Þ, then

0 2 �00 Tð Þ. Assume that 0 62 �00 Tð Þ. Since 0<dimKerT<1 and TH is closed
because 0 2 � Tð Þnw Tð Þ, our assumption implies that 0 is a cluster point of �(T).
Since T 2 F 0, there is s>0 with z 2 C : 0 < zj j < sf g \ � Tð Þ � �ðTÞn w Tð Þ

S
0f g

� �
� �00 Tð Þ and therefore z 2 C : 0 < zj j < sf g \ � Tð Þ is a countable infinite set whose
only cluster point is 0. Put �n : n 2 Nf g ¼ z 2 C : 0 < zj j < sf g \ � Tð Þ. Then each �n
is an eigenvalue of T, satisfying ðT� �nIÞx ¼ 0 implies ðT� �IÞ�x ¼ 0, with finite
multiplicity and �n!0 as n!1. LetM¼ !nKer T� �nIð Þ and let En be the ortho-
gonal projection onto KerðT� �nIÞ. Then M is an infinite dimensional reducing
subspace of T and the restriction T jM ¼ !n�nEn is a compact normal operator with
KerT jM ¼ 0f g. Hence TM is not closed and this contradicts the fact that TH is
closed. Thus we have 0 2 �00 Tð Þ and this completes the proof of the first part of this
theorem.

Next, we shall show that Weyl’s theorem holds for w-hyponormal operators
which satisfy the condition KerT j TH½ �� ¼ 0f g.

Since � Tð Þnw Tð Þ � �00 Tð Þ � � Tð Þnw Tð Þ
� �S

0f g, it suffices to show that if
0 2 �00 Tð Þ, then 0 2 � Tð Þnw Tð Þ.

Let

T ¼
A S
0 0

� �
on H ¼ TH½ �

�
!KerT�;

be w-hyponormal with KerA={0}. If 0 2 �00 Tð Þ, then 0 62 � Að Þ or 0 is an isolated
point of �(A) because � Að Þ � � Tð Þ � � Að Þ

S
0f g. We see that A is isoloid because A

is paranormal. Hence if 0 is an isolated point of �(A), then 0 2 �p Að Þ and this con-
tradicts KerA={0}. Also we have 0 62 � Að Þ. It is easy to see that
KerT ¼ �A�1Su! u : 0! u 2 KerT�

� �
and this implies dimKerT*=dimKerT<1.

Since the closedness of TH follows from the invertibility of A, we have
0 2 � Tð Þnw Tð Þ, and this completes the proof of the second part of this theorem.

Theorem 4. If T is p-hyponormal or M-hyponormal and if w Tð Þ ¼ 0f g, then T is
compact and normal.

Proof. Since Weyl’s theorem holds for T, by Theorem 2, and w(T)={0}, by the
assumption, every non-zero point of �(T) is an isolated point of �(T) with finite
dimensional eigenspace which reduces T, by Corollary 3 or Propositions 7 and 8,
respectively. Hence �(T)\w(T) is a finite set or a countably infinite set whose only
cluster point is 0. Let �(T)\w(T)={�n} with �1j j � �2j j � �3j j � � � � > 0 and let En be
the orthogonal projection onto Ker(T��nI). Then TEn=EnT=�nEn and EnEm=0 if
n 6¼m. Put E ¼ !nEn. Then T ¼ !n�nEn ! T j I�Eð ÞH with the property � Tð j I�Eð ÞHÞ

¼ 0f g. Since T j I�Eð ÞH is also p-hyponormal or M-hyponormal by Lemma 3 or by
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Proposition 6, respectively, T j I�Eð ÞH ¼ 0, by Corollary 2 or by Corollary 1 respec-
tively. Hence T ¼ !n�nEn is normal. The compactness of T follows from the finite-
ness or the countability of {�n}n satisfying �nj j # 0. Also each En is a finite rank
projection.

Corollary 4. If T is w-hyponormal and if w Tð Þ ¼ 0f g, then T is compact and
normal.

Proof. For every w-hyponormal operator T, �(T)\w(T)��00(T), by Theorem 3.
The proof is similar to that of Theorem 4.
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