Glasgow Math. J. 43 (2001) 375-381. © 2001 Glasgow Mathematical Journal Trust. Printed in the United Kingdom

WEYL’S THEOREM FOR p-HYPONORMAL OR
M-HYPONORMAL OPERATORS

ATSUSHI UCHIYAMA®* and TAKASHI YOSHINO

Mathematical Institute, Tohoku University, Sendai, 980-8578, Japan
e-mail: yoshino@math.tohuku.ac.jp

(Received 20 December, 1999)

Abstract. In 1997, M. Cho, M. Ito and S. Oshiro showed that Weyl’s theorem
holds for p-hyponormal operators, for any p > 0. In this note we give another proof
of this result. Also, it is shown that Weyl’s theorem holds for M-hyponormal
operators. Further, in 1962, Stampfli showed that if T is hyponormal and its Weyl
spectrum is {0} then 7T is compact and normal. We show that this result remains true
if the hypothesis of hyponormality is replaced by either (a) p-hyponormality or (b)
M-hyponormality.
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1. Introduction. We denote the set of all bounded linear operators on a
Hilbert space H by B(H). For a T € B(H) and for some p > 0, if (T*T) >(TT*),
then T is said to be p-hyponormal. T € B(H) is called M-hyponormal if there exists a
positive constant M for each z € C such that (T—zI) (T—zI)*<M*(T—zI)*(T—zI). If
p=1, then T is called simply hyponormal and it is equivalent to the case where
M=1.

TeB(H) is called a Fredholm operator if TH is closed and both
KerT={xeH:Tx =0} and KerT* are finite-dimensional. To any Fredholm
operator 7 there corresponds an integer i(7) = dimKer T—dimKer7*, called the index
of T. Let F, denotes the class of all Fredholm operators in B(H) of index 0. Then
w(T)={r € C:T— Al ¢ Fo} is called the Weyl spectrum of T. It is known that, for
a T € B(H), w(T) is non-empty and w(7T) = KGQ(H)G(T—i— K), where o(T) and C(H)

denote the spectrum of 7" and the set of all compact operators in B(H) respectively.

For a T € B(H), let 0,(T) and m(7) denote the point spectrum and the set of
all isolated eigenvalues of finite multiplicity of T respectively. According to Coburn
[3], we say that Weyl’s theorem holds for T if o(T)\W(T') = moo(T). He showed that
Weyl’s theorem holds for hyponormal operators and this result was generalized to p-
hyponormal operators by Cho-Ito-Oshiro [4]. Also, by Stampfli [8], it is known that
if T is hyponormal and if w(7T)= {0}, then T is compact and normal. In this paper,
we shall give another proof of the result of Cho-Ito-Oshiro and prove that Weyl’s
theorem holds for M-hyponormal operators and that Stampfli’s result above is also
applicable to p-hyponormal or M-hyponormal operators.
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2. Preliminaries. According to Berberian [2], we say that T is isoloid if every
isolated point of o(7) is in the point spectrum or 7. Also if every restriction 7’|, to
its reducing subspace M is isoloid, then we say that 7T satisfies the condition ().

The following result was given by Berberian [2].

THEOREM A. If T € B(H) satisfies the condition («"") and if every finite-dimen-
sional eigenspace of T reduces T, then Weyl’s theorem holds for T.

DerINITION 1. If | Tx[|*< || 72x| ||x], for all x € H, then we say that T is para-

normal.

The following results are well known.
ProPOSITION 1. If T is paranormal, then | T| = sup{lM ; A€ O'(T)}.

ProposITION 2. (Heinz’s, inequality [6]) I[f 4 > B > 0, then A* > B“, for all
a € (0,1].

PrOPOSITION 3. (Hansen’s inequality [5]) If A > 0 and ||B|| < 1 then (B*AB)® >
B* A% B, for all § € (0, 1].

ProposSITION 4. (H6lder-McCarthy inequality [7]) If 4 > 0, then for each x € H
we have

< (Ax, )" Ix*' 0 <r<1),
> (Ax, x) x> ).

PROPOSITION 5. [12] Let T be p-hyponormal with its polar decompositon T = U|T|.
Then, for any s and t such that s > 0 and t > 0,

1-hyponormal max(s, t) < p),
ITPUIUL is | e max) =)
i “hyponormal — (max(s, 1) > p).

PROPOSITION 6. ([11]) The restriction T |, of an M-hyponormal operator T to its
invariant subspace M is also M-hyponormal.
DErFINITION 2. For a T € B(H), we say that T belongs to the class ), for some

a > 1 if there is a positive number K, such that |7*T — TT*|*< K3(T — zI)*
(T—zI), forall z € C. Also, let Y = | Va.

a>1
The following results are known.
ProposiTION 7. [10] If T is M-hyponormal, then T € Y, C ).
PROPOSITION 8. [10] If T € Y, then Tx = Ax implies T*x = Ax.

ProproSITION 9. [10] If T € Y and if o(T) = {0}, then T = 0.
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COROLLARY 1. If T is M-hyponormal and o(T) = {A}, then T = Al

Proof. Let T'be a M-hyponormal operator such that o(7)= {1}, then T—A[is also
M-hyponormal and o(T—AI)={0}. Therefore T—AI=0 by Propositions 7 and 9.

3. Main theorems.

LeEMMA 1. If T is invertible and p-hyponormal, then T~ is also p-hyponormal.

Proof. Since T is an invertible p-hyponormal operator, we have |T|?> |T*|*

and |T|™%< |72" *|7%. It is easy to verify the equalities |7V Y= |T|"> and
|T*|"=|T~!|™, and the assertion of Lemma 1 holds.

REMARK. It is well known that the inverse operator 7—! of an invertible para-
normal operator 7T is also paranormal.

LeEMMA 2. If T is p-hyponormal, then T is paranormal.
Proof. Let x € ‘H be an arbitrary non-zero vector. Then we have
|7°x]" = <(T* YT, TX>
> ||Tx||2(17l))<(T* Ty Tx, Tx)i (by Proposition 4)
> ||Tx||2(l_/lf)(T*(TT*)/’ Tx, Tx)% (since T is p-hyponormal)
2(1-1) 1+ 5
= 17D (T 1) 7, )

(1+,—',)

> ||Tx||2(l_/l7)||x||’2||Tx||z (by Proposition 4)

4y —2
= [T |x]~~

Hence, we have || 7x|*< || T2x||Ix|l, for all x € H, and the proof of Lemma 2 is

complete.

COROLLARY 2. If T is p-hyponormal and if o(T) = {0}, then T = 0.
Proof. By Lemma 2 and by Proposition 1, we have the conclusion.

LEmMA 3. [9] If T is p-hyponormal for a p such that 0 < p < 1, then the restriction
T | to its invariant subspace M is also p-hyponormal.

Proof. Let P be the orthogonal projection onto M. Then T'|, = TP on M.
Thus we obtain

{(TI0) (TIp)"y = (PT*TPY'> P(T*TY' P (by Proposition 3),

and

https://doi.org/10.1017/S0017089501030014 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089501030014

378 ATSUSHI UCHIYAMA AND TAKASHI YOSHINO

{(TI (T )Y = (TPT*Y'= P(TPT*Y'P < P(TT*)'P (by Proposition 2).
Since T is p-hyponormal

{(TIAM)(T 1) Y < P(TT*Y P < P(T*TY'P < {(T ) (T )Y
and this inequality shows that T'|,, is p-hyponormal.

THEOREM 1. If T is p-hyponormal or M-hyponormal, then T is isoloid and satisfies
the condition (&) by Lemma 3 or Proposition 6 respectively.

Proof. Let A be an isolated point of (7). Then the range of the Riesz projection
E= ﬁfﬂ)(zl — T)7'dz is a closed invariant subspace for 7 and o(T|gy) = {1}. Here
D is a closed ball with center A that satisfies o(7) N D = {)A}, and aD is the boundary
of D described once counterclockwise.

First, we prove that every M-hyponormal operator is isoloid.

If T is M-hyponormal, then T|gy is also M-hyponormal, by Proposition 6.
Since o(T|gy) = {A}, we have Tz = AE, by Corollary 1. Hence, the assertion of
Theorem 1 holds for M-hyponormal operators.

Next, we prove that every p-hyponormal operator is isoloid.

If x=0, then o(T'| ) = {0} and T'|gy is paranormal, by Lemma 3. T'|z, =0 by
Corollary 2. Therefore 0 is in the point spectrum of 7.

If 40, T|gy is an invertible paranormal operator and hence (7| EH)’1 is also

paranormal by Lemmas 1 and 2. By Proposition 1, we see that || T|gy|l = [A| and
||(T|EH) Il = % Let x € EH be an arbitrary vector. Then
-1
Il < [(Tlgr) T gexll = G I T el < 3 IMIXI = [1x])-

This implies that 1 7|, is unitary. Therefore T'|gy is normal and equal to AE.
Hence, the assertion of Theorem 1 holds for p-hyponormal operators. This com-
pletes the proof of Theorem 1.

LEMMA 4. For any T € B(H) with its polar decomposition T = U|T| and
r=re" #£0,(T—M)x=(T—1)x=0ifand only if (IT| — rl)x = (U— "I)x = 0.

Proof. If (T—-AD)x=(T—XI)*x=0, then |T|2x =T*T=r*x and |T|x =rx
because |T'| + r/ is invertible. By the assumption, re®x = Tx = U|T|x = rUx and we
have (U—e®I)x =0 because r£0.

Conversely, if (|7 — rl)x = (U — €“I)x = 0, then (U—=e®I)*x=0 by the general
theory and we obtain that Tx = U|T|x = Urx = re”x = Ax and T*x = |T|U*x =
|T|e ®x = re "x = Ax.

LemMA 5. If T is p-hyponormal for p = % then (T — Al)x =0 implies that
(T—AD*x=0

Proof. If =0, then the assertion is trivial since Ker7 C KerT*, for every p-

hyponormal operator T.
For a p-hyponormal operator 7 with p = % and a A =re~=£0, we have
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(T = A (T = A0 = (IT| = IMD*+A(U = 1) TI(U — 1) +A(T] — | T%])
> (I1T| — MDY

Therefore, if (T—AI)x=0, then (|T| — |A|])x = 0 and hence (U—e®I)x=0 because
r # 0. We have (T—AI)*x=0 by Lemma 4.

LEMMA 6. If T is p-hyponormal with the polar decomposition T = U|T|, then
every eigenspace of U is invariant under |T| and U*.

Proof. If A € C is an eigenvalue of U and x is a non-zero eigenvector with
respect to A, then A = 0 or [A| = 1, since the range of U is a subspace of the domain
space of U.

If A=0, then the assertion follows from KerU=Ker|T| C Ker|T*| = KerU*.

If A=¢"® and (U — e®I)x = 0, then (U — ¢?I)*x = 0 by the general theory and,
since

1
)

=((1TPr=1TP ), x) = (TP = UIT P U)x, ]

= ((ITI?=Ue | T2, x) = —e*"9<(|T|2Px, (U- e""l))*x) —0.

it follows that (U — €“I)|T|*x = —e®(|T|*—|T*|*)x = 0. Therefore Ker(U — ¢"1)
is invariant under |T'|* and hence invariant under |7|.

COROLLARY 3. If T is p-hyponormal, then (T — MI)x = 0 implies that (T — MI)*x = 0.

Proof. Since KerT C KerT™* for every p-hyponormal operator T, the assertion
holds for A =0.

By Propositions 5 and 2, if T is a p-hyponormal operator and
T =|T|"?U|T|'?, then Tis always p-hyponormal with p = 1and \T* < |T| < |T].
Hence if (7—al)x=0, for some r=re®£0, then (T k1)|T|2x =0 and
|T||T| X = |T*||T|2x—r|T|2x by Lemmas 5 and 4. From the inequality |T%| <
T < |T| it is easy to show that |T||T| X = r|T|2x Hence we have (|T| —rl)x €
Ker|T| = KerU and Ux =1U|T|x =1Tx =1x = ¢Px. Also x = U*Ux € [|TH] .
Since (|T|—rl)x e Ker|T| N [ITIH] {0}y, |T|x=rx and T*x=|T|U*x=
e | T|x = re ®x = Ax.

REMARK. In the proof of Corollary 3 (the case A # 0), we only used the fact that
T was w-hyponormal (i.e., T satisfies the condition |7*| <|T| < IT]). In [1],
Aluthge-Wang proved that every w-hyponormal operator is paranormal and it is
easy to show that every w-hyponormal operator T with Ker7T C KerT™* satisfies the
condition («”). Hence Weyl’s theorem holds also for a w-hyponormal operator T
which satisfies the property Ker7 C Ker7™, by Berberian’s result (Theorem A).

THEOREM 2. Weyl’s theorem holds for p-hyponormal or M-hyponormal operators.

Proof. If T is p-hyponormal or M-hyponormal, then every eigenspace of 7' is a
reducing subspace of T, by Corollary 3 or Propositions 7 and 8, respectively. Also T
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satisfies the condition «””, by Theorem 1, and therefore Berberian’s result (Theorem

A) shows that Weyl’s theorem holds for 7.

THEOREM 3. For a w-hyponormal operator T, o(T)\w(T') C moo(T). Moreover,
Weyl’s theorem holds for T if KerT |1~ = {0}.

Proof. Firstly, we shall show that o(T)\w(T) € moo(T), for every w-hyponormal
operator 7. It follows from the Remark after Corollary 3 that we have
o(TO\{w(T)J{0}} = moo(T)\{0}. Also it suffices to show that if 0 € o(T)\w(T), then
0 € mpo(7T). Assume that 0 & moo(7T). Since 0<dimKer7T'<oo and TH is closed
because 0 € o(T)\w(T'), our assumption implies that 0 is a cluster point of o(7).
Since T € Fy, there is s>0 with {z€ C:0 < |z] < s} No(T) S o(T\{W(T) J{0}}
C mo(T') and therefore {z € C: 0 < |z| < s} No(T) is a countable infinite set whose
only cluster point is 0. Put {A, : n e N} ={z € C:0 < |z| < s} No(T). Then each 1,
is an eigenvalue of T, satisfying (T — A,I)x = 0 implies (T — Al)*x = 0, with finite
multiplicity and A,—0 as n—o0. Let M = @,Ker(T — 1,1) and let E, be the ortho-
gonal projection onto Ker(7 — A,l). Then M is an infinite dimensional reducing
subspace of 7 and the restriction 7|, = @&,A,E, is a compact normal operator with
KerT|,, = {0}. Hence TM is not closed and this contradicts the fact that TH is
closed. Thus we have 0 € 7o(7T") and this completes the proof of the first part of this
theorem.

Next, we shall show that Weyl’s theorem holds for w-hyponormal operators
which satisfy the condition Ker T |75~ = {0}.

Since o(T)\w(T) C moo(T) S {o(T)\w(T)} {0}, it suffices to show that if
0 € mpo(T), then 0 € o(T)\w(T).

Let

T= (g g) on H =[TH] ®&KerT™,
be w-hyponormal with Ker4 ={0}. If 0 € myo(7T), then 0 &€ o(A4) or 0 is an isolated
point of o(A4) because o(A4) € o(T) € o(A4) | J{0}. We see that 4 is isoloid because 4
is paranormal. Hence if 0 is an isolated point of o(4), then 0 € 0,(4) and this con-
tradicts Kerd={0}. Also we have 0¢&o(4). It is easy to see that
Ker7 = {-A7'Su@®u: 0@ u e KerT*} and this implies dimKer 7* =dimKerT < oo.
Since the closedness of TH follows from the invertibility of A4, we have
0 € o(T)\w(T), and this completes the proof of the second part of this theorem.

THEOREM 4. If T is p-hyponormal or M-hyponormal and if w(T) = {0}, then T is
compact and normal.

Proof. Since Weyl’s theorem holds for T, by Theorem 2, and w(7T) = {0}, by the
assumption, every non-zero point of o(7) is an isolated point of o(7) with finite
dimensional eigenspace which reduces 7, by Corollary 3 or Propositions 7 and 8,
respectively. Hence o(7T)\w(T) is a finite set or a countably infinite set whose only
cluster point is 0. Let o(T)\w(T) = {A,;} with [A;| > |A2] = |A3] > --- > 0 and let E, be
the orthogonal projection onto Ker(7—A,[). Then TE,=E,T=M\,E, and E,E,,=0 if
n#m. Put E = @,E,. Then T =@, E, ® T|_gy with the property o(T | _gy)
= {0}. Since T'|_gy is also p-hyponormal or M-hyponormal by Lemma 3 or by
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Proposition 6, respectively, T'|;_gy = 0, by Corollary 2 or by Corollary 1 respec-
tively. Hence T = ®,A,E, is normal. The compactness of T follows from the finite-
ness or the countability of {A,}, satisfying |A,| | 0. Also each E, is a finite rank
projection.

COROLLARY 4. If T is w-hyponormal and if w(T) = {0}, then T is compact and
normal.

Proof. For every w-hyponormal operator T, o(T)\w(T)Crmoo(T), by Theorem 3.
The proof is similar to that of Theorem 4.
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