WEYL'S THEOREM FOR *p*-HYPONORMAL OR *M*-HYPONORMAL OPERATORS

ATSUSHI UCHIYAMA* and TAKASHI YOSHINO

Mathematical Institute, Tôhoku University, Sendai, 980-8578, Japan e-mail: yoshino@math.tohuku.ac.jp

(Received 20 December, 1999)

Abstract. In 1997, M. Cho, M. Ito and S. Oshiro showed that Weyl's theorem holds for *p*-hyponormal operators, for any p > 0. In this note we give another proof of this result. Also, it is shown that Weyl's theorem holds for *M*-hyponormal operators. Further, in 1962, Stampfli showed that if *T* is hyponormal and its Weyl spectrum is $\{0\}$ then *T* is compact and normal. We show that this result remains true if the hypothesis of hyponormality is replaced by either (a) *p*-hyponormality or (b) *M*-hyponormality.

1991 Mathematics Subject Classification. 47B20.

1. Introduction. We denote the set of all bounded linear operators on a Hilbert space \mathcal{H} by $\mathcal{B}(\mathcal{H})$. For a $T \in \mathcal{B}(\mathcal{H})$ and for some p > 0, if $(T^*T)^p \ge (TT^*)^p$, then *T* is said to be *p*-hyponormal. $T \in \mathcal{B}(\mathcal{H})$ is called *M*-hyponormal if there exists a positive constant *M* for each $z \in \mathbb{C}$ such that $(T-zI)(T-zI)^* \le M^2(T-zI)^*(T-zI)$. If p=1, then *T* is called simply hyponormal and it is equivalent to the case where M=1.

 $T \in \mathcal{B}(\mathcal{H})$ is called a *Fredholm operator* if $T\mathcal{H}$ is closed and both Ker $T = \{x \in \mathcal{H} : Tx = 0\}$ and Ker T^* are finite-dimensional. To any Fredholm operator T there corresponds an integer $i(T) = \dim \operatorname{Ker} T - \dim \operatorname{Ker} T^*$, called the *index* of T. Let \mathcal{F}_0 denotes the class of all Fredholm operators in $\mathcal{B}(\mathcal{H})$ of index 0. Then $w(T) = \{\lambda \in \mathbb{C} : T - \lambda I \notin \mathcal{F}_0\}$ is called the *Weyl spectrum* of T. It is known that, for a $T \in \mathcal{B}(\mathcal{H}), w(T)$ is non-empty and $w(T) = \bigcap_{K \in \mathcal{C}(\mathcal{H})} \sigma(T + K)$, where $\sigma(T)$ and $\mathcal{C}(\mathcal{H})$

denote the spectrum of T and the set of all compact operators in $\mathcal{B}(\mathcal{H})$ respectively.

For a $T \in \mathcal{B}(\mathcal{H})$, let $\sigma_p(T)$ and $\pi_{00}(T)$ denote the point spectrum and the set of all isolated eigenvalues of finite multiplicity of T respectively. According to Coburn [3], we say that *Weyl's theorem holds for* T if $\sigma(T)\setminus w(T) = \pi_{00}(T)$. He showed that Weyl's theorem holds for hyponormal operators and this result was generalized to phyponormal operators by Cho-Ito-Oshiro [4]. Also, by Stampfli [8], it is known that if T is hyponormal and if $w(T) = \{0\}$, then T is compact and normal. In this paper, we shall give another proof of the result of Cho-Ito-Oshiro and prove that Weyl's theorem holds for M-hyponormal operators and that Stampfli's result above is also applicable to p-hyponormal or M-hyponormal operators.

^{*}Research Fellow of the Japan Society for Promotion of Science.

ATSUSHI UCHIYAMA AND TAKASHI YOSHINO

2. Preliminaries. According to Berberian [2], we say that *T* is *isoloid* if every isolated point of $\sigma(T)$ is in the point spectrum or *T*. Also if every restriction $T|_{\mathcal{M}}$ to its reducing subspace \mathcal{M} is isoloid, then we say that *T* satisfies the condition (α''') .

The following result was given by Berberian [2].

THEOREM A. If $T \in \mathcal{B}(\mathcal{H})$ satisfies the condition (α'') and if every finite-dimensional eigenspace of T reduces T, then Weyl's theorem holds for T.

DEFINITION 1. If $||Tx||^2 \le ||T^2x|| ||x||$, for all $x \in \mathcal{H}$, then we say that T is *paranormal*.

The following results are well known.

PROPOSITION 1. If T is paranormal, then $||T|| = \sup\{|\lambda| ; \lambda \in \sigma(T)\}$.

PROPOSITION 2. (Heinz's, inequality [6]) If $A \ge B \ge 0$, then $A^{\alpha} \ge B^{\alpha}$, for all $\alpha \in (0, 1]$.

PROPOSITION 3. (Hansen's inequality [5]) If $A \ge 0$ and $||B|| \le 1$ then $(B^*AB)^{\delta} \ge B^* A^{\delta} B$, for all $\delta \in (0, 1]$.

PROPOSITION 4. (Hölder-McCarthy inequality [7]) If $A \ge 0$, then for each $x \in \mathcal{H}$ we have

$$\langle A^r x, x \rangle \begin{cases} \leq \langle Ax, x \rangle^r \|x\|^{2(1-r)} & (0 < r \le 1), \\ \geq \langle Ax, x \rangle^r \|x\|^{2(1-r)} & (r \ge 1). \end{cases}$$

PROPOSITION 5. [12] Let T be p-hyponormal with its polar decompositon T = U|T|. Then, for any s and t such that $s \ge 0$ and $t \ge 0$,

$$|T|^{s}U|U|^{t} \text{ is } \begin{cases} 1-hyponormal & (\max(s,t) \leq p), \\ \frac{p+\min(s,t)}{s+t} - hyponormal & (\max(s,t) > p). \end{cases}$$

PROPOSITION 6. ([11]) The restriction $T|_{\mathcal{M}}$ of an M-hyponormal operator T to its invariant subspace \mathcal{M} is also M-hyponormal.

DEFINITION 2. For a $T \in \mathcal{B}(\mathcal{H})$, we say that T belongs to the class \mathcal{Y}_{α} for some $\alpha \geq 1$ if there is a positive number K_{α} such that $|T^*T - TT^*|^{\alpha} \leq K_{\alpha}^2(T - zI)^*$ (T - zI), for all $z \in \mathbb{C}$. Also, let $\mathcal{Y} = \bigcup_{\alpha \geq 1} \mathcal{Y}_{\alpha}$.

The following results are known.

PROPOSITION 7. [10] If T is M-hyponormal, then $T \in \mathcal{Y}_2 \subseteq \mathcal{Y}$.

PROPOSITION 8. [10] If $T \in \mathcal{Y}$, then $Tx = \lambda x$ implies $T^*x = \overline{\lambda}x$.

PROPOSITION 9. [10] If $T \in \mathcal{Y}$ and if $\sigma(T) = \{0\}$, then T = 0.

COROLLARY 1. If T is M-hyponormal and $\sigma(T) = \{\lambda\}$, then $T = \lambda I$.

Proof. Let *T* be a *M*-hyponormal operator such that $\sigma(T) = \{\lambda\}$, then $T - \lambda I$ is also *M*-hyponormal and $\sigma(T - \lambda I) = \{0\}$. Therefore $T - \lambda I = 0$ by Propositions 7 and 9.

3. Main theorems.

LEMMA 1. If T is invertible and p-hyponormal, then T^{-1} is also p-hyponormal.

Proof. Since T is an invertible p-hyponormal operator, we have $|T|^{2p} \ge |T^*|^{2p}$ and $|T|^{-2p} \le |T^*|^{-2p}$. It is easy to verify the equalities $|T^{-1^*}|^{2p} = |T|^{-2p}$ and $|T^*|^{-2p} = |T^{-1}|^{2p}$, and the assertion of Lemma 1 holds.

REMARK. It is well known that the inverse operator T^{-1} of an invertible paranormal operator T is also paranormal.

LEMMA 2. If T is p-hyponormal, then T is paranormal.

Proof. Let $x \in \mathcal{H}$ be an arbitrary non-zero vector. Then we have

$$\|T^{2}x\|^{2} = \left\langle (T^{*}T)^{p\frac{1}{p}}Tx, Tx \right\rangle$$

$$\geq \|Tx\|^{2\left(1-\frac{1}{p}\right)}\left\langle (T^{*}T)^{p}Tx, Tx \right\rangle^{\frac{1}{p}} \quad \text{(by Proposition 4)}$$

$$\geq \|Tx\|^{2\left(1-\frac{1}{p}\right)}\left\langle T^{*}(TT^{*})^{p}Tx, Tx \right\rangle^{\frac{1}{p}} \quad \text{(since } T \text{ is } p\text{-hyponormal)}$$

$$= \|Tx\|^{2\left(1-\frac{1}{p}\right)}\left\langle (T^{*}T)^{1+p}x, x \right\rangle^{\frac{1}{p}}$$

$$\geq \|Tx\|^{2\left(1-\frac{1}{p}\right)}\|x\|^{-2}\|Tx\|^{2\left(1+\frac{1}{p}\right)} \quad \text{(by Proposition 4)}$$

$$= \|Tx\|^{4}\|x\|^{-2}.$$

Hence, we have $||Tx||^2 \le ||T^2x|| ||x||$, for all $x \in \mathcal{H}$, and the proof of Lemma 2 is complete.

COROLLARY 2. If T is p-hyponormal and if $\sigma(T) = \{0\}$, then T = 0.

Proof. By Lemma 2 and by Proposition 1, we have the conclusion.

LEMMA 3. [9] If T is p-hyponormal for a p such that $0 , then the restriction <math>T|_{\mathcal{M}}$ to its invariant subspace \mathcal{M} is also p-hyponormal.

Proof. Let P be the orthogonal projection onto \mathcal{M} . Then $T|_{\mathcal{M}} = TP$ on \mathcal{M} . Thus we obtain

$$\{(T|_{\mathcal{M}})^*(T|_{\mathcal{M}})^p\} = (PT^*TP)^p \ge P(T^*T)^p P \quad \text{(by Proposition 3)},$$

and

 $\{(T|_{\mathcal{M}})(T|_{\mathcal{M}})^*\}^p = (TPT^*)^p = P(TPT^*)^p P \le P(TT^*)^p P$ (by Proposition 2).

Since T is p-hyponormal

$$\{(T|_{\mathcal{M}})(T|_{\mathcal{M}})^*\}^p \le P(TT^*)^p P \le P(T^*T)^p P \le \{(T|_{\mathcal{M}})^*(T|_{\mathcal{M}})\}^p$$

and this inequality shows that $T|_{\mathcal{M}}$ is *p*-hyponormal.

THEOREM 1. If T is p-hyponormal or M-hyponormal, then T is isoloid and satisfies the condition (α''') by Lemma 3 or Proposition 6 respectively.

Proof. Let λ be an isolated point of $\sigma(T)$. Then the range of the Riesz projection $E = \frac{1}{2\pi i} \int_{\partial D} (zI - T)^{-1} dz$ is a closed invariant subspace for T and $\sigma(T|_{E\mathcal{H}}) = \{\lambda\}$. Here D is a closed ball with center λ that satisfies $\sigma(T) \cap D = \{\lambda\}$, and ∂D is the boundary of D described once counterclockwise.

First, we prove that every *M*-hyponormal operator is isoloid.

If T is M-hyponormal, then $T|_{\mathcal{EH}}$ is also M-hyponormal, by Proposition 6. Since $\sigma(T|_{\mathcal{EH}}) = \{\lambda\}$, we have $T|_{\mathcal{EH}} = \lambda E$, by Corollary 1. Hence, the assertion of Theorem 1 holds for M-hyponormal operators.

Next, we prove that every *p*-hyponormal operator is isoloid.

If $\lambda = 0$, then $\sigma(T|_{E\mathcal{H}}) = \{0\}$ and $T|_{E\mathcal{H}}$ is paranormal, by Lemma 3. $T|_{E\mathcal{H}} = 0$ by Corollary 2. Therefore 0 is in the point spectrum of *T*.

If $\lambda \neq 0$, $T|_{E\mathcal{H}}$ is an invertible paranormal operator and hence $(T|_{E\mathcal{H}})^{-1}$ is also paranormal by Lemmas 1 and 2. By Proposition 1, we see that $||T|_{E\mathcal{H}}|| = |\lambda|$ and $||(T|_{E\mathcal{H}})^{-1}|| = \frac{1}{|\lambda|}$. Let $x \in E\mathcal{H}$ be an arbitrary vector. Then

$$\|x\| \le \left\| (T|_{E\mathcal{H}})^{-1} \| \|T|_{E\mathcal{H}} x\| = \frac{1}{|\lambda|} \|T|_{E\mathcal{H}} x\| \le \frac{1}{\lambda} |\lambda| \|x\| = \|x\|.$$

This implies that $\frac{1}{\lambda}T|_{E\mathcal{H}}$ is unitary. Therefore $T|_{E\mathcal{H}}$ is normal and equal to λE . Hence, the assertion of Theorem 1 holds for *p*-hyponormal operators. This completes the proof of Theorem 1.

LEMMA 4. For any $T \in \mathcal{B}(\mathcal{H})$ with its polar decomposition T = U|T| and $\lambda = re^{i\theta} \neq 0$, $(T - \lambda I)x = (T - \lambda I)^*x = 0$ if and only if $(|T| - rI)x = (U - e^{i\theta}I)x = 0$.

Proof. If $(T-\lambda I)x = (T-\lambda I)^*x = 0$, then $|T|^2x = T^*T = r^2x$ and |T|x = rx because |T| + rI is invertible. By the assumption, $re^{i\theta}x = Tx = U|T|x = rUx$ and we have $(U-e^{i\theta}I)x = 0$ because $r \neq 0$.

Conversely, if $(|T| - rI)x = (U - e^{i\theta}I)x = 0$, then $(U - e^{i\theta}I)^*x = 0$ by the general theory and we obtain that $Tx = U|T|x = Urx = re^{i\theta}x = \lambda x$ and $T^*x = |T|U^*x = |T|e^{-i\theta}x = re^{-i\theta}x = \lambda x$.

LEMMA 5. If T is p-hyponormal for $p = \frac{1}{2}$, then $(T - \lambda I)x = 0$ implies that $(T - \lambda I)^*x = 0$.

Proof. If $\lambda = 0$, then the assertion is trivial since Ker $T \subseteq$ Ker T^* , for every *p*-hyponormal operator *T*.

For a *p*-hyponormal operator T with $p = \frac{1}{2}$ and a $\lambda = re^{-i\theta} \neq 0$, we have

$$(T - \lambda I)^{*}(T - \lambda I) = (|T| - |\lambda|I)^{2} + |\lambda| (U - e^{i\theta}I) |T| (U - e^{i\theta}I)^{*} + |\lambda|(|T| - |T^{*}|)$$

$$\geq (|T| - |\lambda|I)^{2}.$$

Therefore, if $(T-\lambda I)x=0$, then $(|T|-|\lambda|I)x=0$ and hence $(U-e^{i\theta}I)x=0$ because $r \neq 0$. We have $(T-\lambda I)^*x=0$ by Lemma 4.

LEMMA 6. If T is p-hyponormal with the polar decomposition T = U|T|, then every eigenspace of U is invariant under |T| and U^* .

Proof. If $\lambda \in \mathbb{C}$ is an eigenvalue of U and x is a non-zero eigenvector with respect to λ , then $\lambda = 0$ or $|\lambda| = 1$, since the range of U is a subspace of the domain space of U.

If $\lambda = 0$, then the assertion follows from $\text{Ker}U = \text{Ker}|T| \subseteq \text{Ker}|T^*| = \text{Ker}U^*$.

If $\lambda = e^{i\theta}$ and $(U - e^{i\theta}I)x = 0$, then $(U - e^{i\theta}I)^*x = 0$ by the general theory and, since

$$\begin{split} \left\| \left(|T|^{2p} - |T^*|^{2p} \right)^{\frac{1}{2}} x \right\|^2 &= \left\langle \left(|T|^{2p} - |T^*|^{2p} \right) x, x \right\rangle = \left\langle \left(|T|^{2p} - U|T|^{2p} U^* \right) x, x \right\rangle \\ &= \left\langle \left(|T|^{2p} - Ue^{-i\theta} |T|^{2p} \right) x, x \right\rangle = -e^{-i\theta} \left\langle \left(|T|^{2p} x, \left(U - e^{i\theta} I \right) \right)^* x \right\rangle = 0, \end{split}$$

it follows that $(U - e^{i\theta}I)|T|^{2p}x = -e^{i\theta}(|T|^{2p} - |T^*|^{2p})x = 0$. Therefore $\text{Ker}(U - e^{i\theta}I)$ is invariant under $|T|^{2p}$ and hence invariant under |T|.

COROLLARY 3. If T is p-hyponormal, then $(T - \lambda I)x = 0$ implies that $(T - \lambda I)^*x = 0$.

Proof. Since $\text{Ker} T \subseteq \text{Ker} T^*$ for every *p*-hyponormal operator *T*, the assertion holds for $\lambda = 0$.

By Propositions 5 and 2, if T is a p-hyponormal operator and $\tilde{T} = |T|^{1/2} U|T|^{1/2}$, then \tilde{T} is always p-hyponormal with $p = \frac{1}{2}$ and $|\tilde{T}^*| \le |T| \le |\tilde{T}|$. Hence if $(T - \lambda I)x = 0$, for some $\lambda = re^{i\theta} \ne 0$, then $(\tilde{T} - \lambda I)|T|^{\frac{1}{2}x} = 0$ and $|\tilde{T}||T|^{\frac{1}{2}x} = |\tilde{T}^*||T|^{\frac{1}{2}x} = r|T|^{\frac{1}{2}x}$, by Lemmas 5 and 4. From the inequality $|\tilde{T}^*| \le |T| \le |\tilde{T}|$ it is easy to show that $|T||T|^{\frac{1}{2}x} = r|T|^{\frac{1}{2}x}$. Hence we have $(|T| - rI)x \in \text{Ker}|T| = \text{Ker}U$ and $Ux = \frac{1}{r}U|T|x = \frac{1}{r}Tx = \frac{1}{r}\lambda x = e^{i\theta}x$. Also $x = U^*Ux \in [|T|\mathcal{H}]^{\sim}$. Since $(|T| - rI)x \in \text{Ker}|T| \cap [|T|\mathcal{H}]^{\sim} = \{0\}$, |T|x = rx and $T^*x = |T|U^*x = e^{-i\theta}|T|x = re^{-i\theta}x = \bar{\lambda}x$.

REMARK. In the proof of Corollary 3 (the case $\lambda \neq 0$), we only used the fact that T was w-hyponormal (i.e., T satisfies the condition $|\tilde{T}^*| \leq |T| \leq |\tilde{T}|$). In [1], Aluthge-Wang proved that every w-hyponormal operator is paranormal and it is easy to show that every w-hyponormal operator T with Ker $T \subseteq$ Ker T^* satisfies the condition (α'''). Hence Weyl's theorem holds also for a w-hyponormal operator T which satisfies the property Ker $T \subseteq$ Ker T^* , by Berberian's result (Theorem A).

THEOREM 2. Weyl's theorem holds for p-hyponormal or M-hyponormal operators.

Proof. If T is p-hyponormal or M-hyponormal, then every eigenspace of T is a reducing subspace of T, by Corollary 3 or Propositions 7 and 8, respectively. Also T

satisfies the condition α''' , by Theorem 1, and therefore Berberian's result (Theorem A) shows that Weyl's theorem holds for *T*.

THEOREM 3. For a w-hyponormal operator T, $\sigma(T)\setminus w(T) \subseteq \pi_{00}(T)$. Moreover, Weyl's theorem holds for T if Ker $T|_{[TH]^{\sim}} = \{0\}$.

Proof. Firstly, we shall show that $\sigma(T)\setminus w(T) \subseteq \pi_{00}(T)$, for every w-hyponormal operator T. It follows from the Remark after Corollary 3 that we have $\sigma(T)\setminus\{w(T)\bigcup\{0\}\} = \pi_{00}(T)\setminus\{0\}$. Also it suffices to show that if $0 \in \sigma(T)\setminus w(T)$, then $0 \in \pi_{00}(T)$. Assume that $0 \notin \pi_{00}(T)$. Since $0 < \dim \operatorname{Ker} T < \infty$ and $T\mathcal{H}$ is closed because $0 \in \sigma(T)\setminus w(T)$, our assumption implies that 0 is a cluster point of $\sigma(T)$. Since $T \in \mathcal{F}_0$, there is s > 0 with $\{z \in \mathbb{C} : 0 < |z| < s\} \cap \sigma(T) \subseteq \sigma(T)\setminus\{w(T)\bigcup\{0\}\} \subseteq \pi_{00}(T)$ and therefore $\{z \in \mathbb{C} : 0 < |z| < s\} \cap \sigma(T)$ is a countable infinite set whose only cluster point is 0. Put $\{\lambda_n : n \in \mathbb{N}\} = \{z \in \mathbb{C} : 0 < |z| < s\} \cap \sigma(T)$. Then each λ_n is an eigenvalue of T, satisfying $(T - \lambda_n I)x = 0$ implies $(T - \lambda_I)^*x = 0$, with finite multiplicity and $\lambda_n \to 0$ as $n \to \infty$. Let $\mathcal{M} = \bigoplus_n \operatorname{Ker}(T - \lambda_n I)$ and let E_n be the orthogonal projection onto $\operatorname{Ker}(T - \lambda_n I)$. Then \mathcal{M} is an infinite dimensional reducing subspace of T and the restriction $T|_{\mathcal{M}} = \bigoplus_n \lambda_n E_n$ is a compact normal operator with $\operatorname{Ker} T|_{\mathcal{M}} = \{0\}$. Hence $T\mathcal{M}$ is not closed and this contradicts the fact that $T\mathcal{H}$ is closed. Thus we have $0 \in \pi_{00}(T)$ and this completes the proof of the first part of this theorem.

Next, we shall show that Weyl's theorem holds for w-hyponormal operators which satisfy the condition $\text{Ker }T|_{[TH]^{\sim}} = \{0\}.$

Since $\sigma(T)\setminus w(T) \subseteq \pi_{00}(T) \subseteq \{\sigma(T)\setminus w(T)\} \cup \{0\}$, it suffices to show that if $0 \in \pi_{00}(T)$, then $0 \in \sigma(T)\setminus w(T)$.

Let

$$T = \begin{pmatrix} A & S \\ 0 & 0 \end{pmatrix}$$
 on $\mathcal{H} = [T\mathcal{H}]^{\sim} \oplus \operatorname{Ker} T^*$,

be w-hyponormal with Ker $A = \{0\}$. If $0 \in \pi_{00}(T)$, then $0 \notin \sigma(A)$ or 0 is an isolated point of $\sigma(A)$ because $\sigma(A) \subseteq \sigma(T) \subseteq \sigma(A) \bigcup \{0\}$. We see that A is isoloid because A is paranormal. Hence if 0 is an isolated point of $\sigma(A)$, then $0 \in \sigma_p(A)$ and this contradicts Ker $A = \{0\}$. Also we have $0 \notin \sigma(A)$. It is easy to see that Ker $T = \{-A^{-1}Su \oplus u : 0 \oplus u \in \text{Ker}T^*\}$ and this implies dimKer $T^* = \text{dimKer}T < \infty$. Since the closedness of $T\mathcal{H}$ follows from the invertibility of A, we have $0 \in \sigma(T) \setminus w(T)$, and this completes the proof of the second part of this theorem.

THEOREM 4. If T is p-hyponormal or M-hyponormal and if $w(T) = \{0\}$, then T is compact and normal.

Proof. Since Weyl's theorem holds for *T*, by Theorem 2, and $w(T) = \{0\}$, by the assumption, every non-zero point of $\sigma(T)$ is an isolated point of $\sigma(T)$ with finite dimensional eigenspace which reduces *T*, by Corollary 3 or Propositions 7 and 8, respectively. Hence $\sigma(T) \setminus w(T)$ is a finite set or a countably infinite set whose only cluster point is 0. Let $\sigma(T) \setminus w(T) = \{\lambda_n\}$ with $|\lambda_1| \ge |\lambda_2| \ge |\lambda_3| \ge \cdots > 0$ and let E_n be the orthogonal projection onto Ker $(T-\lambda_n I)$. Then $TE_n = E_n T = \lambda_n E_n$ and $E_n E_m = 0$ if $n \ne m$. Put $E = \bigoplus_n E_n$. Then $T = \bigoplus_n \lambda_n E_n \oplus T|_{(I-E)\mathcal{H}}$ with the property $\sigma(T|_{(I-E)\mathcal{H}})$ = $\{0\}$. Since $T|_{(I-E)\mathcal{H}}$ is also *p*-hyponormal or *M*-hyponormal by Lemma 3 or by

Proposition 6, respectively, $T|_{(I-E)\mathcal{H}} = 0$, by Corollary 2 or by Corollary 1 respectively. Hence $T = \bigoplus_n \lambda_n E_n$ is normal. The compactness of *T* follows from the finiteness or the countability of $\{\lambda_n\}_n$ satisfying $|\lambda_n| \downarrow 0$. Also each E_n is a finite rank projection.

COROLLARY 4. If T is w-hyponormal and if $w(T) = \{0\}$, then T is compact and normal.

Proof. For every w-hyponormal operator T, $\sigma(T)\setminus w(T)\subseteq \pi_{00}(T)$, by Theorem 3. The proof is similar to that of Theorem 4.

REFERENCES

1. A. Aluthge and D. Wang, w-Hyponormal operators II, preprint.

2. S. K. Berberian, An extension of Weyl's theorem to a class of not necessarily normal operators, *Michigan Math. J.* **16** (1969), 273–279.

3. L. A. Coburn, Weyl's theorem for non-normal operators, *Michigan Math. J.* **13** (1966), 285–288.

4. M. Cho, M. Ito and S. Oshiro, Weyl's theorem holds for p-hyponormal operators, *Glasgow Math. J.* **39** (1997), 217–220.

5. F. Hansen, An inequality, Math. Ann. 246 (1980), 249-250.

6. E. Heinz, Beiträge zur Störungstheorie der Spectralzerlegung, Math. Ann. 123 (1951), 415–438.

7. C. A. McCarthy, C_p, Israel J. Math. 5 (1967), 249–271.

8. J. G. Stampfli, Hyponormal operators, Pacific J. Math. 12 (1962), 1453–1458.

9. A. Uchiyama, Berger-Shaw's theorem for *p*-hyponormal operators, *Integral Equations Operator Theory* **33** (1999), 221–230.

10. A. Uchiyama and T. Yoshino, On class Y operators, Nihonkai Math. J. 8 (1997), 179–194.

11. T. Yoshino, Remark on the generalized Putnam-Fuglede theorem, *Proc. Amer. Math. Soc.*, 95 (1985), 571–572.

12. T. Yoshino, The *p*-hyponormality of the Aluthge transform, *Interdisciplinary Inform. Sci.*, **3** (1997), 91–93.