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Abstract

To overcome the physical barriers caused by light diffraction, super-resolution techniques are often applied in
fluorescence microscopy. State-of-the-art approaches require specific and often demanding acquisition conditions to
achieve adequate levels of both spatial and temporal resolution. Analyzing the stochastic fluctuations of the
fluorescent molecules provides a solution to the aforementioned limitations, as sufficiently high spatio-temporal
resolution for live-cell imaging can be achieved using common microscopes and conventional fluorescent dyes.
Based on this idea, we present COL0RME, a method for covariance-based ℓ0 super-resolution microscopy with
intensity estimation, which achieves good spatio-temporal resolution by solving a sparse optimization problem in the
covariance domain and discuss automatic parameter selection strategies. The method is composed of two steps: the
former where both the emitters’ independence and the sparse distribution of the fluorescent molecules are exploited to
provide an accurate localization; the latter where real intensity values are estimated given the computed support. The
paper is furnished with several numerical results both on synthetic and real fluorescence microscopy images and
several comparisons with state-of-the art approaches are provided. Our results show that COL0RME outperforms
competing methods exploiting analogously temporal fluctuations; in particular, it achieves better localization,
reduces background artifacts, and avoids fine parameter tuning.

Impact Statement
This research paper describes a super-resolution method improving the spatial resolution of images
acquired by common fluorescence microscopes and conventional blinking/fluctuating fluorophores.
The problem is formulated in terms of a sparse and convex/nonconvex optimization problem in the
covariance domain for which a well-detailed algorithmic and numerical description are provided. It is
addressed to an audience working at the interface between applied mathematics and biological image
analysis. The proposed approach is validated on several synthetic datasets and shows promising
results also when applied to real data, thus paving the way for new future research directions.
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1. Introduction

In the field of fluorescence (or, more generally, light) microscopy, the main factor characterizing the
microscope resolution is the limit imposed by the diffraction of light: structures with size smaller than the
diffraction barrier (typically around 250 nm in the lateral direction) cannot be well distinguished nor
localized. The need to investigate small subcellular entities thus led to the implementation of a plethora of
super-resolution methods.

A large and powerful family of imaging techniques achieving nanometric resolution are the ones often
known as single molecule localization microscopy (SMLM) techniques, see, for example, Refs. (1) and
(2) for a review. Among them, methods such as photo-activated localization microscopy (PALM)(3) and
stochastic optical reconstruction microscopy (STORM)(4) are designed so as to create a super-resolved
image (achieving around 20 nm of resolution) by activating and precisely localizing only a fewmolecules
in each of thousands of acquired frames at a time. For their use, these methods need specific photo-
activatable, photoswitchable, and binding-activated fluorophores, among others(5), as well as, a large
number (typically thousands) of sparse acquired frames leading to a poor temporal resolution and large
exposure times which can significantly damage the sample. A different technique improving spatial
resolution is well-known under the name of stimulated emission depletion (STED) microscopy(6).
Similarly to SMLM, STED techniques are based on a time-consuming and possibly harmful acquisition
procedure requiring special equipment. In STEDmicroscopy, the size of the point spread function (PSF) is
reduced as a depletion beam of light will induce stimulated emission frommolecules outside the region of
interest and thus switch them off. Structured illumination microscopy (SIM)(7) methods use patterned
illumination to excite the sample; differently from the aforementioned approaches, images here can be
recovered with high temporal-resolution via high-speed acquisitions that cause comparatively little
damage to the sample, but at the cost of a relatively low spatial resolution and, more importantly, the
requirement of a specific illumination setup. Note that in this paper, we address grid-based super-
resolution approaches, that is, the ones that formalize the super-resolution problem as the task of retrieving
a well-detailed image on a fine grid from coarse measurements. More recently, off-the-grid super-
resolution approaches have started to be studied in the literature, such as the one of Candès et al.(8), with
applications to SMLM data in Denoyelle et al.(9), as well as DAOSTORM(10), a high-density super-
resolution microscopy algorithm. The great advantage of the gridless approaches is that there are no
limitations imposed by the size of the discrete grid considered. However, both the theoretical study of the
problem and its numerical realization become very hard due to the infinite-dimensional and typically
nonconvex nature of the optimization.

During the last decade, a new approach taking advantage of the independent stochastic temporal
fluctuations/blinking of conventional fluorescent emitters appeared in the literature. A stack of images is
acquired at a high temporal rate, typically 20–100 images/s, by means of common microscopes (such as
widefield, confocal, or total internal reflection fluorescence [TIRF] ones) using standard fluorophores,
and then their independent fluctuations/blinking are exploited so as to compute a super-resolved image.
Note that no specific material is needed here, neither for the illumination setup nor for fluorophores.
Several methods exploiting the sequence of images have been proposed over the last years. Due to
standard acquisition settings, temporal resolution properties are drastically improved. To start with, super-
resolution optical fluctuation imaging (SOFI)(11) is a powerful technique where second and/or higher-
order statistical analysis is performed, leading to a significant reduction of the size of the PSF. An
extension of SOFI that combines several cumulant orders and achieves better resolution levels than SOFI
is themethod bSOFI(12). However, spatial resolution still cannot reach the same levels of PALM/STORM.
Almost the same behavior has been noticed in super-resolution radial fluctuations (SRRF)(13) microscopy,
where super-resolution is achieved by calculating the degree of local symmetry at each frame. Despite its
easy manipulation and broad applicability, SRRF creates significant reconstruction artifacts which may
limit its use in view of accurate analysis. Other methods which belong to the same category and are worth
mentioning are: the method 3B(14), which uses Bayesian analysis and takes advantage of the blinking and
bleaching events of standard fluorescent molecules, the method entropy-based super-resolution imaging
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(ESI)(15) that computes entropy values pixel-by-pixel, weighted with higher-order statistics and the
method spatial covariance reconstructive (SCORE)(16) that analyzes intensity statistics, similarly to
SOFI, but further reduces noise and computational cost by computing only a few components that have
a significant contribution to the intensity variances of the pixels. In addition, the approach sparsity-based
super-resolution correlationmicroscopy (SPARCOM)(17,18) exploits, as SOFI, both the lack of correlation
between distinct emitters as well as the sparse distribution of the fluorescent molecules via the use of an ℓ1

regularization defined on the emitters’ covariance matrix. Along the same lines, a deep-learning method
exploiting algorithmic unfolding, called learned SPARCOM (LSPARCOM)(19), has recently been
introduced. Differently from plain SPARCOM, the advantage of LSPARCOM is that neither previous
knowledge of the PSF nor any heuristic choice of the regularization parameter for tuning the sparsity level
is required. As far as the reconstruction quality is concerned, both SPARCOM and LSPARCOM create
some artifacts under challenging imaging conditions, for example, when the noise and/or background
level are relatively high. Finally, without using higher-order statistics, a constrained tensor modeling
approach that estimates a map of local molecule densities and their overall intensities, as well as, a matrix-
based formulation that promotes structure sparsity via an ℓ0-type regularizer, are available in Ref. (20).
These approaches can achieve excellent temporal resolution levels, but the spatial resolution is limited.

1.1. Contribution

In this paper, we propose a method for live-cell super-resolution imaging based on the sparse analysis of
the stochastic fluctuations of molecule intensities. The proposed approach provides a good level of both
temporal and spatial resolution, thus allowing for both precise molecule localization and intensity
estimation at the same time, while relaxing the need for special equipment (microscope, fluorescent
dyes) typically encountered in state-of-the-art super-resolution methods such as, for example, SMLM.
The proposedmethod is calledCOL0RME,which stands for covariance-based super-resolutionmicroscopy
with intensity estimation.The principles of COL0RME are shown in Figure 1. Similarly to SPARCOM(18),
COL0RME enforces signal sparsity in the covariance domain bymeans of sparsity-promoting terms, either
of convex (ℓ1, TV) or nonconvex (ℓ0-based)-type. Differently from SPARCOM, COL0RME allows also
for an accurate estimation of the noise variance in the data and is complementedwith an automatic selection
strategy of the model hyperparameters. Furthermore, and more importantly, COL0RME allows for the
estimation of both signal and background intensity, which are relevant pieces of information for biological
studies.By exploiting information on the estimated noise statistics, the parameter selection in this step is also
made fully automatic, based on the standard discrepancy principle. We remark that an earlier version of
COL0RME has been already introduced by the authors in Ref. (21). Here, we consider an extended
formulation combined with automatic parameter selection strategies which allows for the analysis of more
challenging data having, for example, spatially varying background. The method is validated on simulated
and tested on challenging real data. Our results show that COL0RME outperforms competing methods in
terms of localization precision, parameter tuning and removal of background artifacts.

2. Mathematical Modeling

For real scalars T ,M> 1 and t∈ 1,2,…,Tf g, let Yt∈RM�M be the blurred, noisy, and down-sampled
image frame acquired at time t . We look for a high-resolution image X∈RL�L being defined as

X= 1
T

PT
t= 1Xt with L= qM and defined on a q-times finer grid, with q∈N. Note that in the following

applications, we typically set q= 4. The image formation model describing the acquisition process at each
t can be written as:

Yt =Mq H Xtð Þð ÞþBþNt, (1)

where Mq :RL�L!RM�M is a down-sampling operator summing every q consecutive pixels in both
dimensions,H :RL�L!RL�L is a convolution operator defined by the PSF of the optical imaging system
and B∈RM�M models the background, which collects the contributions of the out-of-focus (and the
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ambient) fluorescent molecules. Motivated by experimental observations showing that the blinking/
fluctuating behavior of the out-of-focus molecules is not visible after convolution with wide de-focused
PSFs, we assume that the background is temporally constant (Bdoes not depend on t), while we allow it to
smoothly vary in space. Finally,Nt∈RM�M describes the presence of noise modeled here as a matrix of
independent and identically distributed (i.i.d.) Gaussian random variables with zero mean and variance
s∈Rþ taking into account both the underlying electronic noise and the noise bias induced by B (see
Remark 1 for more details on the approximation considered). We assume that the molecules are located at
the center of each pixel and that there is no displacement of the specimen during the imaging period, which
is a reasonable assumption whenever short time acquisitions are considered.

Remark 1. Amore appropriate model taking also into account the presence of signal-dependent Poisson
noise in the data would be the following:

Yt =P Mq H Xtð Þð ÞþB
� �þEt =P Mq H Xtð Þð Þ� �þP Bð ÞþEt, ∀t= 1,2,…,T , (2)

where, forW∈RM�M, P Wð Þ represents the realization of a multivariate Poisson variable of parameter
W and Et∈RM�M models electronic noise with a matrix of i.i.d. Gaussian entries of zero mean and
constant variance σ2∈Rþ. Note that the second equality in (2) holds due to the independence between
Mq H Xtð Þð Þ and B. Model (2) is indeed the one we used for the generation of the simulated data, see
Section 6.1. However, to simplify the reconstruction process, we simplified (2) by assuming that B
has sufficiently large entries, so that P Bð Þ can be approximated as P Bð Þ≈ bB with bBi,j �N Bi,j,Bi,j

� �
,

where i, jð Þ∈ 1,…,Mf g2, thus considering:

Yt =P Mq H Xtð Þð Þ� �þ bBþEt, ∀t= 1,2,…,T : (3)

By now further approximating the variance of bBwith a constant b∈Rþ to be interpreted as the average of
B, we have that by simple manipulations:

bBþEt =BþNt,

where the independence between bB and Et has been exploited. We can thus retrieve (1) from (3) by
neglecting the Poisson noise dependence in P Mq H Xtð Þð Þ� �

and that the variance of every entry of the

Figure 1. Principles of COL0RME. (a) An overview of the two steps (support estimation and intensity
estimation) by visualizing the inputs/outputs of each, as well as the interaction between them. (b) The two
main outputs of COL0RME are: the supportΩ⊂RL2 containing the locations of the fine-grid pixels with at
least one fluorescent molecule, and the intensity x∈RL2 whose non-null values are estimated only on Ω.
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random term Nt is s= σ2þb. A more detailed and less approximated modeling taking into account the
signal-dependent nature of the noise in the data could represent a very interesting area of future research.

In vectorized form, model (1) reads:

yt =Ψxtþbþnt, (4)

whereΨ∈RM2�L2 is the matrix representing the compositionMq∘H, while yt∈RM2
, xt∈RL2, b∈RM2

,
and nt∈RM2

are the column-wise vectorizations of Yt, Xt, B, and Nt in (1), respectively.
For all t and given Ψ and yt, the problem can thus be formulated as

find x=
1
T

XT
t= 1

xt∈RL2 ,b∈RM2
and s> 0 s:t: xt solves 4ð Þ:

In order to exploit the statistical behavior of the fluorescent emitters, we reformulate the model in the
covariance domain. This idea was previously exploited by the SOFI approach(11) and was shown to
significantly reduce the full-width-at-half-maximum (FWHM) of the PSF. In particular, the use of second-
order statistics for a Gaussian PSF corresponds to a reduction factor of the FWHM of

ffiffiffi
2
p

.
To formulate the model, we consider the frames ytð Þt∈ 1,…,Tf g as T realizations of a random variable y

with covariance matrix defined by:

Ry =Ey y�Ey yf g� �
y�Ey yf g� �⊺� �

, (5)

where Ey �f g denotes the expected value computed w.r.t. to the unknown law of y. We estimate Ry by
computing the empirical covariance matrix, that is,

Ry ≈
1

T�1

XT
t= 1

yt�yð Þ yt�yð Þ⊺,

where y= 1
T

PT
t= 1yt denotes the empirical temporal mean. From (4) and (5), we thus deduce the relation:

Ry =ΨRxΨ
⊺þRn, (6)

where Rx∈RL2�L2 and Rn∈RM2�M2
are the covariance matrices of xtð Þt∈ 1,…,Tf g and ntð Þt ∈ 1,…,Tf g,

respectively. As the background is stationary by assumption, the covariance matrix of b is zero. Recalling
now that the emitters are uncorrelated by assumption, we deduce that Rx is diagonal. We thus set

rx ≔diag Rxð Þ∈RL2. Furthermore, by the i.i.d. assumption on nt, we have thatRn = sIM2, where s∈Rþ
and IM2 is the identity matrix inRM2�M2

. Note that the model in equation (6) is similar to the SPARCOM
one presented in Ref. (18), with the difference that here we consider also noise contributions by including
in the model the diagonal covariance matrix Rn . Finally, the vectorized form of the model in the
covariance domain can thus be written as:

ry = Ψ⊙Ψð Þrxþ svI,

where ⊙ denotes the Khatri–Rao (column-wise Kronecker) product, ry∈RM4
is the column-wise

vectorization of Ry and vI = vec IM2ð Þ.

3. COL0RME, Step I: Support Estimation for Precise Molecule Localization

Similarly to SPARCOM(18), our approach makes use of the fact that the solution rx is sparse, while
including further the estimation of s> 0 for dealing with more challenging scenarios. In order to compare
specific regularity a priori constraints on the solution, we make use of different regularization terms,
whose importance is controlled by a regularization hyperparameter λ> 0. By further introducing some
non-negativity constraints for both variables rx and s, we thus aim to solve:

argmin
rx≥0, s≥0

F rx,sð ÞþR rx;λð Þ, (7)
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where the data fidelity term is defined by:

F rx,sð Þ= 1
2
∥ry� Ψ⊙Ψð Þrx� svI∥22, (8)

andR �;λð Þ is a sparsity-promoting penalty. Ideally, one would like to make use of the ℓ0 norm to enforce
sparsity. However, as it is well-known, solving the resulting noncontinuous, nonconvex, and combina-
torial minimization problem is an NP-hard problem. Away to circumvent this difficulty consists in using
the continuous exact relaxation of the ℓ0 norm (CEL0) proposed by Soubies et al. in Ref. (22). The CEL0
regularization is continuous, nonconvex and preserves the global minima of the original ℓ2�ℓ0 problem
while removing some local ones. It is defined as follows:

R rx;λð Þ=ΦCEL0 rx;λð Þ=
XL2
i= 1

λ�∥ai∥2

2
j rxð Þij�

ffiffiffiffiffi
2λ
p

∥ai∥

 !2

1
j rxð Þij≤

ffiffiffi
2λ
p
∥ai∥

n o, (9)

where ai = Ψ⊙Ψð Þi denotes the ith column of the operator A≔Ψ⊙Ψ.
A different, convex way of favoring sparsity consists in taking as regularizer the ℓ1 norm, that is,

R rx;λð Þ= λ∥rx∥1: (10)

Besides convexity and as it is well-known, the key difference between using the ℓ0 and the ℓ1-norm is that
the ℓ0 provides a correct interpretation of sparsity by counting only the number of the nonzero
coefficients, while the ℓ1 depends also on the magnitude of the coefficients. However, its use as a
sparsity-promoting regularizer is nowadays well-established (see, e.g., Ref. (23)) and also used effect-
ively in other microscopy applications, such as SPARCOM(18).

Finally, in order tomodel situations where piece-wise constant structures are considered, we consider a
different regularization term favoring gradient-sparsity using the total variation (TV) regularization
defined in a discrete setting as follows:

R rx;λð Þ= λTV rxð Þ= λ
XL2
i= 1

rxð Þi� rxð Þni,1
��� ���2þ rxð Þi� rxð Þni,2

��� ���2� 	1
2

, (11)

where ni,1,ni,2ð Þ∈ 1,…,L2
� �2

indicate the locations of the horizontal and vertical nearest neighbor pixels
of pixel i, as shown in Figure 2. For the computation of the TV penalty, Neumann boundary conditions
have been used.

To solve (7), we use the alternate minimization algorithm between s and rx
(24), see the pseudo-code

reported in Algorithm 1. Note that, at each k≥1, the update for the variable s can be efficiently computed
through the following explicit expression:

skþ1 =
1

M2vI
⊺ ry� Ψ⊙Ψð Þrxk
� �

:

Concerning the update of rx , different algorithms were used depending on the choice of the
regularization term in (9)–(11). For the CEL0 penalty (9), we used the iteratively reweighted ℓ1 algorithm
(IRL1)(25), following Gazagnes et al.(26) with fast iterative shrinkage-thresholding algorithm (FISTA)(27)

as inner solver. If the ℓ1 norm (10) is chosen, FISTA is used. Finally, when the TV penalty (11) is
employed, the primal-dual splitting method in Ref. (28) was considered.

Figure 2. The one-sided nearest horizontal and vertical neighbors of the pixel i used to compute the
gradient discretization in (11).
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Algorithm 1 COL0RME, Step I: Support Estimation

Require: ry∈RM4
,rx0∈RL2 ,λ> 0.

repeat
skþ1 = argmin

s∈Rþ
F rx

k ,s
� �

rx
kþ1 = argmin

rx ∈RL2
þ

F rx,skþ1
� �þR rx;λð Þ

until convergence.
return Ωx,s.

Following the description provided by Attouch et al. in Ref. (24), convergence of Algorithm 1 can be
guaranteed only if an additional quadratic term is introduced in the objective function of the second
minimization subproblem. Nonetheless, empirical convergence was observed also without such add-
itional terms.

To evaluate the performance of the first step of the method COL0RME using the different regular-
ization penalties described above, we created two noisy simulated datasets, with low background
(LB) and high background (HB), respectively and used them to apply COL0RME and estimate the
desired sample support. More details on the two datasets are available in the following Section 6.1. The
results obtained using the three different regularizers are reported in Figure 3. In this example, we chose
the regularization parameter λ heuristically, while more details about the selection of the parameter are
given in the Section 5.1.

Despite its continuous and smooth reconstruction, we observe that the reconstruction obtained by the
TV regularizer does not provide precise localization results. For example, the separation of the two
filaments on the top-right corner is not visible and while the junction of the other two filaments on the
bottom-left should appear further down,we clearly see that those filaments are erroneously glued together.
Nonetheless, the choice of an appropriate regularizer tailored to favor fine structures as the ones observed
in the GT image constitutes a challenging problem that should be addressed in future research.

Figure 3. (a) Noisy simulated dataset with low background (LB) and stack size: T = 500 frames, (b) Noisy
simulated high-background (HB) dataset, with T = 500 frames. From left to right: Superimposed

diffraction limited image (temporal mean of the stack) with 4� zoom on ground truth support (blue),
CEL0 reconstruction, ℓ1 reconstruction and total variation (TV) reconstruction.
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The Jaccard indices (JIs) of both the results obtained when using the CEL0 and ℓ1 regularizer, that
allow for more precise localization, have been computed. The JI is a quantity in the range 0,1½ � computed
as the ratio between correct detections (CD) and the sum of correct detections, false positives (FP) and
false negatives (FN), that is, JI≔CD= CDþFNþFPð Þ, up to a tolerance δ> 0, measure in nm. A correct
detection occurs when one pixel at most δ nm away from a ground truth pixel is added to the support. In
order to match the pixels from the estimated support to the ones from the ground truth, we employ the
standard Gale–Shapley algorithm(29). Once the matching has been performed, we can simply count the
number of ground truth pixels which have not been detected (false negatives) and also the number of
pixels in the estimated support which have not been matched to any ground truth pixel (false positives).

Figure 4 reports the average JI computed from 20 different noise realizations, as well as, an error bar
(vertical lines) that represent the standard deviation, for several stack sizes. According to the figure, a
slightly better JI is obtained when the CEL0 regularizer is being used, while an increase in the number of
frames, when both regularizers being used, leads to better JI, hence better localization. As the reader may
notice, such quantitative assessment could look inconsistent with the visual results reported in Figure 3.
By definition, the JI tends to assume higher values whenever more CD are found even in presence of more
FP (as it happens for the CEL0 reconstruction), while it gets more penalized when FN happen, as they
affect the computation “twice,” reducing the numerator and increasing the denominator.

3.1. Accurate noise variance estimation

Along with the estimations of the emitter’s temporal sparse covariance matrix, the estimation of the noise
variance in the joint model (7) allows for much more precise results even in challenging acquisition
conditions. In Figure 5, we show the relative error between the computed noise variance sand the constant
variance of the electronic noise σ2 used to produce simulated LB and HB data. The relative error is higher
in the case of the HB dataset, something that is, expected, as in our noise variance estimation s there is a
bias coming from the background (see Remark 1). In the case of the LB dataset, as the background is low,
the bias is sufficiently small so that it is barely visible in the error graph. In our experiments, a Gaussian
noise with a corresponding SNR of approximately 16 dB is being used, while the value of σ2 is in average
equal to 7:11�105 for the LB dataset and 7:13�105 for the HB dataset. Note that, in general, the
estimation of the noise variance s obtained by COL0RME is very precise.

(a) LB dataset (b) HB dataset

Figure 4. Jaccard Index values with tolerance δ= 40nm for the low-background (LB) and high-
background (HB) datasets, for different stack sizes and regularization penalty choices. The tolerance,
δ= 40 nm, is set so that we allow the correct detections, that needed to be counted for the computation of
the Jaccard Index, to be found not only in the same pixel but also to any of the 8-neighboring pixels.
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4. COL0RME, Step II: Intensity Estimation

From the previous step, we obtain a sparse estimation of rx∈RL2 . Its support, that is, the location of
nonzero variances, can thus be deduced. This is denoted in the following by
Ω≔ i : rxð Þi 6¼ 0

� �
⊂ 1,…,L2
� �

. Note that this set corresponds indeed to the support of the desired x,
hence in the following we will use the same notation to denote both sets.

We are now interested in enriching COL0RME with an additional step where intensity information of
the signal xcan be retrieved in correspondence with the estimated supportΩ. To do so, we thus propose an
intensity estimation procedure for x restricted only to the pixels of interest. Under this modeling
assumption, it is thus reasonable to consider a regularization term favoring smooth intensities on Ω, in
agreement to the intensity typically found in real images.

In order to take into account the modeling of blurry and out-of-focus fluorescent molecules, we further
include in ourmodel (4) a regularization term for smooth background estimation.We can thus consider the
following joint minimization problem:

argmin
x∈R∣Ω∣

þ ,b∈RM2
þ

1
2
∥ΨΩx� y�bð Þ∥22þ

μ

2
∥∇Ωx∥22þ

β

2
∥∇b∥22, (12)

where the data term models the presence of Gaussian noise, μ,β> 0 are regularization parameters and the
operatorΨΩ∈RM2�∣Ω∣ is a matrix whose ith column is extracted fromΨ for all indices i∈Ω. Finally, the
regularization term on x is the squared norm of the discrete gradient restricted to Ω, that is,

∥∇Ωx∥22 ≔
X
i∈Ω

X
j∈N ið Þ∩Ω

xi� x j
� �2

,

where N ið Þ denotes the 8-pixel neighborhood of i∈Ω. Note that, according to this definition, ∇Ωx
denotes a (redundant) isotropic discretization of the gradient of xevaluated for each pixel in the support
Ω. Note that this definition coincides with the standard one for ∇x restricted to points in the supportΩ.

The non-negativity constraints on x and b as well as the one restricting the estimation of xonΩ can be
relaxed using suitable smooth penalty terms, so that, finally, the following optimization problem can be
addressed:

argmin
x∈RL2 ,b∈RM2

1
2
∥Ψx� y�bð Þ∥22þ

μ
2
∥∇x∥22þ

β
2
∥∇b∥22þ

α
2

∥IΩx∥22þ
XL2
i= 1

ϕ xið Þ½ �2þ
XM2

i= 1

ϕ bið Þ½ �2
 !

,

(13)

(a) LB dataset (b) HB dataset

Figure 5. The relative error in noise variance estimation, defined as: Error = ∣s�σ2∣
∣σ2∣ , where σ

2 is the
constant variance of the electronic noise. The error is computed for 20 different noise realizations,

presenting in the graph the mean and the standard deviation (error bars).
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where the parameter α≫1can be chosen arbitrarily high to enforce the constraints, IΩ is a diagonal matrix
acting as characteristic function of Ω, that is, defined as:

IΩ i, ið Þ= 0 if i ∈Ω,

1 if i �∈Ω,



∀i∈ 1,…,L2

� �
,

and ϕ :R!R is used to penalize negative entries, being defined as:

ϕ zð Þ≔ 0 if z≥0,

z if z< 0,



∀z∈R: (14)

We anticipate here that considering the unconstrained problem (13) instead of the original, constrained,
one (12), will come in handy for the design of an automatic parameter selection strategy, as we further
detail in Section 5.2.

To solve the joint-minimization problem (13), we use the Alternate Minimization algorithm, see
Algorithm 2. In the following subsections, we provide more details on the solution of the two minimiza-
tion subproblems.

Algorithm 2 COL0RME, Step II: Intensity Estimation.

Require: y∈RM2
,x0∈RL2 ,b0∈RM2

,μ,β> 0, α≫1.
repeat

xkþ1 = argmin
x∈RL2

1
2∥Ψx� y�bk

� �
∥22þ μ

2∥∇x∥
2
2þ α

2 ∥IΩx∥22þ
PL2

i= 1 ϕ xið Þ½ �2
� �

bkþ1 = argmin
b∈RM2

1
2∥b� y�Ψxkþ1� �

∥22þ β
2∥∇b∥

2
2þ α

2

PM2

i= 1 ϕ bið Þ½ �2

until convergence.
return x,b.

4.1. First subproblem: update of x

In order to find at each k≥1 the optimal solution xkþ1∈RL2 for the first subproblem, we need to solve a
minimization problem of the form:

xkþ1 = argmin
x∈RL2

g x;bk� �þh xð Þ, (15)

where, for bk∈RM2
being fixed at each iteration k≥1 , g �;bk� �

:RM2!Rþ is a proper and convex
function with Lipschitz gradient, defined as:

g x;bk
� �

≔
1
2
∥Ψx� y�bk

� �
∥22þ

μ
2
∥∇x∥22, (16)

and where the function h :RL2!R encodes the penalty terms:

h xð Þ= α
2

∥IΩx∥22þ
XL2
i= 1

ϕ xið Þ½ �2
 !

: (17)

Solution of (15) can be obtained iteratively, using, for instance, the proximal gradient descent
algorithm, whose iteration can be defined as follows:

xnþ1 =proxh,τ x
n� τ∇g xnð Þð Þ, n= 1,2,…, (18)

where ∇g �ð Þ denotes the gradient of g , τ∈ 0, 1
Lg

� i
is the algorithmic step-size chosen inside a range

depending on the Lipschitz constant of ∇g, here denoted by Lg, to guarantee convergence. The proximal
update in (18) can be computed explicitly using the computations reported in Appendix A. One can show
in fact that, for each w∈RL2 there holds element-wise:
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proxh,τ wð Þ� �
i = proxh,τ wið Þ=

wi

1þατIΩ i, ið Þ if wi≥0,

wi

1þατ IΩ i, ið Þþ1ð Þ if wi < 0:

8><>: (19)

Remark 2. As the reader may have noted, we consider the proximal gradient descent algorithm (18) for
solving (15), even though both functions g and h in (16) and (17) respectively, are smooth and convex,
hence, in principle, (accelerated) gradient descent algorithms could be used. Note, however, that the
presence of the large penalty parameter α≫1 would significantly slow down convergence speed in such

case as the step size τ in this case would be constrained to the smaller range 0, 1
Lgþα

� i
. By considering the

penalty contributions in terms of their proximal operators, this limitation does not affect the range of τand
convergence is still guaranteed(30) in a computationally fast way through the update (19).

4.2. Second subproblem: update of b

As far as the estimation of the background is concerned, theminimization problemwe aim to solve at each
k≥1 takes the form:

bkþ1 = argmin
b∈RM2

r b;xkþ1� �þq bð Þ, (20)

where

r b;xkþ1� �
≔

1
2
∥b� y�Ψxkþ1� �

∥22þ
β
2
∥∇b∥22, q bð Þ≔ α

2

XM2

i= 1

ϕ bið Þ½ �2:

Note that r �;xkþ1� �
:RM2!Rþ is a convex function with Lr -Lipschitz gradient and q :RM2!Rþ

encodes (large, depending on α≫1) penalty contributions. Recalling Remark 2, we thus use again the
proximal gradient descent algorithm for solving (20). The desired solution bb at each k≥1 can thus be
found by iterating:

bnþ1 =proxq,δ bn�δ∇r bnð Þð Þ, n= 1,2,…, (21)

for δ∈ 0, 1
Lr

� i
. The proximal operatorproxq,δ �ð Þ, has an explicit expression and it is defined element-wise

for i= 1,…,M2 as:

proxq,δ dð Þ� �
i = proxq,δ dið Þ=

di ifdi≥0,
di

1þαδ
ifdi < 0:

8<: (22)

4.3. Intensity and background estimation results

Intensity estimation results can be found in Figure 6 where (13) is used for intensity/background
estimation on the supports ΩR estimated from the first step of COL0RME using R=CEL0, R=ℓ1, and
R=TV.We are referring to them as COL0RME-CEL0, COL0RME-ℓ1, and COL0RME-TV, respectively.
The colormap ranges are different for the coarse-grid and fine-grid representations, as explained in
Section 6.1 The result on ΩTV , even after the second step does not allow for the observation of a few
significant details (e.g., the separation of the two filament on the bottom left corner) and that is, why it will
not further discussed.

A quantitative assessment for the other two regularization penalty choices,ΩCEL0 andΩℓ1, is available in
Figure 7. More precisely, we compute the peak-signal-to-noise-ratio (PSNR), given the following formula:

PSNRdB = 10log10
MAX2

R

MSE

� 	
, MSE=

1

L2
XL2
i= 1

Ri�Kið Þ2, (23)
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whereR∈RL2 is the reference image,K∈RL2 the image we want to evaluate using the PSNRmetric and
MAXR the maximum value of the imageR. In our case, the reference image is the ground truth intensity
image: xGT ∈RL2 . The higher the PSNR, the better the quality of the reconstructed image.

According to Figures 6 and 7, when only a few frames are considered (e.g., T = 100 frames, high
temporal resolution), the method performs better using the CEL0 penalty for the support estimation.
However, when longer temporal sequences are available (e.g., T = 500 or T = 700 frames) the method
performs better using the ℓ1-norm instead. In addition to this, for both penalizations, PSNR improves as
the number of temporal frames increases.

Background estimation results are available in Figure 8 where (13) is used for intensity/background
estimation on the supports ΩR, withR= CEL0 andR=ℓ1, that have been already estimated in the first
step. In the figure, there is also the constant background generated by the SOFI Simulation Tool(31), the
software we used to generate our simulated data (more details in Section 6.1). Although the results look
different due to the considered space-variant regularisation on b , the variations are very little. The
estimated background is smooth, as expected, while higher values are estimated near the simulated
filaments and values closer to the true background are found away from them.

Figure 6. On top: Diffraction limited image y= 1
T

PT
t= 1yt, with T = 500 (4� zoom) for the low-

background (LB) dataset and for the high-background (HB) dataset, ground truth (GT) intensity image.
(a) Reconstructions for the noisy simulated dataset with LB. (b) Reconstruction for the noisy simulated

dataset with HB. From left to right: intensity estimation result on estimated support using CEL0
regularization, ℓ1 regularization and TV regularization. For all COL0RME intensity estimations, the

same colorbar, presented at the bottom of the figure, has been used.
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5. Automatic Selection of Regularization Parameters

We describe in this section two parameter selection strategies addressing the problem of estimating the
regularization parameters λ and μ appearing in the COL0RME support estimation problem (7) and
intensity estimation one (12), respectively. The other two regularization parameters β and α do not need
fine tuning. They are both chosen arbitrary high, so as with large enough β to allow for a very smooth
background and with very high α to respect the required constraints (positivity for both intensity and
background and restriction to the predefined support only for the intensity estimation).

(a) LB dataset (b) HB dataset

Figure 7. COL0RME peak-signal-to-noise-ratio (PSNR) values for two different datasets (low-back-
ground and high-background datasets), stack sizes and regularization penalty choices. The mean and the

standard deviation of 20 different noise realizations are presented.

Figure 8. (a) Low-background (LB) dataset: Diffraction limited image y= 1
T

PT
t= 1yt with T = 500 (4�

zoom), background estimation result on estimated support using CEL0 and ℓ1 regularization, ground
truth (GT) background image. (b) High-background (HB) dataset: Diffraction limited image

y= 1
T

PT
t= 1yt with T = 500 (4� zoom), Background estimation result on estimated support using CEL0

and ℓ1 regularization, GT background image. Please note the different scales between the diffraction
limited and background images for a better visualization of the results.
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5.1. Estimation of support regularization parameter λ

The selection of the regularization parameter value λ in (7) is critical, as it determines the sparsity level of
the support of the emitters. For its estimation, we start by computing a reference value λmax, defined as the
smallest regularization parameter for which the identically zero solution is found. It is indeed possible to
compute such a λmax for both regularization terms CEL0 and ℓ1 (see Refs. (32) and (33)). Once such
values are known, we thus need to find a fraction γ∈ 0,1ð Þ of λmax corresponding to the choice λ= γλmax.
For the CEL0 regularizer the expression for λmax (see Proposition 10.9 in Ref. (32)) is:

λCEL0max ≔ max
1≤i≤L2

〈ai,ry〉
2

2∥ai∥2
, (24)

where ai = Ψ⊙Ψð Þi denotes the i th column of the operator A≔Ψ⊙Ψ . Regarding the ℓ1 -norm
regularization penalty, λmax is given as follows:

λℓ1max ≔∥A⊺ry∥∞ = max
1≤i≤L2

〈ai,ry〉: (25)

As far as ℓ1 is used as regularization term in (7), we report in Figure 9 a graph showing how the PSNR
value of the final estimated intensity image (i.e., after the application of the second step of COL0RME)
varies for the two datasets considered depending on λ. It can be observed that for a large range of values λ,
the final PSNR remains almost the same. Although this may look a bit surprising at a first sight, we remark
that such a robust result is due, essentially, to the second step of the algorithm where false localizations
related to an underestimation of λ can be corrected through the intensity estimation step. Note, however,
that in the case of an overestimation of λ, points contained in the original support are definitively lost so no
benefit is obtained from the intensity estimation step, hence the overall PSNR decreases.

When the CEL0 penalty is used for support estimation, a heuristic parameter selection strategy can be
used to improve the localization results, but also to avoid the fine parameter tuning. More specifically, the
nonconvexity of the model can be used by considering an algorithmic restarting approach to improve the
support reconstruction quality. In short, a value of λcan be fixed, typically λ= γλCEL0max with γ≈ 5�10�4, so
as to achieve a very sparse reconstruction. Then, the support estimation algorithm can be run and
iteratively repeated with a new initialization (i.e., restarted) several times. While keeping λ fixed along
this procedure, a wise choice of the initialization depending, but not being equal to the previous output can
be used to enrich the support, see Appendix C for more details. Nonconvexity is here exploited by
changing, for a fixed λ , the initialization at each algorithmic restart, so that new local minimizers

(a) LB dataset (b) HB dataset

Figure 9. The peak-signal-to-noise-ratio (PSNR) value of the final COL0RME image, using the ℓ1-norm
regularizer for support estimation, for different γvalues, evaluating in both the low-background (LB) and
high-background (HB) datasets. Themean and the standard deviation of 20 different noise realization are

presented.
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(corresponding to possible support points) can be computed. The final support image can thus be
computed as the superposition of the different solutions computed at each restarting. In such a way, a
good result for a not-finely-tuned value of λ can be computed.

5.2. Estimation of intensity regularization parameter μ by discrepancy principle

In this section, we provide some details on the estimation of the parameter μ in (12), which is crucial for an
accurate intensity estimation. Recall that the problem we are looking at in this second step is

find x∈RL2 s:t: y=Ψxþbþn, (26)

where the quantities correspond to the temporal averages of the vectorized model in (4), so that

n= 1
T

PT
t= 1nt . The temporal realizations nt of the random vector n follow a normal distribution with

zero mean and covariance matrix sIM2 , where s has been estimated in the first step of the algorithm, see
Section 3.1. Consequently, the vectorn follows also a normal distribution with zeromean and covariance
matrix equal to s

T IM2 . As both s and T are known, we can use the discrepancy principle, a well-known a
posteriori parameter-choice strategy (see, e.g., Refs. (34) and (35)), to efficiently estimate the hyper-
parameter μ. To detail how the procedure is applied to our problem, we write xμ in the following to
highlight the dependence of x on μ. According to the discrepancy principle strategy, the regularization
parameter μ is chosen so that the residual norm of the regularized solution satisfies:

∥y�Ψbxμ� bb∥22 = ν2DP∥n∥
2
2, (27)

where bxμ∈RL2 and bb∈RM2
are the solutions of (12). The expected value of ∥n∥22 is:

E ∥n∥22
� �

=M2 s
T
, (28)

which can be used as an approximation of ∥n∥22 forM
2 big enough. The scalar value νDP ≈ 1 is a “safety

factor” that plays an important role in the case when a good estimate of ∥n∥2 is not available. In such
situations, a value νDP closer to 2 is used. As detailed in Section 3.1, the estimation of s is rather precise in
this case, hence we fix νDP = 1 in the following.

We can now define the function f μð Þ :Rþ!R as:

f μð Þ= 1
2
∥y�Ψbxμ� bb∥22� ν2DP

2
∥n∥22: (29)

We want to find the value bμ such that f bμð Þ= 0. This can be done iteratively, using the Newton’s method
whose iterations read:

μnþ1 = μn�
f μnð Þ
f 0 μnð Þ

, n= 1,2,…: (30)

In order to be able to compute easily the values f μð Þ and f 0 μð Þ, the values bxμ∈RL2 , bb∈RM2
, andbx0μ = ∂

∂μbxμ∈RL2 need to be computed, as it can be easily noticed by writing the expression of f 0 μð Þwhich
reads:

f 0 μð Þ= ∂

∂μ
1
2
∥y�Ψbxμ� bb∥22
 


= bx0μ� �⊺
Ψ⊺ y�Ψbxμ� bb� �

: (31)

The values bxμ and bbcan be found by solving the minimization problem (12). As far as bx0μ is concerned,
we report in Appendix B the steps necessary for its computation. We note here, however, that in order to
compute such a quantity, the relaxation of the support/non-negativity constraints by means of the smooth
quadratic terms discussed above is fundamental. One can show that bx0μ is the solution of the following
minimization problem:

bx0μ = argmin
x∈RL2

1
2
∥Ψx∥22þ

μ
2
∥∇xþc∥22þ

α
2

∥IΩx∥22þ∥Ibxμ
x∥22

� �
, (32)

Biological Imaging e1-15

https://doi.org/10.1017/S2633903X22000010 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X22000010


where c is a known quantity defined by c= 1
μ∇bxμ, and the diagonal matrix Ibxμ

∈RL2�L2 identifies the
support of bxμ by:

Ibxμ
i, ið Þ= 0 if bxμ

� �
i≥0,

1 if bxμ

� �
i < 0:

(
We can find bx0μ by iterating

x0nþ1μ =proxh,τ x0nμ� τ∇g x0nμ
� �� �

, n= 1,2,…, (33)

where

g xð Þ≔ 1
2
∥Ψx∥22þ

μ
2
∥∇xþc∥22, h xð Þ≔ α

2
∥IΩx∥22þ∥Ibxμ

x∥22
� �

: (34)

For z∈RL2, the proximal operatorproxh,τ zð Þcan be obtained following the computations inAppendix
A:

proxh,τ zð Þ
� �

i
= proxh,τ zið Þ=

zi

1þατ IΩ i, ið Þþ Ibxμ
ið , iÞ

� � , (35)

while

∇g x0ð Þ= Ψ⊺Ψþμ∇⊺∇ð Þx0 þ∇⊺∇bxμ, (36)

and the step τ∈ 0, 1
Lg

� i
, with Lg = ∥Ψ⊺Ψþμ∇⊺∇∥2 the Lipschitz constant of ∇g . A pseudo-code

explaining the procedure we follow to find the optimal bμ can be found in Algorithm 3. Finally, in
Figure 10, a numerical example is available to show the good estimation of the parameter bμ.

Figure 10. The solid blue line shows the peak-signal-to-noise-ratio (PSNR) values computed by
solving (13) for several values of μ within a specific range. Tha data used are the high-background
(HB) dataset with T = 500 frames (Figure 12c) and the ℓ1-norm regularization penalty. The red cross
shows the PSNR value bμ obtained by applying the Discrepancy Principle. We note that such value is very

close to one maximizing the PSNR metric.
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Algorithm 3 Discrepancy Principle.

Require: y∈RM2
,x0∈RL2 ,b0∈RM2

,μ0,β> 0,α≫1.
repeat.

Find bxμn ,
bb using Algorithm 2

Find bx0μn solving (32)

Compute f μnð Þ, f 0 μnð Þ from (29) and (31)

μnþ1 μn� f μnð Þ
f 0 μnð Þ

until convergence.
return bμ.

6. Results

In this section, we compare themethodCOL0RMEwith state-of-the-art methods that exploit the temporal
fluctuations/blinking of fluorophores, while applying them to simulated and real data. More precisely, we
compare: COL0RME-CEL0 (using the CEL0 regularization in the support estimation), COL0RME-ℓ1

(using the ℓ1 -norm regularization in the support estimation), SRRF(13), SPARCOM(18), and LSPAR-
COM(19). We further performed preliminary comparisons also with the ESI, 3B, and bSOFI approaches
using available codes provided by the authors on the web,1 but we did not successfully obtain satisfactory
results, so we omit them in the following.

6.1. Simulated data

To evaluate the method COL0RME we choose images of tubular structures that simulate standard
microscope acquisitions with standard fluorescent dyes. In particular, the spatial pattern (see
Figure 12a) is taken from the MT0 microtubules training dataset uploaded for the SMLM Challenge of
2016.2 The temporal fluctuations are obtained using the SOFI simulation tool(31). This simulation
software, implemented in MATLAB, generates realistic stacks of images, similar to the ones obtained from
real microscopes, as it makes use of parameters of the microscope setup and some of the sample’s main
properties. However, differently from the fluctuating3 microscopic data presented in Section 6.2, the
blinking generated by the SOFI Simulation Tool have a more distinctive “on–off” behavior.

For the experiments presented in this paper, we generate initially a video of 700 frames, however we
evaluate the methods using the first T = 100, T = 300, T = 500, and T = 700 frames, so as to examine
further the trade-off between temporal and spatial resolution. The frame rate is fixed at 100 frames per
second (fps) and the pixel size is 100nm. Regarding the optical parameters, we set the numerical aperture
equal to 1.4 and the emission wavelength to 525 nm, while the FWHM of the PSF is equal to 228:75 nm.
The fluorophore parameters are set as follows: 20 ms for on-state average lifetime, 40 ms for off-state
average lifetime and 20 s for average time until bleaching. The emitter density is equal to 10.7 emitters/
pixel/frame, while 500 photons are emitted, on average, by a single fluorescent molecule in every frame.

We create two datasets with the main difference between them being the background level, as in real
scenarios the background is usually present. More precisely we create: the LB dataset, where the
background is equal to 50 photons/pixel/frame and, the most realistic of the two, the HB dataset, where
the background is equal to 2,500 photons/pixel/frame. In both datasets, we proceed as follows: initially,
Poisson noise is added to simulate the photon noise (see (2)); subsequently, the number of photons

1 ESI: https://github.com/biophotonics-bielefeld/ESI, 3B: http://www.coxphysics.com/3b, bSOFI implemented in SOFI Simu-
lation Tool software package: https://github.com/lob-epfl/sofitool.

2 http://bigwww.epfl.ch/smlm/datasets/index.html.
3 The emission of a single fluorophore over time can be described by a Poisson distribution.
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recorded by each camera pixel is converted into an electric charge in accordance with the quantum
efficiency and gain of the camera that have been set to 0.7 and 6, respectively (thus resulting in an overall
gain of 4.2); finally, Gaussian noise is added. In order to give a visual inspection of the background and
noise, in Figure 11, one frame of the HB dataset is presented before and after the background/noise
addition. As we want, also, to provide a quantitative assessment, we measure the quality of the
reconstruction of the final sequence of T frames (yt, t= 1,2,…,T ) using the signal-to-noise-ration
(SNR) metric, given by the following formula:

SNRdB = 10log10

1
TM2

PTM2

i= 1
Rið Þ2

1
TM2

PTM2

i= 1
Ri�Kið Þ2

0BBB@
1CCCA, (37)

whereR∈RTM 2
is the reference image andK∈RTM 2

the image we want to evaluate, both of them in a
vectorized form. As reference, we choose the sequence of convoluted and down-sampled ground truth
frames (see one frame of the reference sequence in Figure 11a). The SNR values for a sequence of T = 500
frames for the LB and HB dataset are 15:57dB and�6:07dB, respectively. A negative value is computed
for the HB dataset due to the very high background used in this case.

The diffraction limited image (the average image of the stack) of each dataset as well as the ground
truth intensity image are available in Figure 12. In the LB dataset, due to the high signal values, the
background is not visible. Further, as the observed microscopic images and the reconstructed ones belong
to different grids, coarse and fine grid respectively, their intensity values are not comparable and we can
not use the same colorbar to represent them. The intensity of one pixel in the coarse grid is the summation
of the intensities of q�q pixels in the fine grid, where q is the super-resolution factor. For this reason, we
use two different colorbars.

The comparison of themethod COL0RMEwith other state-of-the-art methods that take advantage of the
blinking fluorophores is available below. Regarding the method COL0RME-CEL0 and COL0RME-ℓ1 ,
a regularization parameter equal to λ= 5�10�4� λCEL0max and λ= 5�10�4� λℓ1

max , respectively, is used in
the support estimation. The hyper-parameters α and β are set as follows: α= 106, β= 20. For the method
COL0RME-CEL0 the algorithmic restarting approach is used for a better support estimation. It stops when
there are not additional pixels added to the estimated support or if a maximum number of 10 restarts is
reached. Such number was empirically determined by preliminary simulations. For the method SRRF, we
are using the NanoJ SRRF plugin for ImageJ.4 Concerning the method SPARCOM, we make use of the

(a) (b)

Figure 11.One frame of the high-background (HB) dataset, before and after the addition of background
and the simulated noise degradation. (a) A convoluted and down-sampled image xGT

t obtained from a
ground truth frame xGT

t , (b) a frame of the final noisy sequence: yt. Note the different colormaps to better
capture the presence of noise and background.

4 https://github.com/HenriquesLab/NanoJ-SRRFhttps://github.com/HenriquesLab/NanoJ-SRRF.
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MATLAB code available online.5 As regularization penalty we choose the ℓ1-norm with a regularization
parameter equal to 10�10 and we avoid the postprocessing step (the convolution with a small Gaussian
function) for most precise localization. Finally, we test the method LSPARCOM, using the code that is,
available online6 and the tubulin (TU) training set that is provided.

In Figure 13, we compare the reconstructions of the methods COL0RME-CEL0, COL0RME-ℓ1 ,
SRRF, SPARCOM, and LSPARCOM for the LB dataset and in Figure 14 for the HB dataset, for a
sequence of T =500 frames. Results for different stack sizes, are available in the Supplementary
Figures S1–S3. Quantitative metrics like the JI for the localization precision and the PSNR for the
evaluation of the estimated intensities, are only available for the methods COL0RME-CEL0 and
COL0RME-ℓ1 (see Figures 4 and 7). For the rest of the methods, the JI values are very small due to
background and noise artifacts in the reconstructions that lead to the appearance of many false positives,
while the PSNR metric is not possible to be computed as the methods SRRF, SPARCOM, and
LSPARCOM do not reconstruct the intensity level. In both datasets, LB and HB datasets, and for a
sequence of T = 500 frames, the better reconstruction, visually, is the one of the method COL0RME-ℓ1,
as it is able to achieve a more clear separation of the filaments in the critical regions (yellow and green
zoom boxes). The method COL0RME-CEL0 achieves also a good result, eventhough the separation of
the filaments, that are magnified in the green box, is not so obvious. The same happens also when the
method SPARCOM is being used. Finally, the reconstruction of the methods SRRF and LSPARCOM, is
slightly misleading.

6.2. Real data

To show the effectiveness of our method for handling real-world data, we apply COL0RME to an image
sequence acquired from a TIRF microscope. The TIRF microscope offers a good observation of the
activities happening next to the cell membrane, as it uses an evanescent wave to illuminate and excite
fluorescent molecules only in this restricted region of the specimen(36). Further, the TIRFmicroscope does
not require specific fluorescent dyes, allows live cell imaging using a low illumination laser, with really
low out-of-focus contribution and produces images with a relatively good, in comparison with other
fluorescence microscopy techniques, SNR. To enhance the resolution of the images acquired from a TIRF
microscope, super-resolution approaches that exploit the temporal fluctuations of blinking/fluctuating
fluorophores, like COL0RME, can be applied.

The data we are using have been obtained from a multiangle TIRF microscope, with a fixed
angle close to the critical one. A sequence of 500 frames has been acquired, with an acquisition time
equal to 25 s. Tubulins in endothelial cells are being imaged, while they are colored with the Alexa Fluor
488. The variance of fluctuations over time for a typical pixel is measured and is belonging to the range

Figure 12. The ground truth (GT) intensity image, as well as, the diffraction limited images

y= 1
T

PT
t= 1yt for the two datasets with a 4� zoom, for a sequence of T = 500 frames.

5 https://github.com/KrakenLeaf/SPARCOMhttps://github.com/KrakenLeaf/SPARCOM.
6 https://github.com/gilidar/LSPARCOMhttps://github.com/gilidar/LSPARCOM.
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5�105�7�105. The diffraction limited image, or with other words the mean stack image y is shown in
Figure 15, together with one frame yt extracted from the entire stack. The FWHM of the PSF has been
measured experimentally and is equal to 292:03 nm, while the CCD camera has a pixel of size 106 nm.

The results of the method COL0RME-CEL0 and COL0RME-ℓ1 and more precisely the intensity and
the background estimation, can be found in Figure 15. Experiments using different stack sizes have been
done showing that the more frames we use (up to a point that we do not have many molecules bleached),
the more continuous filaments we find. However, by acquiring only 500 frames we have a good balance
between temporal and spatial resolution. For this reason we present here only results using a stack of
500 frames. For the method COL0RME-CEL0 the regularization parameter λ is equal to λ= 5�
10�4� λCEL0max and the algorithmic restarting approach has been used (stopping criteria: when, in a certain
restarting, there are not additional pixels added to the global support, but with maximum 10 restarts).
Regarding the method COL0RME-ℓ1 the regularization parameter λ is equal to λ= 5�10�6� λℓ1max , a
relatively small value so as to be sure that we will include all the pixels that contain fluorescent molecules.
Even if we underestimate λand find more false positives in the support estimation, after the second step of
the algorithm, the final reconstruction is corrected, as explained in 5.1. The hyper-parameters α and β
are equal to: α= 106, β= 20. Using any of the two regularizers the spatial resolution is enhanced, as it
can be also observed from the yellow zoom boxes. However, the reconstruction obtained by both

Figure 13. Results for the low-background (LB) dataset with T = 500. Note that the methods super-
resolution radial fluctuations (SRRF), SPARCOM, and LSPARCOM do not estimate real intensity values.
Between the compared methods only COL0RME is capable of estimating them, while the other methods
estimate the mean of a radiality image sequence (SRRF) and normalized autocovariances (SPARCOM,

LSPARCOM).
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COL0RME-CEL0 and COL0RME-ℓ1 is to some degree punctuated due to mainly limitations arising
from experimental difficulties to get a staining sufficiently homogeneous for this imaging resolution.
Furthermore, there are a few filaments that do not seem to be well reconstructed, especially using the
COL0RME-CEL0 method, for example, the one inside the green box.

Finally, the comparison of the methods COL0RME-CEL0 and COL0RME-ℓ1 with the other state-of-
the-art methods is available in Figure 16. The parameters used for the methods SRRF, SPARCOM, and
LSPARCOM, are explained in the Section 6.1. Here, we further use the postprocessing step (convolution
with a small Gaussian function) in the method SPARCOM, as the result was dotted. The methods
COL0RME-CEL0 and COL0RME-ℓ1 seem to have the most precise localization, by reconstructing thin
filaments, as shown in the cross-section plotted in Figure 16, although a bit punctuated. The most
appealing visually is the result of themethod SRRF,where the filaments have amore continuous structure,
however from the cross-section, we can see that the resolution is not so much improved compared to the
other methods. SPARCOMand LSPARCOMdo not perform very well in this real image sequence due to,
mainly, background artifacts.

7. Discussion and Conclusions

In this paper, we propose and discuss the model and the performance of COL0RME, a method for super-
resolution microscopy imaging based on the sparse analysis of the stochastic fluctuations of molecules’
intensities. Similarly to other methods exploiting temporal fluctuations, COL0RME relaxes all the
requirements for special equipment (microscope and fluorescent dyes) and allows for live-cell imaging,
due to the good temporal resolution and the low power lasers employed. In comparison with competing

Figure 14. Results for the high-background (HB) dataset with T = 500.
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methods, COL0RME achieves higher spatial resolution than other methods exploiting fluctuations while
having a sufficient temporal resolution. COL0RME is based on two different steps: a former one where
accurate molecule localization and noise estimation are achieved by solving nonsmooth convex/non-
convex optimization problems in the covariance domain and the latter where intensity information is
retrieved in correspondence with the estimated support only. Our numerical results show that COL0RME
outperforms competing approaches in terms of localization precision. To the best of our knowledge,
COL0RME is the only super-resolution method exploiting temporal fluctuations which is capable of
retrieving intensity-type information, signal and spatially varying background, which are of fundamental
interest in biological data analysis. For both steps, automatic parameter selection strategies are detailed.
Let us remark that such strategy of intensity estimation could be applied to the other competing super-
resolutionmethods in the literature. Several results obtained on both simulated and real data are discussed,
showing the superior performance of COL0RME in comparison with analogous methods such as
SPARCOM, LSPARCOM and SRRF. Possible extensions of this work shall address the use of intensity
information estimated by COL0RME for 3D reconstruction in, for example, MA-TIRF acquisitions.
Furthermore, a systematic study to assess quantitatively the spatial resolution achieved by COL0RME
under different scenarios (different background levels, different PSNRs, and number of frames) is
envisaged.

Figure 15. Real total internal reflection fluorescence (TIRF) data, T = 500 frames. Diffraction limited
image or the mean of the stack y (4� zoom), a frame yt from the stack (4� zoom), the intensity and

background estimation of the methods COL0RME-CEL0 and COL0RME-ℓ1.
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Figure 16. Real total internal reflection fluorescence (TIRF) data, T = 500 frames. Diffraction limited
image y (4� zoom), comparisons between the method that exploit the temporal fluctuations, normalized
cross-section along the green line presented in the diffraction limited and reconstructed images, but also
in the blue zoom-boxes. Discription of colorbars: real intensity values for y and COL0RME in two
different grids, mean of the radiality image sequence for super-resolution radial fluctuations (SRRF),

normalized autocovariances for SPARCOM and LSPARCOM.
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A. Appendix. Proximal Computations
Given the function h :RL2!R, defined in (17), the proximal mapping of h is a an operator given by:

proxh,τ wð Þ = argmin
u

1
2τ
∥u�w∥22þh wð Þ

� 	
= argmin

u

1
2τ
∥u�w∥22þ

α
2

∥IΩu∥22þ
XL2
i= 1

ϕ uið Þ½ �2
 ! !

:

(A.1)

The optimal solution bu (bu= proxh,τ wð Þ), as the problem (A.1) is convex, is attained when:

0∈∇
1
2τ
∥bu�w∥22þ
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∥IΩbu∥22þXL2
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,
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bu�wð Þþα IΩbuþ ϕ buið Þϕ0 buið Þ½ � i= 1,…,L2f g

� �
:

(A.2)

Starting from (14), we can compute ϕ0 :R!Rþ, as:

ϕ0 zð Þ≔ 0 if z≥0,

1 if z< 0,



∀z∈R: (A.3)

Given (A.3), we can write:

0∈
1
τ
bu�wð Þþα IΩbuþ ϕ buið Þ½ � i= 1,…,L2f g

� �
: (A.4)

Exploiting component-wise, as problem (A.1) is separable with respect to both x andw, and assuming bui≥0, the derivative
computed at (A.4) vanishes for:

bui =
1

1þατIΩ i, ið Þwi, (A.5)

and it holds forwi≥0. Similarly, for the case bui < 0, this analysis yields:

bui =
1

1þατ IΩ i, ið Þþ1ð Þwi, (A.6)

forwi < 0.
So finally, the proximal operator is given by:

proxh,τ wð Þ
� �

i = proxh,τ wið Þ=
wi

1þατIΩ i, ið Þ ifwi≥0,

wi

1þατ IΩ i, ið Þþ1ð Þ ifwi < 0:

0B@ (A.7)

In a similar way, we compute the proximal mapping of the function h :RL2!R, defined in (34), as follows:

proxh,τ zð Þ = argmin
u
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(A.8)

The optimal solution bu of (A.8) bu=proxh,τ zð Þ
� �

is attained when:
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By eliminating bu in the expression (A.9), we compute element-wise the proximal operator:

proxh,τ zð Þ
� �

i
= proxh,τ zið Þ=

zi

1þατ IΩ i, ið Þþ Ibxμ
ið , iÞ

� � : (A.10)

B. Appendix. The Minimization Problem to Estimate bx0μ
Starting from the penalized optimization problem (13) and having b fixed, we aim to find a relation that contains the optimal bxμ.
While there are only quadratic terms, we proceed as following:
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Given (A.3), we can write:
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Our goal is to compute bx0μ, the partial derivative of bxμ w.r.t. μ. So, we derive as follows:
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We define the matrix Ibxμ
such as:

Ibxμ
i, ið Þ= 0 if bxμ
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i≥0,

1 if bxμ
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i < 0:

(
Now the vector ϕ0 bxμ
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h i
i= 1,…,L2f g, using further the equation (A.3), can be simply written as: Ibxμ

bx0μ and then
(A.13) becomes:
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The minimization problem we should solve in order to find bx0μ thus is:

bx0μ = argmin
x∈RL2

1
2
∥Ψx∥22þ

μ
2
∥∇xþ1

μ
∇bxμ∥22þ

α
2

∥IΩx∥22þ∥Ibxμ
x∥22

� �
: (A.14)

C. Appendix. Algorithmic Restart
Every initialization is based on the solution obtained at the previous restarting. There are manyways to choose the new initialization,
deterministic, and stochastic ones. In this paper, we chose a deterministic way based on the following idea: for every pixel belonging
to the solution of the previous restarting we find its closest neighbor. Then, we define the middle point between the two and we
include it in the initialization of the current restarting. A small example is given in the Figure 17. The yellow points belong to the
support estimation of the previous restarting. Starting from them we define the red points, used for the initialization of the current
restarting.
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