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THE APPROXIMATE JORDAN-HAHN 
DECOMPOSITION 
GOTTFRIED T. RÙTTIMANN 

1. Introduction. Non-commutative measure theory embraces measure theory 
on cr-fields of subsets of a set, on projection lattices of von Neumann algebras or 
JBW-algebras and on hypergraphs alike [20], [27], [33], [37], [39], [40], [41]. 
Due to the unifying structure of an orthoalgebra concepts can easily be trans­
ferred from one branch to the other. Additional conceptual inpetus is obtained 
from the logico-probabilistic foundations of quantum mechanics (see [6], [19], 
[21]). 

In the late seventies the author studied the Jordan-Hahn decomposition of mea­
sures on orthomodular posets and certain graphs. These investigations revealed 
an interesting geometrical aspect of this decomposition in that the Jordan-Hahn 
property of the convex set of probability charges on a finite orthomodular poset 
can be characterized in terms of the extreme points of the unit ball of the Banach 
space dual of the base normed space of Jordan charges. Subsequent investiga­
tions let into the study of stable faces of convex polyhedra [35] and attempts to 
generalize these results above into questions of a functional analytic nature [9], 
[10]. 

The present paper is concerned with a relaxed form of the Jordan-Hahn de­
composition which is, as it turns out, in important cases the suitable kind of 
decomposition when considering not necessarily a-additive charges. A convex 
set À of probability charges on an orthoalgebra L is said to have the approx­
imate Jordan-Hahn property provided that for every linear combination p of 
elements of À there exist elements i/, £ in À and elements 5, f in R+ such that (i) 
p — sv — t^ and (ii) to each e > 0 there exists an element p in L with {sv)(p'), 
(tO(p) = e- This is clearly an extension of the classical notion of an approx­
imate Jordan-Hahn decomposition (see e.g. [34]) from the context of fields of 
sets to the non-commutative setting of orthoalgebras. For the special case of a 
cr-orthocomplete orthomodular poset, an even weaker version of a Jordan-Hahn 
decomposition has been considered in [9]. 

The main result of this paper consists in establishing in the context of or­
thoalgebras two necessary and sufficient conditions for a convex subset À of 
probability charges to possess the approximate Jordan-Hahn property. This is 
done in terms of a positive dominance property for charges in one case and in 
terms of the variation norm and an intrinsic norm (base norm) determined by 
A in the other. The usefulness of these criteria is demonstrated in the case of 
JBW-algebras, locally finite orthoalgebras and Boolean algebras. 
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In Section 2 we present a summary of the basic facts on orthoalgebras fol­
lowing the work of Foulis and Randall [17], [32]. Further contributions to this 
field can be found in [30], [31] and [42]. In Section 3 we introduce the notion 
of a charge on an orthoalgebra and develop the appropriate functional analytic 
framework. Then Section 4 is devoted to the aforementioned characterization 
of the approximate Jordan-Hahn property. In Section 5 we relate local finite -
ness of an orthoalgebra L to the Jordan-Hahn property of a convex set A of 
probability charges and to reflexivity of the base normed space generated by 
A. A corollary of the main result in this paragraph states that unitality together 
with the Jordan-Hahn property of the convex set of all probability charges on 
L entails local finiteness of L. Section 6 is concerned with various applications 
of the previous results. The collection of idempotents U(A) of a JBW-Algebra 
A forms an orthoalgebra in a natural way. We prove that the collection of prob­
ability charges on U(A) obtained by restricting states on A to U(A) enjoys the 
approximate Jordan-Hahn property. As a second application we exhibit a large 
class of locally finite orthoalgebras for which the convex set of all probability 
charges has the approximate Jordan-Hahn property. Finally, we specialize our 
results to Boolean algebras to obtain a new result in that classical context. 

2. Prerequisites. Let L be a set and _L a binary relation on L. If (/?, q) is an 
element of _L, we write p _L q and call the pair orthogonal. Let 0 be a map 
from J_ into L. For an element (/?, q) in L x L we write p (Bq to assert that p J_ q 
and to denote the image of (p, q) under the map 0 . 

A quintuple (L, _L, 0 ,0 , 1), where L, J_ and 0 are as above and 0, 1 are two 
distinct distinguished elements of L, is said to be an orthoalgebra if the following 
holds true, for elements /?, q and r in L, 

(i) If p _L q and p®q _L r then q _L r ,p JL (<?0r) and (p0(?)0r = p0(<70r), 
(ii) if p ± q then q _L p and /? 0 g = <? 0 /?, 

(iii) to each element p in L there exists a unique element q in L such that 
p _L q and p 0 q equals 1, 

(iv) if p _L p then p = 0. 

For an element p in L we denote with p' the unique element in L which 
satisfies condition (iii). 

Let (L, JL, 0,0,1) be an orthoalgebra. One easily verifies that, for every ele­
ment p in L, 

(v) 1' = 0, (vi) p" = p and (vii) p 0 0 = p. 

Moreover, for elements /?, q and r in L, 

(viii) if p J_ q then p^ip^q)' = c/, 

(ix) i f / ?0<7=/?0 r then q — r. 

For elements p and q in L, we write p û q io mean that there exists an 
element r in L such that /? _L r and /? 0 r is equal to q. The binary rela­
tion ^ is an ordering relation on L with respect to which 0 is the least and 1 is 
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the greatest element. Also, the mapping p —> p' is an orthocomplementation 
on the poset (L, S). The orthocomplemented poset (L, ^ , ') is referred to as the 
orthocomplemented poset associated with the orthoalgebra (L, _L, 0 , 0,1). Then, 
for elements p and q in L, 

(x) p _L q if and only if p ^ </, 

(xi) if p^q then <? = p 0 (p 0 </)' 

holds true. Furthermore, if p _L g then p 0 g is a minimal upper bound of the 
set {p,q} in the poset (L, ̂ ) . 

We now turn our attention to examples of orthoalgebras. 
Let (P, ^ , ') be an orthocomplemented poset with 0 as the least and 1 as the 

greatest element. For a subset M of F we write VM, resp. AM to denote the 
supremum, resp. the infimum, of M provided it exists. Also, we write pVq, resp. 
p Aq, to denote V{/?,<?}, resp. A{p,q}. An orthocomplemented poset (P, ^£, ') 
is said to be an orthomodular poset [16], [37] provided that, for elements p,q 
inP , 

(i) if p û q then p V q exists, 

(ii) if p ^ q' and p\/ q=\ then p = </. 

Let (P, ^S, ') be an orthomodular poset of cardinality greater than one. We define 
a binary relation ± on P by 

±:={(Plq)ePxP:p^q'} 

and a map 0 :_L—> P by 

p®q:=pVq, (p,q)e±. 

It follows that (P,_L, 0,0,1) is an orthoalgebra and that the associated ortho­
complemented poset is ortho-order isomorphic to ( P , ^ , ') under the identity 
map of P. 

A Boolean algebra is a sixtuple (P, U, n, f, 0,1) where P is a set, U, l~l are 
binary operations, f is a unary operation and 0, 1 are two distinct distinguished 
elements of B such that the conditions LI — L10 of [5] are satisfied. We define 
a binary relation ± on P by 

±:= {(p,q) e B x B : p\lq = 0} 

and a map 0 :_L—•> P by 

p^q:=pUq, (p,q) <E_L 

Then (P,_L,0,0,1) is an orthoalgebra, the orthoalgebra corresponding to the 
Boolean algebra P, and the associated orthocomplemented poset (P, ^ , ') is a 
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distributive orthocomplemented lattice, in fact 

p /\q— pHq, pV q = pUq and p' — q\ 

for elements /?, q in B. 
Let (L, _L7 0 , 07 1) be an orthoalgebra. A non-empty subset P of L is said to 

be a suborthoalgebra provided that the following holds true: 

(i) if/? G F then/?' G P, 

(ii) if p,q G P and p A- q then p (Bq € P. 

Clearly, a suborthoalgebra contains the elements 0 and 1 and, in the induced 
structure, is an orthoalgebra in its own right. 

An orthoalgebra is said to be orthomodular provided that the associated or­
thocomplemented poset is an orthomodular poset. 

Let (L, J_, 0,0,1) be an orthoalgebra. Let /?, q be elements of L with p J_ q. 
Then the subset {0,/?, q,p 0 </,//, </', (p 0 </)', 1} is an orthomodular suborthoal­
gebra. A subset M of L is called orthogonal if /?, q G M with /? ̂  # implies that 
p -L q. Notice that the empty subset and singleton subsets of L are orthogonal. 
A subset M of L is said to be jointly orthogonal if it is an orthogonal subset 
contained in an orthomodular suborthoalgebra. Also notice that an orthogonal 
subset of cardinality less than or equal to 2 is jointly orthogonal. An orthoalgebra 
is said to be locally finite if every jointly orthogonal subset is finite. 

Let/7, q be elements in an orthoalgebra L with q = p. We define the difference 
between p and q, denoted by p — q, to be the element (// 0 q)'. A subset D of L 
is called a difference set if it is empty or if there exists a finite, strictly isotone 
sequence (pi)"=0, 1 = n, in (L, 5̂) such that 

D = {Pi - P i - i '• *' = 1,2,. . . ,«}. 

We say that the sequence (pi)n
i=o yields the difference set D. Notice that n is the 

cardinality of D. A difference set is orthogonal and a subset of a difference set 
is a difference set. Also, an orthogonal set of non-zero elements of cardinality 
at most 2 is a difference set. Let (pi)f=Q and (qi)?=0, 1 = m,n, be strictly isotone 
sequences in (L, ^ ) both of which yield the difference set D. Then pm — po 
and qn — go coincide (see Theorem 2.12 [42]). We now define a map 0 from 
the collection of difference sets of L into L as follows: if D is a non-empty 
difference set and yielded by the strictly isotone sequence (pd"=0 then 

0£> :=pn-po\ 

if D is empty, we set 

®D := 0. 

Notice that if p is a non-zero element then it is equal to 0{/?} and that for every 
orthogonal pair (/?, q) of non-zero elements 0{/?, #} coincides with p 0 </. We 
now present two results on difference sets which are essential for the following. 
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THEOREM 2.1. Let (L, J_, ©,0,1) be an orthoalgebra and let M be an orthog­
onal subset of L. Then M is jointly orthogonal if and only if every finite subset 
of M\{0} is a difference set. 

Proof See Theorem 2.16 [42]. 

THEOREM 2.2. Let (L, _L, 0,0,1) be an orthoalgebra and let D be a difference 
set ofL of cardinality n > 0. Let i G {1, 2 , . . . , n} —-» /?/ G D be any enumeration 
of D. Then 

px -Lp2,(Pi ©P2)-L/?3, ((P\ ©P2)©P3)-LP4,... 

C.. (((p! ©p2) © P S ) e p 4 ) e . . . ®pn-\) -L / v 

Moreover, the sequence (qi)"=0 defined by 

q0 := 0, # : = ( . . . ((pi ©p2) ffip3) • • • © A-i) ©A 

/or 1 ^ / ^ n, /s strictly isotone and yields the difference set D. 

Proof See Corollary 2.17[42]. 

For details and proofs the reader is referred to [17], [30], [31], [32] and [42]. 

3. Charges on orthoalgebras. Let (L, JL, 0,0,1) be an orthoalgebra. We 
consider the vector space RL in the product topology r, a locally convex Haus-
dorff topology. An element p in RL is said to be a charge on L if 

p(p 0 <?) = p(p) + p(q) 

for all orthogonal pairs (p, q) in L. It follows that a charge p on L evaluates to 
zero on the element 0 of L. Also, if D is a non-empty difference set of L then, 
by Theorem 2.2, 

peD 

for any charge p on L. A charge is said to be positive if it is positive as a 
functional on L. Trivially, the zero element of RL is a positive charge on L. 
Similarly, a charge is said to be bounded if it is bounded as a functional on L. 

LEMMA 3.1. Let (L, _L, 0,0,1) be an orthoalgebra and let (L, ^ , ') be its as­
sociated orthocomplemented poset. Then a positive charge on L is bounded and 
is an isotone functional on the poset (L, ̂ ) . 

Proof. Let p be a positive charge on L and let p,q be elements in L with 
p ^ q. Then there exists an element r in L such that p 0 r coincides with q. 
Therefore 

p(p) ^ p(p) + p(r) = p,(p®r) = n(q). 

Then, for all elements p in L, 

o = MO) ^ /x(p) S MD. 
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We denote with W(L) the subspace of RL consisting of all bounded charges 
on L and with J+(L) the subset of RL of positive charges on L. Notice that J+(L) 
is a cone in RL (i.e., (i) J+(L) + J+(L) C /+(L), (ii) R+J+(L) Ç J+(L) and (iii) 
J+(L) H -J+(L) = {0}). The subspace J+(L) - J+(L) of RL is denoted by /(L); 
an element of J(L) is called a Jordan charge. By Lemma 3.1, /(L) is a subset 
of W(L). 

Let \i be an element of W(L), we define elements ŷx"*", \i~ and |/x| of RL as 
follows: 

/x+(/?) := sup/i(<7), /x~(p) := — inf \i(q) and \\i\ \— p+ + /x~ 

for an element p of L. Notice that \i~ is equal to (—/x)+. It follows from Sec­
tion 2 that /x+ is a super-additive bounded positive functional on L. We define 
functionals p —* ||/J||V and p —• ||/i||5 on W(L) by 

||/i||v := |//|(1) and \\fi\\s := sup|/i(/7)|, 

called the variation norm and the sup-norm, respectively. 
A charge is said to be a probability charge if it is an element of J+(L) and 

evaluates to one on the element 1 of L. We denote with Q,(L) the r-compact 
convex set of probability charges on L. Notice that the set Q(L) is a base of 
the cone J+(L) (i.e., Q,(L) is a convex set, every non-zero element of J+(L) is a 
positive multiple of an element of Q(L) and this representation is unique). 

On occasion, we restrict our attention to a subset of Q,(L) rather than con­
sidering all probability charges. This justifies the treatment in the generality to 
follow. Let À be a convex subset of Q(L). We denote by J (A) the linear hull of 
A and we write /+(A) for the positive hull of A. Then /+(A) is a generating cone 
in /(A), A is a base of /+(A) and the absolutely convex hull acon(A) of A is 
absorbing in /(A). Clearly, J(L) and J+(L) coincide with /(Q(L)) and /+(Q(L)), 
respectively. 

Let J (A)' be the algebraic dual space of J (A). With each element p of L we 
associate an element e&(p) in J (A)' by 

e^){p) := pip) for /x G /(A). 

Clearly, the set {eA(p) : p € L}, denoted by F(A), is total on /(A) (i.e., if 
£A(P)(M)

 = ^ f° r an< elements p in L then /x = 0). 
For every convex subset A of £2(L) the pair (/(A), A) is a base normed space 

[39], i.e., /(A) is a real vector space, A is a base of a generating cone in /(A) and 
the Minkowski functional [29] over the absorbing absolutely convex set aconA, 
denoted by || • ||A, is a norm, the base norm on J (A). 

Notice that 

||/x||A = inf {s + t : \i = si/ + f£, s, t G R+, i/, £ G A} 
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provided that A is not empty. Let /(A)i be the unit ball of the normed vector 
space (/(A), || • ||A) and let J(A)°X denote its (norm-) interior then J(A)°{ Ç 
aconA Ç /(A)i. Also, if A is non-empty then the absolutely convex hull aconA 
of A coincides with convex hull con(A U —A) of the set A U —A. Conditions 
on A which ensure that the corresponding base norm is a complete norm are 
discussed in [41]. 

We now follow the general theory of base normed spaces and order unit 
normed spaces [1], [4], [15], [38]. With /(A)* we denote the || • ||A-continuous 
members of/(A)7. An element/ in /(A)7 is || • ||A-continuous if and only if the 
functional/ is bounded on the set A. It follows that P(A) is a subset of /(A)*. 
If we order the vector space /(A)* as follows, for elements/, g in J (A)*, 

f^g:& /(/x) ^ g(ji) for all // G A, 

then the triple (/(A)*, ^ , £A(1)) becomes an order unit normed space, i.e., 
an Archimedean ordered real vector space with order unit eA(l). Clearly the 
functional 

/ - + | | / | | A : = s u p { / ( / x ) : / x e / ( A ) 1 } 

defined on /(A)* is a complete norm on /(A)*. Also 

H/IU := sup{|/(/x)| : p e A} = inf{f ^ 0 : / G f[-eA(l),eA(l)]}, 

where, for elements g,h of a partially ordered set, [g,h] denotes the order-
interval from g to h. Moreover, the set [—eA(l), eA(l)] is the unit ball of the 
Banach space (/(A)*, || • ||A). 

The relationship between variation norm, sup-norm and base norm is given 
in the following lemma. 

LEMMA 3.2. Let (L, _L, 0,0,1) be an orthoalgebra. Let r be the product topol­
ogy on the vector space RL and let W(L) be the subspace of RL of bounded 
charges on L. Then the variation norm p —> ||/i||v and the sup-norm p —• \\p\\s 

are equivalent norms on W(L). Moreover, for all elements /i in W(L), 

||/i||v - SUP(/i(/7) - flip')) = 2 | | / 4 - 1,2(1)1 
peL 

and the topology r \ W(L) is coarser than the topology determined by the 
variation norm (or sup-norm). 

Let Q(L) be the convex set of probability charges on L. Let A\, A2 be convex 
subsets ofQ(L) with A\ Ç A2. Let J(A\) and /(A2) denote the linear hull of A\ 
and A2 in W(L), respectively. Then the variation norm, the sup-norm, the base 
norm on J(A\) p —> ||/i||Al and the base norm on /(A2) ji —> ||/X||A2 satisfy 

\\y\\, ^ HMIIV ^ | | / i | k ^ llMlU, 

for elements p in J(A\). 
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Proof. The functional v —> s u p ^ \v(p)\ is a complete norm on the subspace 
V of RL of bounded functional on L and the topology determined by this norm 
is finer than the topology T\ V. Since the subspace of RL of all charges on L 
is r-closed it follows that W(L) is r | V-closed and therefore (W(L), || • \\s) is a 
complete normed vector space. 

Let [i be an element of W(L). Then 

H/illv - |/i|(l) - /i+(l) + (-/x)+(l) = sup pip)+ swpi-p)ip') 

= 2 sup fi(p) - /i(l) = sup(/i(p) - //(//)). 

Hence 

||/x||v = | | - / i | |v and M
+(l) = (||/x||v + M(l))/2. 

Then, 

\\p\\s = max{/i+(l)7 /i-(l)} = (||/i||v + |/x(l)|)/2. 

It follows that ||/i||v ^ 2||/x||5 and since |/i(l)| ^ ||/i||5 we conclude that \\p\\s ^ 
||/x||v This proves that the variation norm is indeed a norm and as such it is 
equivalent to the sup-norm. 

Let \i be an element in /(A). Since P(A) is a subset of [0, eAil)] it follows 
that 

\\p\\v = supOA(p) - eA(p'))(n) ^ sup f{ii) = \\fi\\A. 
peL /6[-«A(l),eA(l)] 

If Ai Ç A2 then aconAi Ç aconA2 and the remaining assertion follows. 

A subset A of Q(L) which coincides with the intersection of £2(L) and the 
affine hull affA of A is referred to as a section of Q(L). A section of Q(L) is 
necessarily convex. Notice that a face of £2(L) is a section of Q(L). 

LEMMA 3.3. Let (L, J_, 0,0,1) be an orthoalgebra and let W(L) be the vector 
space of bounded charges on L equipped with the variation norm p —* \\p\\v 

and the sup-norm p —> \\p\\s- Let Abe a convex subset of the convex set Q(L) 
of probability charges on L and let J (A) be the linear hull of A in W(L). Then 
the following conditions are pairwise equivalent: 

(i) The set A is a section of £2(L). 
(ii) There exists a subspace V ofW(L) such that A equals Q(L) D V. 

(iii) The set A coincides with the set {p G /(A) : /x(l) = 1 and pip) ^ 0 for 
all p G L}. 

(iv) The set A coincides with the set {p G J'(A) : \\p\\s — 1 = /x(l)}. 
(v) 77ze set A coincides with the set {p G /(A) : ||/x||v = 1 =/ / ( ! )} . 
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Proof, (i) => (ii): Let À be a section of Q(L) and let /i be an element of 
Q(L) n linA. Then there exist elements /x,- in A and elements tt in R, / = 
1,2,..., n, such that /x equals $X=i f;/x;. Then 

n n 

i = ,i(i) = 2 ^ 0 ) = 5]^-

and therefore /x belongs to the set affAPl£2(L), hence /x is an element in A. This 
proves that A coincides with the set Q(L) D linA. 

(ii) => (iii): Let V be a subspace of W(L) such that A equals Q(L)flV. Then 
A is a subset of V, hence /(A) is a linear subspace of V and we conclude that 
A Ç Q(L)n/(A) Ç û(L)flV. Therefore A is equal to Q(L)n/(A). Now, if /x is 
a positive charge in /(A) such that /x(l) equals 1 then /x belongs to Q(L)nJ(A). 
This proves the claim. 

(iii) => (iv): Clearly, A is a subset of the set {/x G /(A) : ||/x||5 = 1 = /x(l)}. 
Now let /x be an element of/(A) such that ||/x||5 and /x(l) equals 1. Then for all 
elements p in L, 

l^ /xO/) = / x ( l ) - / x ( p ) = l - / i ( p ) , 

therefore /x(/?) is greater than zero. It follows that /x is an element of A. 
(iv) & (v): This is a consequence of Lemma 3.2. 
(iv) => (i): Let /x be an element of the set affA n Q(L). Then /x(l) equals 

one and /x is a positive charge. Therefore /x is of sup-norm one. Since affA is a 
subset of/(A) it follows that /x belongs to A. 

4. Approximate Jordan-Hahn property. Let (L, _L, ®,0,1) be an orthoal-
gebra and let Q(L) be the convex set of probability charges on L. For a convex 
subset A of Q(L) we denote with J (A) the linear hull and with /(A)+ the positive 
hull of A in the vector space W(L) of bounded charges on L. 

A convex subset A of £l(L) is said to have the Jordan-Hahn property [36], 
[45] if for each element fi in J (A) there exist elements i/, £ in J(A)+ and an 
element p in L such that 

[i — v — ^ and */(//) = 0 = £(/?). 

Trivially, for any orthoalgebra L, the empty subset and singleton subsets of Q,(L) 
have the Jordan-Hahn property. 

We now relax this condition in the following manner: a convex subset A of 
Q(L) is said to have the approximate Jordan-Hahn property if for each element 
\i in /(A) there exist elements i/, £ in 7(A)+ satisfying 

(i) /x = v — £ and (ii) to every e > 0 there exists an element p in L with 
i V ) , £(p) S e. 

Notice that the two properties coalesce for finite orthoalgebras. 
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LEMMA 4.1. Let (L, J_, ©, 0,1) be an orthoalgebra and let A be a non-empty 
convex subset of the convex set Q(L) of probability charges on L. Let J (A) and 
J+(A) be the linear hull and the positive hull of A, respectively. 

Let fi be an element in J (A) and let v be an element in J+(A). If flip) tk 
i/(p) ^ 1 for all elements p in L then there exists an element £ in A such that 
/x(p) ^ £(p) for all elements p in L. 

Proof If i/(l) equals zero then v is the zero element and every element 
in À satisfies the condition. If v(\) is different from zero then vjviX) is an 
element in À since, in this case, /+(A) coincides with R+A. The assertion follows 
immediately. 

LEMMA 4.2. Same preliminaries as in Lemma 4.1. Let W(L) be the vector 
space of bounded charges on L equipped with the sup-norm /x —• \\^\\s and let 
H —> UMIIA be the base norm on /(A). 

If A is such that for each element p in J (A) with \\p\\s ^ 1 there exists an 
element v in J+(A) with pip) Û i/(p) ^ 1 for all elements p in L then A is a 
section of £l(L). Moreover, ||T7||A equals 2\\r]\\s for all elements 77 in J (A) for 
which 77(1) vanishes. 

Proof. We may assume that A is not empty. Let \x be an element of/(A) such 
that \\fi\\s and /x(l) equal one. Since \p(p)\ ^ 1 for all elements p in L there 
exists, by Lemma 4.1, an element £ in A such that pip) ^ £(p) for all elements 
p in L. Then 

1 = fi(l) = flip ©//) = flip) + flip') 

^ S(P) + £(/>') = C(P ®p') = « D = 1. 

Therefore flip) equals £(p) for all elements p in L, which shows that \x is an 
element in A. It follows from Lemma 3.3 that A is a section of Q(L). 

Suppose now that 77 is an element in J (A) such that 7/(1) equals 0 and \\TJ\\A 

equals 1. Then for every e > 0 there exist elements s, t in R+ and elements /€, À 
in A such that 77 equals SK — tX and 1 ̂  s + t ^ 1+e. Since 7](1) vanishes, we 
conclude that s equals t and, hence, 1/2 ^ s ^ (1 +e)/2. Then, for all elements 
p in L, 

- ( 1 + e)/2 ^ -sXip) ^ Ti(p) ^ snip) ^ (1 + 0 /2 

and therefore ||77||̂  ^ 1/2. On the other hand, there exists, by Lemma 4.1, an 
element UJ in A such that 

( ^ / IMIJXP) — uip) for all elements p in L. 

Then (u — r]l\\r]\\s)ip) ^ 0 for all elements p in L and 

(a;-T7/Nls)(l) = a < l ) = l . 
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Since A is a section of Q(L) and u — ri/\\r)\\s is an element o f / (A) it follows, 
by Lemma 3.3, that this element belongs to A. Then 

1/NI* = N/IMWU è \\u\\A + \\u; - WUr/IUU = 2. 

We now proceed to the main result of this Section. 

THEOREM 4.3. Let (L, JL, 0 , 0 , 1 ) be an orthoalgebra and let W(L) be the vec­
tor space of bounded charges on L equipped with the variation norm. Let A be 
a convex subset of the convex set £l(L) of probability charges on L. Let J (A) 
and 7+(A) be the linear hull and the positive hull of A, respectively. Then the 
following conditions are pairwise equivalent: 

(i) For each element p, in / (A) with \i(p) ^ 1 for all elements p in L there 
exists an element v in J+(A) such that p(q) ^ i/(q) ^ 1 for all elements q in L. 

(ii) For each element p in / (A) with —lé p(p) ^ 1 for all elements p in L 
there exists an element v in J+(A) such that p(q) ^ v{q) ^ 1 for all elements q 

in L. 
(iii) The base norm on J (A) and the the variation norm coincide on J (A) and 

the absolutely convex hull of A is closed in the base norm. 
(iv) The subset A has the approximate Jordan-Hahn property. 
If either is the case then A is a section. 

Proof. We may assume that A is not empty, 
(i) => (ii): This is obvious. 

(ii) => (iii): It follows form Lemma 4.2 that A is a section. Let p be an 
element of J (A) of sup-norm one. If p(l) is equal to zero then, by Lemma 
4.2 and Lemma 3.2, ||/X||A and \\p\\v are equal. This also holds true when p(\) 
equals ± 1 , by Lemma 3.3. We now consider the case where /x(l) is contained 
in the interval (0, 1). By Lemma 4.1, there exists an element v in A such that 
0 ^ (y — p)(p) for all elements p in L. Since A is a section there exists, by 
Lemma 3.3, an element £ in A and a scalar t è 0 such that t£ equals v — p. 
Then 

f = f E ( l ) = l - / i ( l ) € ( 0 , l ) 

and one verifies that 

p = (1 -t)v + t(v- £). 

Since p is of sup-norm one there exists, by the Theorem of Bourbaki-Alaoglu 
[29], a || • ^-continuous linear functional/ of norm one on the normed vector 
space (/(A), || • \\s) such that 

l = / ( / i ) = ( l - 0 / ( i ' ) + ( / X i ' - O . 
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Since the elements v and v — £ are of sup-norm less than or equal to one we 
conclude that 

i=f(y)=f(y-0. 

It follows that the element v — £ is of sup-norm one and since (y — Q(l) 
equals zero we infer from Lemma 4.2 that \\(v — 0 / 2 | | A equals one. Again, 
by the Theorem of Bourbaki-Alaoglu, there exists a || • ||A-continuous linear 
functional g of norm one on the normed vector space (/(A), || • \\A) such that 
(l/2)g(i/) — (l/2)g(£) equals one. Since the elements v and £ belong to A we 
conclude that both g(y) and —g(Q are equal to one. Notice that 

(1 + t)~lji = (1 + t)~xv - (1 + t)~lt£ G aconA and 

g((l + 0 " V ) = l -

Then ||(1 + 0~VIU eQuals o n e a nd therefore 

||/x||A = 2 - /x ( l ) . 

Suppose now that /x(l) is an element of the interval (—1,0). Then 

I IMIU = II - H U = 2 - (-/*)0) = 2 + Mi). 

It follows that 

IHU = 2IHI, - |ix(i)| 

for all elements /x in /(A) and we conclude, by Lemma 3.2, that both the base 
norm on J (A) and the variation norm agree on J (A). 

Next we prove that the absolutely convex hull aconA of A coincides with the 
unit ball of the normed vector space (/(A), || • ||A). Since the set aconA is circled 
it suffices to show that each element \i in J (A) of base norm one belongs to that 
set. Let [i be such an element in i(A). Then, by Lemma 3.2, — 1 ^ \i(p) ^ 1 for 
all elements p in L. Assume first that ji{\) is an element of the interval [0,1]. 
Let v denote the element 2(1 + ^(1))_1JLX. Then, by the previously established 
relationship between the sup-norm and the base norm on /(A), we obtain 

||i/||, = 2(1 + /i(l))-1 ||/i||, = 2(1 + fi(l)rl2-l(l + /i(l)) = 1. 

By hypothesis, Lemma 4.1 and Lemma 3.3, there exist elements /c, A in A such 
that v equals K — (1 — v(\))\. It follows that 

(2 - Kl))"1* - (1 - KD)(2 - 1/(1))"^ = (2 - u(l)ylu 

= 2(l+Ml)r1(2-Kl))"V 

- 2(1 + /i(l))-1(2 - 2/x(l)(l + /xd))"1)"V = M 
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and therefore p is an element of aconA. 
If //(l) belongs to the interval [—1,0] then p is an element of aconA since 

the latter is circled. 
(iii) => (iv): Let A be a non-zero element of/(A) and let e > 0. Since the set 

aconA coincides with the unit ball of (/(A), || • ||A) there exist elements i/, £ in 
A and a scalar t in the interval [0, 1] such that 

M := A/||À|U = ri/ - (1 - 0€-

Then the elements | |A | |A^, ||A||AO — 0£ belong to /+(A). By hypothesis and 
Lemma 3.2, suppei(p(p)—pip')) equals one and therefore there exists an element 
p in L such that 

l-<ji(p)-H(p'))S2\\\\fcle. 

Then 

2\\\\fcle 2; 1 - (2/x(p) - /i(l)) = 1 - 2pip) + 2f - 1 

= 2(t - pip)) = 2((1 - 0€(P) - tv{p) + 0 

= 2(fi/(p,) + ( l -0€(p ) ) -

This shows that 

HAIU^CP ' ) , IIAIUCI — 0€<p) ^ c. 

(iv)=>(i): Let p be an element of /(A) and suppose that ji(p) ^ 1 for all 
elements p in L. There exist elements i/, £ in A and elements s, f in R+ and for 
every e > 0 there exists an element p in L such that 

p = si/ — t£ and si/(pf), t£(p) è e. 

Then 

1 à *i(p) = 5i/(p) - f£(p) - 5i/(D - sv(p') - ^(p) 

= 5 i / ( l ) - (^ (p , ) + ^ ( p ) ) â 5 - 2 c . 

Therefore s belongs to the interval [0, 1] which implies that \i(p) ^ si/(p) ^ 
i/(p) ^ 1 for all elements p in L. 

COROLLARY 4.4. Ler (L, J_, ®,0,1) be an orthoalgebra and let W(L) be the 
vector space of bounded charges on L equipped with the variation norm. Let 
J(L) be the real vector space of Jordan charges on L. Let J+(L) be the cone 
of positive charges and let £l(L) be the convex set of probability charges on L. 
Then the following conditions are pairwise equivalent: 

(i) For each element p in W(L) with pip) ^ 1 for all elements p in L there 
exists an element v in J+(L) such that p(q) ^ i/(q) S 1 for all elements q in L. 

https://doi.org/10.4153/CJM-1989-050-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-050-5


THE APPROXIMATE JORDAN-HAHN DECOMPOSITION 1137 

(ii) For each element p in W(L) with — 1 ^ p(p) ^ 1 for all elements p in 
L there exists an element v in J+(L) such that fi(q) ^ i/(q) ^ 1 for all elements 
q in L. 

(iii) Every bounded charge is Jordan, i.e., J(L) exhausts W(L), and the base 
norm on J{L) coincides with the variation norm. 

(iv) Every bounded charge is Jordan and Q.(L) has the approximate Jordan-
Hahn property. 

Proof. If condition (ii) is met then every bounded charge is Jordan. To see 
this, let p be a non-zero element in W(L). Then 

\(n/\\fi\\,M\ ^ i 

for all elements p in L. Let v be an element in J+(L) with 

\(p/\\p\\s)(p)\ ^V(p)û\ 

for all elements p in L. Then 

£ : = i / - p/\\p\\s E J+(L) and p = \\n\\si/ - ||/i||5£. 

Since £l(L) is r-compact it follows that acon^(L) is r-compact as well. Now, 
the topology T\J(L) is coarser than the topology determined by the base norm 
p —>

 ||H|Q(L)
 o n J(L), by Lemma 3.2. Therefore aconQ(L) is || • \\Q(L)-closed. 

With these two observations, the assertion now follows easily from Theorem 
4.3. 

5. Supplementary results. Let (L, _L, 0,0,1) be an orthoalgebra. A subset 
A of the convex set Q(L) of probability charges on L is said to be unital if for 
each non-zero element p in L there exists an element in A which evaluates to 
one on p. 

THEOREM 5.1. Let (L, _L, 0 ,0 , 1) be an orthoalgebra and let W(L) be the 
vector space of bounded charges on L. Let A be a unital convex subset of the 
convex set Q(L) of probability charges on L and let J (A) be the linear hull of 
A equipped with the base norm p —• UMIU-

If the Banach space completion of the normed vector space (/(A), || • ||A) is 
reflexive then L is locally finite. 

Proof Suppose that there exists an infinite jointly orthogonal subset M of L 
and let / E N —>/?,- E M\{0} be an injection. Let /°° be the Banach space of 
bounded real sequences r = (r/)/€N

 w i m norm 

||r||oo = sup|r,-|. 

Let r be an element in l°° and define a sequence (/W)W6N by 

n 

fn = X/<^(P/). 
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Since {/?/:/= 1,2,...,«} is a difference set, by Theorem 2.1, we obtain, for 
each element \x in A, 

n n 

|/w(/x)| ^ V W/i(p;) ^ max |r,| V / J ( / ^ ) 
z — ' /=l,2, . . . , / i z — ' 
/ = 1 A:=l 

^ max |r7-|/i(0{p/:/ = 1,2,...,«}) ^ max |r?|. 
/—1,2,...,« /=1,2,...,« 

Therefore, for all natural numbers w, |[/*„||A - Iklloo- BY 0"(/(A)*, /(A))-
compactness of the unit ball [—^A(I), ^A(I)] of /(A)* there exists a subnet 
(fn')n' in ||r||oo[—£A(1), ^A(I)] which converges to an element/ in this set in the 
a(/(A)*, /(A))-topology. On the other hand, for every element \i in A, the real 
sequence (521=\ MCP/WHEN is isotone and is contained in the interval [0, 1]. Since 
the sequence (J*;)/GN is bounded, we conclude that (/n(/i))neN converges in R. 
The subnet (fn'(p))n' of the sequence (fn(p))neN converges tof(p) and therefore 
(/w(/x))weN converges to/(/i) as well. This proves that (fn)neN converges t o / in 
the a(/(A)*, /(A))-topology. 

For each natural number j we select a charge /zy- in A such that /i/(p/) equals 1. 
Then the sequence (/w(/x/))neN converges to r7, for all natural numbers/ Hence 
rj equals /(/i/) and we conclude that 

iklloo = SUp|/( /Z/) | ^ S U p | / ( / i ) | ^ IkHoo. 
7'GN /i€A 

To this end we have shown that the linear map -0 : /°° —> /(A)* defined by 

V>(r) := ff(/(A)*,/(A)) - lim V r ^ f a ) 

is isometric. This proves that /(A)* contains a non-reflexive closed sub-space. 
Hence /(A)* is not reflexive and therefore the Banach space completion of/(A) 
is not reflexive. 

The following result is a variation of Theorem 4.1 [39]. Notice that £l(L) as 
well as the empty subset and singleton subsets of £l(L) are r-closed subsets of 
RL. 

THEOREM 5.2. Let (L, J_, 0 ,0 , 1) be an orthoalgehra and let r be the product 
topology on RL. Let A be a convex subset of the convex set £l(L) of probability 
charges on L and let /(A) be the linear hull of A equipped with the base norm 
M-*IHIA. 

If A is r-closed and has the Jordan-Hahn property then (/(A), || • ||A) is a 
reflexive Banach space. 

Proof. If A is r-closed then aconA is r-compact and therefore coincides with 
the unit ball of the normed vector space (/(A), || • ||A); also, this space is complete 
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[1], [41]. Let (/(A)*, || • ||A) be the Banach space dual of (/(A), || • ||A). Then the 
subset/(A)* of/(A)* defined by 

/(A)* := {/ e /(A)7 : / | aconA is (r | aconA) — continuous} 

is a || • ||A-closed subspace. By the theorem of Dixmier-Ng (see e.g. [24]), the 
Banach space dual (/(A)*)* of /(A)* is linearly isometric to /(A). Notice that 
{CA(P) — e&(p!) : /? G L} is a subset of the unit ball of/(A)*. 

Let fi be an element of J (A). Then there exist elements /x, £ in A, scalars s, t 
in R+ and an element p in L such that the real numbers sv(p'), t£(p) are zero 
and \i equals si/ — f£. Then 

s + t^y\\A^(eA(p)-eA(pf))(ti) 

= (eA(p) ~ eA(p'))C?M -*£) = •* + *. 

To this end we have shown that every element of (/(A)*)* « /(A) attains its 
supremum (=norm) on the unit ball of /(A)*. By the Theorem of James [25] 
(also see e.g. [12]), the unit ball of/(A)* is a(/(A)*, (/(A)*)*)-compact, showing 
that (/(A)*, || • ||A) and finally, (/(A), || • ||A) are reflexive Banach spaces. 

COROLLARY 5.3. Let (L, _L, 0,0,1) be an orthoalgebra and let r be the product 
topology on RL. Let Abe a r-closed unital convex subset of the convex set Q(L) 
of probability charges on L. 

If A has the Jordan-Hahn property then L is locally finite. 

Proof This follows from Theorem 5.1 and Theorem 5.2. 

There are examples which show that the converse statements of Theorem 5.1 
and Corollary 5.3 are false. 

6. Applications 

6.1 JBW-Algebras. A real algebra A, not necessarily associative, for which 

a o b — b o a, a o (b o a2) — (a o b) o a2, 

holds true and which is also a Banach space with respect to a norm a —> \\a\\ 
satisfying 

| | a o & | | £ | M | . ||*||, ||a2|| = N | 2 and \\a2\\ ^ \\a2
+b2\\ 

is said to be a JB-algebra. 
An element a in A is called positive if there exists an element b such that 

a— bob. 

The set A+ consisting of positive elements in A forms a generating cone in A. 
If A has a unit, denoted by 1, then the triple (A, A+, 1) is an order unit normed 
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space and the order unit norm coincides with the norm of A. An idempotent is 
an element p in A satisfying 

pop = p ; 

U(A) denotes the collection of idempotents in A. Trivially, the zero-element 0 
and the unit 1 of the algebra A are idempotents. 

A JB-algebra which is the Banach space dual of a, necessarily unique, Banach 
space is called a JBW-algebra. A JBW-algebra has a unit. 

Let A be a JBW-algebra. We define a binary relation J_ on the set U(A) of 
idempotents in A by 

±:= {(p,q) G U(A) x U(A) : p o q = 0} 

and a map 0 :_L—-> U(A) by 

p®q := p + q for (p,q) G_L 

Then the quintuple (£/(A), _L, 0,0,1) is an orthomodular orthoalgebra. In fact, 
the associated orthocomplemented poset (£/(A), ̂ , ') is a complete orthomodular 
lattice with 

p ^ q if and only if q — p G A+, /?' = 1 — p. 

Let A be a JB-algebra and let A* be its Banach space dual. A state on A is 
an element <j> of A* such that 

<£(1) = 1 and <£(A+) Ç R+; 

S (A) denotes the collection of states on A. Then the pair (A*, 5(A)) is a base 
normed space and the unit ball of A* coincides with the absolutely convex hull 
acon5(A) of 5(A). For details the reader is referred to [2], [3], [13], [14], [23], 
[44]. 

Let A be a JBW-algebra. The restriction Rcj) of an element (f> in A* to U(A) is 
a bounded charge on the orthoalgebra (U(A), _L, 0,0,1). An element <j> in A* is 
a state on A if and only if R<j> is a probability charge, by the spectral theorem. 
By the same token, the linear map R : A* —* W(U(A)) is injective. We denote 
with À the image of S (A) under the map R. Notice that A is a unital convex 
subset of £l(U(A)). It then follows that (/(A), A) and (A^^SiA)) are isomorphic 
as base normed spaces, hence ||/?</>||A equals \\</>\\ for all elements <\> in A*. The 
question as to when A exhausts £l(U(A)) is treated in [8]. 

THEOREM 6.1. Let A be a JBW-algebra and let (i/(A), _L, ©, 0,1) be the or­
thoalgebra of idempotents in A. 

Then the convex set of probability charges obtained by restricting the states 
on A to U(A) has the approximate Jordan-Hahn property. 
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Proof. It is an immediate consequence of the spectral theorem that the order-
interval [0, 1] of the order unit normed space (A,A+, 1) coincides with the 
norm-closure of the convex hull of U(A). The affine map a —> 2a — 1 is a 
norm-homeomorphism of A and maps the order-interval [0, 1] bijectively onto 
the order-interval [—1,1]. Since the set [—1,1] is the unit ball of A we conclude, 
by Lemma 3.2, that for every element (/> in A* 

H^IU = \\<t>\\ = sup # o 
Ml=i 

= sup{</>(a) : a e con{p — p' : p E U(A)}} 
= sup <j>(p-p')= sup (R<t>(p)-R<t>(p'))=\\R<i>\\v. 

peu{A) peU(A) 

An allusion to Theorem 4.3 and the previous remarks concludes the proof. 

6.2 Locally finite orthoalgebras. A non-zero element p of an orthoalgebra 
(L, J_, ©, 0,1) is said to be an atom in L if, for elements q, r in L, 

p — # 0 r implies that q — 0 or r — 0. 

LEMMA 6.2. Le£ (L, _L, 0,0,1) fr£ « locally finite orthoalgebra. Then: 
(i) Ftfr each non-zero element p in L there exists an atom q and an element 

r in L such that p equals q 0 r. 
(ii) For each non-zero element p in L there exists a difference set D con­

sisting of atoms such that p = 0 D . 
(iii) A difference set consisting of atoms is maximal as such if and only if 1 

equals ©£>. 

Proof, (i): Suppose that there exists a non-zero element p in L for which the 
assertion is false. Then there exists a strictly antitone sequence (pi)fZ\ with Pi 
equals p. For each natural number n, the set 

Dn := {Pi -Pi+\ : / = 1,2,..., «} 

is a difference set, hence an orthogonal subset. Since Dne^ is a strictly isotone 
sequence of subsets of L it follows that (J^d &n is a n orthogonal set and that 
each of its finite subsets is a difference set. Therefore, by Theorem 2.1, (J^j Dn 

is an infinite jointly orthogonal set; a contradiction. 
(ii): Let p be a non-zero element of L. By (i) and by a similar argument as 

in the proof of (i), we find a finite sequence OfrO-Lj, n ^ 1, of atoms such that 

/> > P - q\ > (P ~ q\) ~ qi > • • • > C • • ((p ~ q\) ~ qi)... - qn) = 0. 

Clearly, this so defined strictly isotone sequence yields the difference set 
{q\ ,qi,~>, qn}- Then 0{<?!, q2,..., qn} = p - 0 = p. 
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(iii): Let D be a difference set consisting of atoms and suppose that 0 D < 1. 
Then (©£>)' is different from 0 and therefore, by (i), there exists an atom p 
such that p _L 0 Z ) . By Theorem 2.2, D U {/?} is a difference set showing that 
D is not maximal. 

Conversely, if D is a difference set consisting of atoms and not maximal as 
such then there exists a difference set E properly containing D. it follows, by 
Theorem 2.2, that ® D < 0 £ ^ 1. 

Let (L, J_7©,0,1) be a locally finite orthoalgebra. We denote with A(L) the 
collection of atoms in L and with 0(E) the collection of maximal difference 
sets consisting of atoms. Both sets are not empty and the pair (A(L), 0{L)) is a 
hypergraph [7], the atom-hyper graph of L. Up to isomorphisms, a locally finite 
orthoalgebra is uniquely determined by its atom-hypergraph [17], [30], [31], 
[32]. From the results of the aforementioned papers an intrinsic characterization 
may be deduced, namely, of those hypergraphs which are atom-hypergraphs of 
locally finite orthoalgebras. 

LEMMA 6.3. Let (L, J_, ©,0, I) be a locally finite orthoalgebra with atom-
hypergraph (A(L), 0(L)). Then: 

(i) For every charge /x on L and for all elements E,F in 0(L), 

p£E q<EF 

(ii) A functional UJ : A(L) —> R such that 

Y,"(p) = J2Lj(a) f°ral1 E,F£°(L) 
peE q<EF 

admits a unique extension to a charge on L. 

Proof, (i): This follows from 6.2(iii). 
(ii): Let u : A(L) —> R be a functional satisfying the condition. Let M, /V be 

difference sets consisting of atoms such that 0 M and 0 N are equal. Let E 
be an element of 0{L) such that N Ç E. Then 

1 - 0 £ - 0W © 0(£\AO, 

thus © M l ®(E\N) and it follows that M U (E\N) is a difference set. Also 
M H(E\N) is empty and 

0(M U (E\N)) = 0 M © 0(£\AO = 0 M © ( 0 M / = 1. 

We conclude, by Lemma 6.2(iii), that 

F :=MU(E\N) G 0(L). 

https://doi.org/10.4153/CJM-1989-050-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-050-5


THE APPROXIMATE JORDAN-HAHN DECOMPOSITION 1143 

Then in the case that N is different from E, 

X u(p)= X u ^ = X uw+ X! U^ 
p<EE p£F peM p<EE\N 

= ^2 u^ ~ X I u ^ + X u j ^ -
qEE qeN peM 

It follows that ^2geN cj(q) equals Y1PEM ^ip). We define an element p^ in RL 

by 

/ 0 ,ifp = 0 

where N is a difference set consisting of atoms such that 07V equals /?, and 
claim that /i^ is a charge on L which extends u. Let /?, q be non-zero elements 
in L with p -L q and let M,yV be difference sets consisting of atoms, such 
that p equals 0 M and q equals 0 N . Then MUiV is a difference set and 
0 ( M UN) = 0 M 0 0 /V = p@q. Then, since M HN is empty, 

/<Up0<7) = X ^>) = X ^ ( r ) + X^ ( r ) 

reMUN r£M r£N 

= Hu>(p) + M<?)-

Finally, //u;(/?) is equal to u(p) for all elements p in A(L) since p equals 0{/?}. 
Uniqueness of the extension follows from Lemma 6.2(ii). 

A locally finite orthoalgebra (L, ± ,0 ,0 ,1 ) is said to satisfy the outer point 
condition (see [28]) if for every element E in 0(L) there exists an element p 
such that, for all elements F in <9(L), 

(1) peF & E = F. 

It is a consequence of the following theorem that the convex sets of all 
probability charges of the locally finite orthoalgebras /ig(Janowitz [26]) and 
£>i6(Dilworth [11]) have the Jordan-Hahn property. This theorem generalizes a 
result by Schindler [43]. 

THEOREM 6.4. Let (L, ±, 0,0,1) be a locally finite orthoalgebra. IfL satisfies 
the outer point condition then every bounded charge on L is Jordan and the 
convex set Q(L) of probability charges on L has the approximate Jordan-Hahn 
property. 

Proof. We show that condition (i) of Corollary 4.4 holds true. Let // be a 
bounded charge on L such that //(/?) ^ 1 for all elements p in L. For each 
element E in 0(L) we define a scalar tE by 

tE :=5^/x+(p); 
PEE 
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then 0 ^ tE ^ 1, by hypothesis. Also for each element E in 0(L) we select an 
element pE which satisfies condition (1) and define a functional UJ : A(L) —• R 
as follows 

f 1 - tE + n+(pE) , if /? = />E for some £ G O(L) 
| /x+(p) , otherwise. 

Then u;(/?) ^ 0 and /x(p) ^ p^ip) = o;(/?) for all elements p in A(L). Then for 
every element F in 0(L) with more than one element 

= 1 - tF + M+(/?F) + X /^O7) 
P€F\{pF} 

= l - f F + ^ / i » - 1-f/r+f/r = 1. 
pGF 

The same conclusion is reached when F is a singleton set. Let pu be the charge 
on L which extends the functional UJ (see Lemma 6.2) then \i^ is a positive 
charge and pip) ^ /^(p) = 1 for all elements p in L. 

Using Lemma 4.1 and Theorem 4.3 it is easily verified that the "Schindler 
Fork" Sch2o [43] and Greechie's G32 [18] are finite orthomodular orthoalgebras 
for which the convex sets of all probability charges do not have the Jordan-
Hahn property. 

6.3 Boolean Algebras. Let (#, U, n, f, 0,1) be a Boolean algebra. An element 
p in KB is said to be a charge, resp. bounded charge, positive charge, Jordan 
charge, probability charge, on the Boolean algebra (Z?,U, f~l, f,0,1) if /x is a 
charge, resp. bounded charge, positive charge, Jordan charge, probability charge 
on the corresponding orthoalgebra (z3, J_, 0 , 0 , 1 ) (see 2). 

Let / i bea bounded charge on B. We claim that p+ is a subadditive functional 
on B, hence a positive charge on 5 : Let p, (7 be elements in B such that p 1. q. 
If r is an element of B with r S p (& q then r is equal to (r l~l p) 0 (r l~l g). 
Therefore 

M(r) = //(r rip) + p(r n (?) è p+(p) + /x+(^r), 

hence, 

/Z>0<?)^ / / > ) + //(<?) 

The following classical result (see e.g. [34]) is obtained as a corollary to 
Theorem 4.3. 

COROLLARY 6.5. Let (B1U, fl, f, 0,1) be a Boolean algebra. 
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Then every bounded charge on B is Jordan and the convex set £l(B) of 
probability charges on B has the approximate Jordan-Hahn property. 

Proof. Let /i be a bounded charge such that p,(p) ^ 1 for all elements in 
p in B. As observed above, /i+ is a positive charge on B and, clearly, fi(p) ^ 
fi+(p) ^ 1 for all elements p in B. The assertion follows from 4.4. 

The next result is an immediate consequence of the above and Corollary 5.3. 

COROLLARY 6.6. Let (B, U, l~l, f, 0,1) be a Boolean algebra and let Q,(B) be 
the convex set of probability charges on B. 

Then £l(B) has the Jordan-Hahn property if and only if B is finite. 

Proof. Let p be a non-zero element of B. Then there exists a two-valued 
Boolean homomorphism /x : B —> {0,1} such that n(p) equals one (see [22]). 
Then clearly, /x is a bounded charge on B and therefore £l(B) is unital. If £l(B) 
has the Jordan-Hahn property then, by Corollary 5.3, B is locally finite. The set 
of atoms of the orthomodular orthoalgebra (#, J_, 0,0,1) is orthogonal, hence, 
jointly orthogonal and therefore finite. Finiteness of B now follows from Lemma 
6.2. The converse follows from Corollary 6.5. 
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