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THE APPROXIMATE JORDAN-HAHN
DECOMPOSITION

GOTTFRIED T. RUTTIMANN

1. Introduction. Non-commutative measure theory embraces measure theory
on o-fields of subsets of a set, on projection lattices of von Neumann algebras or
JBW-algebras and on hypergraphs alike [20], [27], [33], [37], [39], [40], [41].
Due to the unifying structure of an orthoalgebra concepts can easily be trans-
ferred from one branch to the other. Additional conceptual inpetus is obtained
from the logico-probabilistic foundations of quantum mechanics (see [6], [19],
[21)).

In the late seventies the author studied the Jordan-Hahn decomposition of mea-
sures on orthomodular posets and certain graphs. These investigations revealed
an interesting geometrical aspect of this decomposition in that the Jordan-Hahn
property of the convex set of probability charges on a finite orthomodular poset
can be characterized in terms of the extreme points of the unit ball of the Banach
space dual of the base normed space of Jordan charges. Subsequent investiga-
tions let into the study of stable faces of convex polyhedra [35] and attempts to
generalize these results above into questions of a functional analytic nature [9],
(10].

The present paper is concerned with a relaxed form of the Jordan-Hahn de-
composition which is, as it turns out, in important cases the suitable kind of
decomposition when considering not necessarily o-additive charges. A convex
set A of probability charges on an orthoalgebra L is said to have the approx-
imate Jordan-Hahn property provided that for every linear combination p of
elements of A there exist elements v, £ in A and elements s, ¢ in R, such that (i)
p = sv — t€ and (ii) to each € > O there exists an element p in L with (sv)(p’),
t&)(p) = e. This is clearly an extension of the classical notion of an approx-
imate Jordan-Hahn decomposition (see e.g. [34]) from the context of fields of
sets to the non-commutative setting of orthoalgebras. For the special case of a
o-orthocomplete orthomodular poset, an even weaker version of a Jordan-Hahn
decomposition has been considered in [9].

The main result of this paper consists in establishing in the context of or-
thoalgebras two necessary and sufficient conditions for a convex subset A of
probability charges to possess the approximate Jordan-Hahn property. This is
done in terms of a positive dominance property for charges in one case and in
terms of the variation norm and an intrinsic norm (base norm) determined by
A in the other. The usefulness of these criteria is demonstrated in the case of
JBW-algebras, locally finite orthoalgebras and Boolean algebras.
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In Section 2 we present a summary of the basic facts on orthoalgebras fol-
lowing the work of Foulis and Randall [17], [32]. Further contributions to this
field can be found in [30], [31] and [42]. In Section 3 we introduce the notion
of a charge on an orthoalgebra and develop the appropriate functional analytic
framework. Then Section 4 is devoted to the aforementioned characterization
of the approximate Jordan-Hahn property. In Section 5 we relate local finite-
ness of an orthoalgebra L to the Jordan-Hahn property of a convex set A of
probability charges and to reflexivity of the base normed space generated by
A. A corollary of the main result in this paragraph states that unitality together
with the Jordan-Hahn property of the convex set of all probability charges on
L entails local finiteness of L. Section 6 is concerned with various applications
of the previous results. The collection of idempotents U(A) of a JBW-Algebra
A forms an orthoalgebra in a natural way. We prove that the collection of prob-
ability charges on U(A) obtained by restricting states on A to U(A) enjoys the
approximate Jordan-Hahn property. As a second application we exhibit a large
class of locally finite orthoalgebras for which the convex set of all probability
charges has the approximate Jordan-Hahn property. Finally, we specialize our
results to Boolean algebras to obtain a new result in that classical context.

2. Prerequisites. Let L be a set and L a binary relation on L. If (p,q) is an
element of L, we write p L ¢ and call the pair orthogonal. Let & be a map
from L into L. For an element (p, g) in L X L we write p@q to assert that p 1 g
and to denote the image of (p, g) under the map .

A quintuple (L, 1,®,0, 1), where L, 1 and @ are as above and 0, 1 are two
distinct distinguished elements of L, is said to be an orthoalgebra if the following
holds true, for elements p,q and r in L,

(1) Ifp Lgandp®g L rthenqg L r,p L (¢gPr) and (pDq)Pr = pdD(gDr),
(ii) if p Lgtheng Lpand p B qg=4qPp,
(iii) to each element p in L there exists a unique element g in L such that
p L gandp® q equals 1,
(iv) if p L p then p = 0.

For an element p in L we denote with p’ the unique element in L which
satisfies condition (iii).
Let (L, L, 6,0, 1) be an orthoalgebra. One easily verifies that, for every ele-
ment p in L,
v) 1'=0, (vij p"=pand (vi) p®0=p.
Moreover, for elements p,q and r in L,
(viii) ifp Lgthenp®(p ®q) =4,
(ix) ifp@g=pPBrtheng=r.
For elements p and ¢ in L, we write p = ¢ to mean that there exists an

element 7 in L such that p L r and p @ r is equal to g. The binary rela-
tion < is an ordering relation on L with respect to which 0 is the least and 1 is
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the greatest element. Also, the mapping p — p’ is an orthocomplementation
on the poset (L, ). The orthocomplemented poset (L, <, ') is referred to as the
orthocomplemented poset associated with the orthoalgebra (L, 1, ®, 0, 1). Then,
for elements p and ¢ in L,

(x) pLgifandonlyifp=d,
(xi) ifp<qgtheng=pd(Pdq)

holds true. Furthermore, if p L g then p @ ¢ is a minimal upper bound of the
set {p,q} in the poset (L, =).

We now turn our attention to examples of orthoalgebras.

Let (P, =, ) be an orthocomplemented poset with O as the least and 1 as the
greatest element. For a subset M of P we write VM, resp. AM to denote the
supremum, resp. the infimum, of M provided it exists. Also, we write p Vg, resp.
p A g, to denote V{p,q}, resp. A{p,q}. An orthocomplemented poset (P, <, )
is said to be an orthomodular poset [16], [37] provided that, for elements p, g
in P,

(i) if p <4 then pV q exists,
() ifpSqgandpVg=1thenp=gq.

Let (P, =, ') be an orthomodular poset of cardinality greater than one. We define
a binary relation L on P by

L={(p,9)ePxP:p=4}
and a map @ : 1L— P by

p®qg:=pVgq, (p,q €L.

It follows that (P, L,,0,1) is an orthoalgebra and that the associated ortho-
complemented poset is ortho-order isomorphic to (P, <,’) under the identity
map of P.

A Boolean algebra is a sixtuple (B,L1,11, §,0, 1) where B is a set, L, I are
binary operations, t is a unary operation and 0, 1 are two distinct distinguished
elements of B such that the conditions L1 — L10 of [5] are satisfied. We define
a binary relation L on B by

L:={(p,q) €BxB:pfg=0}
and a map @ :1— B by

p@q:=plUgq, (g9 €l

Then (B, L,®,0,1) is an orthoalgebra, the orthoalgebra corresponding to the
Boolean algebra B, and the associated orthocomplemented poset (B, =, ) is a
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distributive orthocomplemented lattice, in fact

pAg=plgq, pVg=pUgandp =,

for elements p, g in B.
Let (L, 1,6,0,1) be an orthoalgebra. A non-empty subset P of L is said to
be a suborthoalgebra provided that the following holds true:

(i) ifp€Pthenp €P,
(i) ifp,gePandp Lgthenp®qgecP.

Clearly, a suborthoalgebra contains the elements O and 1 and, in the induced
structure, is an orthoalgebra in its own right.

An orthoalgebra is said to be orthomodular provided that the associated or-
thocomplemented poset is an orthomodular poset.

Let (L, L,9,0,1) be an orthoalgebra. Let p, g be elements of L with p L q.
Then the subset {0,p,q,p Dq,p’,q,(p D q), 1} is an orthomodular suborthoal-
gebra. A subset M of L is called orthogonal if p,q € M with p # ¢ implies that
p L g. Notice that the empty subset and singleton subsets of L are orthogonal.
A subset M of L is said to be jointly orthogonal if it is an orthogonal subset
contained in an orthomodular suborthoalgebra. Also notice that an orthogonal
subset of cardinality less than or equal to 2 is jointly orthogonal. An orthoalgebra
is said to be locally finite if every jointly orthogonal subset is finite.

Let p, g be elements in an orthoalgebra L with ¢ = p. We define the difference
between p and ¢, denoted by p — g, to be the element (p’ @ q)'. A subset D of L
is called a difference set if it is empty or if there exists a finite, strictly isotone
sequence (p;)_,, 1 = n, in (L, £) such that

D={pi—pi-i:i=1,2,...,n}.

We say that the sequence (p;);_, yields the difference set D. Notice that n is the
cardinality of D. A difference set is orthogonal and a subset of a difference set
is a difference set. Also, an orthogonal set of non-zero elements of cardinality
at most 2 is a difference set. Let (p;)], and (¢;)7_, 1 = m, n, be strictly isotone
sequences in (L, =) both of which yield the difference set D. Then p,, — po
and g, — qo coincide (see Theorem 2.12 [42]). We now define a map € from
the collection of difference sets of L into L as follows: if D is a non-empty
difference set and yielded by the strictly isotone sequence (p;);_, then

@D = Pn — Pos
if D is empty, we set
@D :=0.

Notice that if p is a non-zero element then it is equal to @{p} and that for every
orthogonal pair (p, q) of non-zero elements @{p, q} coincides with p & q. We
now present two results on difference sets which are essential for the following.
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Tueorem 2.1. Let (L, 1,®,0, 1) be an orthoalgebra and let M be an orthog-
onal subset of L. Then M is jointly orthogonal if and only if every finite subset
of M\{O} is a difference set.

Proof. See Theorem 2.16 [42].

THEOREM 2.2. Let (L, L,,0, 1) be an orthoalgebra and let D be a difference
set of L of cardinality n > 0. Let i € {1,2,...,n} — p; € D be any enumeration
of D. Then

prLpy@i®p2) Lps, (01®p2)®Op3) Lps,...
(.. (P ®p)®p3) D Ppa) D...Dpp-1) L pn.
Moreover, the sequence (q;)!_ defined by
Go:=0, qi:=0C..((P1®p2)Dp3)...Opi-1) S pi
for 1 =i = n, is strictly isotone and yields the difference set D.
Proof. See Corollary 2.17[42].
For details and proofs the reader is referred to {17], [30], [31], [32] and [42].

3. Charges on orthoalgebras. Let (L, L,®,0,1) be an orthoalgebra. We
consider the vector space R’ in the product topology 7, a locally convex Haus-
dorff topology. An element y in R is said to be a charge on L if

wp © q) = plp) + ulq)

for all orthogonal pairs (p,q) in L. It follows that a charge pu on L evaluates to
zero on the element O of L. Also, if D is a non-empty difference set of L then,
by Theorem 2.2,

wED) = ulp)
peD

for any charge p on L. A charge is said to be positive if it is positive as a
functional on L. Trivially, the zero element of R" is a positive charge on L.
Similarly, a charge is said to be bounded if it is bounded as a functional on L.

Lemma 3.1. Let (L, 1,,0,1) be an orthoalgebra and let (L, <, ') be its as-
sociated orthocomplemented poset. Then a positive charge on L is bounded and
is an isotone functional on the poset (L, <).

Proof. Let p be a positive charge on L and let p,g be elements in [ with
p = g. Then there exists an element r in L such that p @ r coincides with g.
Therefore

pp) = pp) +p(r) = pp & r) = pq)-

Then, for all elements p in L,

0=p(0) = u@p) = pul).
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We denote with W (L) the subspace of Rt consisting of all bounded charges
on L and with J,(L) the subset of R of positive charges on L. Notice that J, (L)
is a cone in R (ie., (i) Jo(L) +Jo(L) C Jo (L), (ii) RyJL(L) C J(L) and (iii)
Ji(LYyN —=J (L) = {0}). The subspace J,(L) — J.+(L) of RL is denoted by J(L);
an element of J(L) is called a Jordan charge. By Lemma 3.1, J(L) is a subset
of W(L).

Let p be an element of W(L), we define elements u*, u~ and |u| of R as
follows:

' (p) == sup p(q), p~ (p) := —inf p(q) and |u| == p* +p~
q=p a=pr

for an element p of L. Notice that p~ is equal to (—u)*. It follows from Sec-

tion 2 that p* is a super-additive bounded positive functional on L. We define

functionals p — ||u||, and u — ||u||; on W(L) by

lully == |pl(1) and ||l := sup |u@)],
pEL

called the variation norm and the sup-norm, respectively.

A charge is said to be a probability charge if it is an element of J,(L) and
evaluates to one on the element 1 of L. We denote with (L) the T-compact
convex set of probability charges on L. Notice that the set (L) is a base of
the cone J,.(L) (i.e., (L) is a convex set, every non-zero element of J,.(L) is a
positive multiple of an element of (L) and this representation is unique).

On occasion, we restrict our attention to a subset of (L) rather than con-
sidering all probability charges. This justifies the treatment in the generality to
follow. Let A be a convex subset of €(L). We denote by J(A) the linear hull of
A and we write J,(A) for the positive hull of A. Then J,(A) is a generating cone
in J(A), A is a base of J,(A) and the absolutely convex hull acon(A) of A is
absorbing in J (A). Clearly, J(L) and J,(L) coincide with J(€(L)) and J,.(Q(L)),
respectively.

Let J(A) be the algebraic dual space of J(A). With each element p of L we
associate an element ex(p) in J(A) by

ea(p)(p) == p(p) for p € J(A).

Clearly, the set {ea(p) : p € L}, denoted by P(A), is total on J(A) (ie., if
ea(p)(u) = 0 for all elements p in L then p = Q).

For every convex subset A of Q(L) the pair (J(A), A) is a base normed space
[39], i.e., J(A) is a real vector space, A is a base of a generating cone in J(A) and
the Minkowski functional [29] over the absorbing absolutely convex set aconA,
denoted by || - ||a, is a norm, the base norm on J(A).

Notice that

llla = inf{s+7:pu=sv+1&, s,t €R,,v, & EA}
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provided that A is not empty. Let J(A); be the unit ball of the normed vector
space (J(A), || - ||a) and let J(A)) denote its (norm-) interior then J(A)) C
aconA C J(A),. Also, if A is non-empty then the absolutely convex hull aconA
of A coincides with convex hull con(A U —A) of the set AU —A. Conditions
on A which ensure that the corresponding base norm is a complete norm are
discussed in [41].

We now follow the general theory of base normed spaces and order unit
normed spaces [1], [4], [15], [38]. With J(A)* we denote the || - ||s-continuous
members of J(A)Y. An element f in J(A) is || - ||a-continuous if and only if the
functional f is bounded on the set A. It follows that P(A) is a subset of J(A)*.
If we order the vector space J(A)* as follows, for elements f, g in J(A)*,

fsg:e f(wsg forallp€A,

then the triple (J(A)*, =, ea(1)) becomes an order unit normed space, i.e.,
an Archimedean ordered real vector space with order unit ex(1). Clearly the
functional

f = lflla:==sup{f(w): p € J(A)}

defined on J(A)* is a complete norm on J(A)*. Also

If]la == sup{|f(w)]: p € A} =inf{r 2 0:f € t[—ea(l),ea(1)]},

where, for elements g,h of a partially ordered set, [g, /] denotes the order-
interval from g to hA. Moreover, the set [—ea(1), ea(1)] is the unit ball of the
Banach space (J(A)*, || - [|a)-

The relationship between variation norm, sup-norm and base norm is given
in the following lemma.

Lemma 3.2. Let (L, L,®,0, 1) be an orthoalgebra. Let T be the product topol-
ogy on the vector space R and let W (L) be the subspace of RE of bounded
charges on L. Then the variation norm p — ||u||, and the sup-norm p — ||pl|
are equivalent norms on W (L). Moreover, for all elements p in W(L),

lluelly = sup (u(p) — pp")) = 2||plls — (D)
peEL

and the topology T | W(L) is coarser than the topology determined by the
variation norm (Or sup-norm).

Let Q(L) be the convex set of probability charges on L. Let Ay, A, be convex
subsets of (L) with A C A,. Let J(Ay) and J(Ay) denote the linear hull of A,
and Ay in W(L), respectively. Then the variation norm, the sup-norm, the base
norm on J(Ay) p— ||plla, and the base norm on J(Ay) p— ||pul|a, satisfy

llulls = el = lella, = Nulla,

for elements p in J(A).
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Proof. The functional v — sup,¢; |v(p)| is a complete norm on the subspace
V of R of bounded functionals on L and the topology determined by this norm
is finer than the topology 7 | V. Since the subspace of RE of all charges on L
is T-closed it follows that W (L) is 7 | V -closed and therefore (W (L), || - ||;) is a
complete normed vector space.

Let u be an element of W(L). Then

lully = [pl(D) = p* (1) + (=p)* (1) = sup u(p) + sup(—p)(p")
pEL pEL

= 2sup u(p) — (1) = sup(u(p) — p@E").
pEL pEL

Hence
lelly =1l —plly and  p* (1) = (plly + p(1)/2.

Then,

lells = max{u* (1), x" (D} = (|l + |pD)/2.

It follows that |||, < 2||p||s and since |u(1)| < ||p||s we conclude that ||ull; =
|li]lv. This proves that the variation norm is indeed a norm and as such it is
equivalent to the sup-norm.

Let u be an element in J(A). Since P(A) is a subset of [0, ex(1)] it follows
that

ully = sup(ea(p) — es@N(w) = sup  f(p) = [|p]a.
peL fel—ea(l),ea(D)]

If A C A, then aconA; C aconA, and the remaining assertion follows.

A subset A of Q(L) which coincides with the intersection of Q(L) and the
affine hull affA of A is referred to as a section of €(L). A section of (L) is
necessarily convex. Notice that a face of (L) is a section of Q(L).

Lemma 3.3. Let (L, L,,0, 1) be an orthoalgebra and let W (L) be the vector
space of bounded charges on L equipped with the variation norm p — ||ul|,
and the sup-norm p — ||p||s. Let A be a convex subset of the convex set (L)
of probability charges on L and let J(A) be the linear hull of A in W(L). Then
the following conditions are pairwise equivalent:

(i) The set A is a section of (L).
(ii) There exists a subspace V of W (L) such that A equals Q(L)NV.

(iii) The set A coincides with the set {y € J(A) : (1) = 1 and p(p) 2 0 for
allp e L}.

(iv) The set A coincides with the set {u € J(A) : ||pulls = 1 = u(1)}.

(v) The set A coincides with the set {u € J(A) : ||p]ly =1 = w(D}.
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Proof. (i) = (ii): Let A be a section of (L) and let yu be an element of
Q(L) N linA. Then there exist elements p; in A and elements #; in R, i =
1,2,...,n, such that p equals >, t;u;. Then

L=p) =) ) =) 1
i=1 i=1

and therefore 1 belongs to the set affAMNC(L), hence p is an element in A. This
proves that A coincides with the set (L) M linA.

(i1) = (iii): Let V be a subspace of W (L) such that A equals (L) V. Then
A is a subset of V, hence J(A) is a linear subspace of V and we conclude that
A C QULYNJ(A) C QL)NV. Therefore A is equal to Q(L)NJ (A). Now, if p is
a positive charge in J(A) such that (1) equals 1 then p belongs to Q(L)NJ (A).
This proves the claim.

(iii) = (iv): Clearly, A is a subset of the set {u € J(A) : ||ulls = 1 = p(D}.
Now let u be an element of J(A) such that ||u||; and p(1) equals 1. Then for all
elements p in L,

12 pp") = p(l) = p@) = 1= u@),

therefore u(p) is greater than zero. It follows that p is an element of A.

(iv) ¢ (v): This is a consequence of Lemma 3.2.

(iv) = (i): Let p be an element of the set affA M Q(L). Then u(1) equals
one and p is a positive charge. Therefore y is of sup-norm one. Since affA is a
subset of J(A) it follows that y belongs to A.

4. Approximate Jordan-Hahn property. Let (L, L,®,0,1) be an orthoal-
gebra and let (L) be the convex set of probability charges on L. For a convex
subset A of Q(L) we denote with J(A) the linear hull and with J(A), the positive
hull of A in the vector space W (L) of bounded charges on L.

A convex subset A of Q(L) is said to have the Jordan-Hahn property [36],
[45] if for each element u in J(A) there exist elements v, £ in J(A), and an
element p in L such that

p=v—£ and v(p')=0=¢p).

Trivially, for any orthoalgebra L, the empty subset and singleton subsets of (L)
have the Jordan-Hahn property.

We now relax this condition in the following manner: a convex subset A of
Q(L) is said to have the approximate Jordan-Hahn property if for each element
1 in J(A) there exist elements v, £ in J(A), satisfying

(i) p = v — ¢ and (ii) to every € > O there exists an element p in L with

v(p'), §(p) S e

Notice that the two properties coalesce for finite orthoalgebras.
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Lemma 4.1. Ler (L, 1,,0,1) be an orthoalgebra and let A be a non-empty
convex subset of the convex set Q(L) of probability charges on L. Let J(A) and
J(A) be the linear hull and the positive hull of A, respectively.

Let 11 be an element in J(A) and let v be an element in J.(A). If p@p) =
v(p) £ 1 for all elements p in L then there exists an element & in A such that
wu(p) = &(p) for all elements p in L.

Proof. 1If v(1) equals zero then v is the zero element and every element
in A satisfies the condition. If v(1) is different from zero then 1//1/(1) is an
element in A since, in this case, J,(A) coincides with R, A. The assertion follows
immediately.

Lemma 4.2, Same preliminaries as in Lemma 4.1. Let W(L) be the vector
space of bounded charges on L equipped with the sup-norm p — ||u||s and let
pw— ||ella be the base norm on J(A).

If A is such that for each element p in J(A) with ||u|ls < 1 there exists an
element v in J (A) with u(p) = v(p) = 1 for all elements p in L then A is a
section of Q(L). Moreover, ||n||a equals 2||n||s for all elements 1 in J(A) for
which 1(1) vanishes.

Proof. We may assume that A is not empty. Let  be an element of J(A) such
that ||u|ls and p(1) equal one. Since |u(p)| = 1 for all elements p in L there
exists, by Lemma 4.1, an element £ in A such that u(p) = £(p) for all elements
p in L. Then

1= p(l)=ppap)=up)+upp)
Stp+ePH)=¢pap)=¢1) =1.

Therefore p(p) equals £(p) for all elements p in L, which shows that p is an
element in A. It follows from Lemma 3.3 that A is a section of Q(L).

Suppose now that 7 is an element in J(A) such that (1) equals 0 and ||5]ja
equals 1. Then for every ¢ > 0 there exist elements s, ¢ in R, and elements &, A
in A such that i equals sk —tA and 1 £ s+t = 1 +e¢. Since n(1) vanishes, we
conclude that s equals 7 and, hence, 1/2 = s < (1+¢€)/2. Then, for all elements
pinl,

—(1+6)/25 —sA() < n() < sk(p) < (1+6)/2

and therefore |||l = 1/2. On the other hand, there exists, by Lemma 4.1, an
element w in A such that

/lInlls)®) = w(p) for all elements p in L.

Then (w — n/||n{ls)(p) 2 0 for all elements p in L and

(w—n/llnllH@) = wd) = 1.
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Since A is a section of Q(L) and w — n/||n||s is an element of J(A) it follows,
by Lemma 3.3, that this element belongs to A. Then .

lnlls = lin/linllslla = llwlla + llw = n/lnllslla = 2.

We now proceed to the main result of this Section.

THEOREM 4.3. Let (L, L,®,0, 1) be an orthoalgebra and let W (L) be the vec-
tor space of bounded charges on L equipped with the variation norm. Let A be
a convex subset of the convex set (L) of probability charges on L. Let J(A)
and J(A) be the linear hull and the positive hull of A, respectively. Then the
following conditions are pairwise equivalent:

(i) For each element y in J(A) with u(p) = 1 for all elements p in L there
exists an element v in J.(A) such that u(q) = v(q) = 1 for all elements q in L.

(ii) For each element p in J(A) with —1 = u(p) = 1 for all elements p in L
there exists an element v in J.(A) such that u(q) = v(q) = 1 for all elements q
in L.

(iii) The base norm on J(A) and the the variation norm coincide on J(A) and
the absolutely convex hull of A is closed in the base norm.

(iv) The subset A has the approximate Jordan-Hahn property.

If either is the case then A is a section.

Proof. We may assume that A is not empty.

(i) = (ii): This is obvious.

(i) = (iii): It follows form Lemma 4.2 that A is a section. Let u be an
element of J(A) of sup-norm one. If p(l) is equal to zero then, by Lemma
4.2 and Lemma 3.2, ||p||a and ||u||, are equal. This also holds true when u(1)
equals 1, by Lemma 3.3. We now consider the case where p(1) is contained
in the interval (0, 1). By Lemma 4.1, there exists an element v in A such that
0 = (v — p)(p) for all elements p in L. Since A is a section there exists, by
Lemma 3.3, an element £ in A and a scalar 1 2 O such that £ equals v — p.
Then

t=1t6(1)=1—pu(1) €(0,1)
and one verifies that
pu=>0—-ty+tw —¥~).

Since p is of sup-norm one there exists, by the Theorem of Bourbaki-Alaoglu
[29], a || - ||s-continuous linear functional f of norm one on the normed vector
space (J(A), || - ||s) such that

I=fw)=0=-0fW)+1f—9).
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Since the elements v and v — £ are of sup-norm less than or equal to one we
conclude that

l=f0)=fv—=29.

It follows that the element v — £ is of sup-norm one and since (v — &)(1)
equals zero we infer from Lemma 4.2 that ||(v — £)/2||s equals one. Again,
by the Theorem of Bourbaki-Alaoglu, there exists a || - |[5-continuous linear
functional g of norm one on the normed vector space (J(A), || - ||a) such that
(1/2)g(v) — (1/2)g(€) equals one. Since the elements v and £ belong to A we
conclude that both g(v) and —g(§) are equal to one. Notice that

(1 +t)71p =(+n'v—(1 +t)"t§ € aconA and

g+ 'wy=1.

Then ||(1 +£)~'u||a equals one and therefore
lllla =2 — p(D.

Suppose now that u(1) is an element of the interval (—1,0). Then
lulls = 1l = plla =2 = (=w)(1) = 2+ p(1).

It follows that

leella = 2lplls — (D)

for all elements p in J(A) and we conclude, by Lemma 3.2, that both the base
norm on J(A) and the variation norm agree on J (A).

Next we prove that the absolutely convex hull aconA of A coincides with the
unit ball of the normed vector space (J(A), || - ||a). Since the set aconA is circled
it suffices to show that each element p in J(A) of base norm one belongs to that
set. Let u be such an element in J(A). Then, by Lemma 3.2, —1 = u(p) = 1 for
all elements p in L. Assume first that p(1) is an element of the interval [0, 1].
Let v denote the element 2(1 + u(1))"'u. Then, by the previously established
relationship between the sup-norm and the base norm on J(A), we obtain

lvlls = 200+ (D) Mplls = 201 + )27 + p(1) = 1.

By hypothesis, Lemma 4.1 and Lemma 3.3, there exist elements x, A in A such
that v equals K — (1 —v(1))\. Tt follows that

Q—-v() 'k —(1—v()Q—-v() " A=2—-vA) v
=2(1+p() '@ —v() '
=2(1+p()7 Q= 26(MA+p() H p=1p
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and therefore p is an element of aconA.

If u(1) belongs to the interval [—1,0] then u is an element of aconA since
the latter is circled.

(iii) = (iv): Let X\ be a non-zero element of J(A) and let € > 0. Since the set
aconA coincides with the unit ball of (J/(A), || - ||a) there exist elements v, £ in
A and a scalar ¢ in the interval [0, 1] such that

= MAls = v — (1 = 0E.

Then the elements ||A||atv, |A]|a(1 — )¢ belong to J.(A). By hypothesis and
Lemma 3.2, sup,e, (1(p)— p(p’)) equals one and therefore there exists an element
p in L such that

1= (u(p) — p@")) < 2| \|I3'e.
Then

2Mate 2 1= Qup) — (1) = 1 —2u(p) + 2t — 1
=2t — p(p)) = 2((1 — NEP) — tv(p) +1)
= 2w () + (1 = DEP)).

This shows that

[t @), [IXla(1 = DE@) = .

(iv)=(): Let pu be an element of J(A) and suppose that u(p) = 1 for all
elements p in L. There exist elements v, £ in A and elements s,¢ in R, and for
every € > 0 there exists an element p in L such that

p=sv—t& and sv(p),té(p) < e.
Then

12 p(p) = su(p) — 1(p) = sv(1) — sv(p') — 1£(p)
= sv(l) — (sv(p) + t&(p)) = s — 2e.

Therefore s belongs to the interval [0, 1] which implies that u(p) = sv(p) =
v(p) = 1 for all elements p in L.

CoRrOLLARY 4.4. Let (L, 1,®,0,1) be an orthoalgebra and let W (L) be the
vector space of bounded charges on L equipped with the variation norm. Let
J(L) be the real vector space of Jordan charges on L. Let J,(L) be the cone
of positive charges and let Q(L) be the convex set of probability charges on L.
Then the following conditions are pairwise equivalent:

(1) For each element p in W (L) with u(p) = 1 for all elements p in L there
exists an element v in J.(L) such that u(q) = v(q) = 1 for all elements q in L.
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(ii) For each element y in W (L) with —1 < u(p) < 1 for all elements p in
L there exists an element v in J.(L) such that u(q) = v(g) £ 1 for all elements
qinlL.

(iii) Every bounded charge is Jordan, i.e., J(L) exhausts W (L), and the base
norm on J (L) coincides with the variation norm.

(iv) Every bounded charge is Jordan and (L) has the approximate Jordan-
Hahn property.

Proof. If condition (ii) is met then every bounded charge is Jordan. To see
this, let u be a non-zero element in W(L). Then

[u/lull®)l = 1

for all elements p in L. Let v be an element in J,(L) with

[/l @) = vp) =1

for all elements p in L. Then

E=v—pflpls €Jo@) and p= |l — ||ulE.

Since (L) is 7-compact it follows that aconQ(L) is T-compact as well. Now,
the topology 7| J(L) is coarser than the topology determined by the base norm
p— ||pllew) on J(L), by Lemma 3.2. Therefore aconQ(L) is || - ||ou,)-closed.

With these two observations, the assertion now follows easily from Theorem
4.3.

5. Supplementary results. Let (L, L,,0, 1) be an orthoalgebra. A subset
A of the convex set (L) of probability charges on L is said to be unital if for
each non-zero element p in L there exists an element in A which evaluates to
one on p.

TueoreM 5.1. Let (L, L,,0,1) be an orthoalgebra and let W(L) be the
vector space of bounded charges on L. Let A be a unital convex subset of the
convex set QL) of probability charges on L and let J(A) be the linear hull of
A equipped with the base norm pu — |||

If the Banach space completion of the normed vector space (J(A), || - ||a) is
reflexive then L is locally finite.

Proof. Suppose that there exists an infinite jointly orthogonal subset M of L
and let i € N — p; € M\{0} be an injection. Let /™ be the Banach space of
bounded real sequences r = (r;);eN With norm

[I7lloo = sup |ri.
ieN

Let » be an element in [ and define a sequence (f;,).,en by

n

fn= Z riea(p;).

i=1
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Since {p; : i = 1,2,...,n} is a difference set, by Theorem 2.1, we obtain, for
each element p in A,

£l £ 3 lrilu) £ max |l 3 p(pi)
i=1 o k=1

S max |rjp@{pi:i=1,2,...,n}) S max |r].
i=12,..,n i=12,.,n

ey

Therefore, for all natural numbers #, |[fulla = ||r|lo- By o(J(A)*, J(A))-
compactness of the unit ball [—ea(1), ea(1)] of J(A)* there exists a subnet
(fu)w in ||r|lco[—ea(1), ea(1)] which converges to an element f in this set in the
o(J (A)*, J(A))-topology. On the other hand, for every element p in A, the real
sequence (27:1 1(Pi)nen is isotone and is contained in the interval [0, 1]. Since
the sequence (r;);en 1s bounded, we conclude that (f,(u)).en converges in R.
The subnet (f,y (1)), of the sequence (f,(i))nen converges to f(1) and therefore
(fu())nen converges to f () as well. This proves that (f,),en converges to f in
the o(J (A)*, J(A))-topology.

For each natural number j we select a charge p; in A such that u;(p;) equals 1.
Then the sequence (f,(pj))nen converges to r;, for all natural numbers j. Hence
rj equals f(u;) and we conclude that

lIlloo = sup [ f ()| = sup |f ()] = [[r[loo-
JEN HEA

To this end we have shown that the linear map ) : [*®* — J(A)* defined by
W) = o0 @A), J(A) — lim ) riea(pi)
i=1

is isometric. This proves that J(A)* contains a non-reflexive closed sub-space.
Hence J(A)* is not reflexive and therefore the Banach space completion of J(A)
is not reflexive.

The following result is a variation of Theorem 4.1 [39]. Notice that Q(L) as
well as the empty subset and singleton subsets of (L) are 7-closed subsets of
RE.

THEOREM 5.2. Let (L, 1,®,0, 1) be an orthoalgebra and let T be the product
topology on RE. Let A be a convex subset of the convex set Q(L) of probability
charges on L and let J(A) be the linear hull of A equipped with the base norm
= lllla

If A is T-closed and has the Jordan-Hahn property then (J(A), || - ||a) is a
reflexive Banach space.

Proof. If A is T-closed then aconA is 7-compact and therefore coincides with
the unit ball of the normed vector space (J (A), ||-||a); also, this space is complete
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[1], [41]. Let (J(A)*, || - ||a) be the Banach space dual of (J(A), || - ||a)- Then the
subset J(A), of J(A)* defined by

J(A). :={f €J(A) : f | aconAis (T | aconA) — continuous }

is a || - ||a-closed subspace. By the theorem of Dixmier-Ng (see e.g. [24]), the
Banach space dual (J(A).)* of J(A). is linearly isometric to J(A). Notice that
{ea(p) —ea(’) : p € L} is a subset of the unit ball of J(A),.

Let p be an element of J(A). Then there exist elements p, € in A, scalars s, ¢
in R, and an element p in L such that the real numbers sv(p’), t£(p) are zero
and p equals sv — t€. Then

s+12 ||plla 2 (ealp) — ea@)(w)
= (ea(p) —ea(P))(sp —1€) = s +1.

To this end we have shown that every element of (J(A).)* & J(A) attains its
supremum (=norm) on the unit ball of J(A),. By the Theorem of James [25]
(also see e.g. [12]), the unit ball of J(A), is 0(J (A)«, (J(A).)*)-compact, showing
that (J(A)x, || - ||a) and finally, (/(A), || - ||a) are reflexive Banach spaces.

CoRrOLLARY 5.3. Let (L, L,®,0, 1) be an orthoalgebra and let T be the product
topology on RE. Let A be a 1-closed unital convex subset of the convex set (L)
of probability charges on L.

If A has the Jordan-Hahn property then L is locally finite.

Proof. This follows from Theorem 5.1 and Theorem 5.2.

There are examples which show that the converse statements of Theorem 5.1
and Corollary 5.3 are false.

6. Applications

6.1 JIBW-Algebras. A real algebra A, not necessarily associative, for which
aob=boa, aO(boaz): (aOb)oaz,

holds true and which is also a Banach space with respect to a norm a — |al|
satisfying

llaobl < llall - lbll, lla’ll = llal* and |la*|| < [la* + 57|

is said to be a JB-algebra.
An element a in A is called positive if there exists an element b such that

a=bob.

The set A, consisting of positive elements in A forms a generating cone in A.
If A has a unit, denoted by 1, then the triple (A, A,, 1) is an order unit normed
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space and the order unit norm coincides with the norm of A. An idempotent is
an element p in A satisfying

pop=p;

. U(A) denotes the collection of idempotents in A. Trivially, the zero-element 0
and the unit 1 of the algebra A are idempotents.
A JB-algebra which is the Banach space dual of a, necessarily unique, Banach
space is called a JBW -algebra. A JBW-algebra has a unit.
Let A be a JBW-algebra. We define a binary relation | on the set U(A) of
idempotents in A by

Li={(,9 €UMA) xU@A):pog =0}
and a map @ :1— U(A) by
p®q:=p+q for(p,q) €l

Then the quintuple (U(A), L, ®,0,1) is an orthomodular orthoalgebra. In fact,
the associated orthocomplemented poset (U (A), <, ') is a complete orthomodular
lattice with

p=gq ifandonlyif g—p€A,, p' =1—p.

Let A be a JB-algebra and let A* be its Banach space dual. A state on A is
an element ¢ of A* such that

p(1) =1 and ¢(A:) C Ry

S(A) denotes the collection of states on A. Then the pair (A*,S(A)) is a base
normed space and the unit ball of A* coincides with the absolutely convex hull
aconS (A) of S(A). For details the reader is referred to [2], [3], [13], [14], [23],
[44].

Let A be a JBW-algebra. The restriction R¢ of an element ¢ in A* to U(A) is
a bounded charge on the orthoalgebra (U(A), 1L, ®,0,1). An element ¢ in A* is
a state on A if and only if R¢ is a probability charge, by the spectral theorem.
By the same token, the linear map R : A* — W(U(A)) is injective. We denote
with A the image of S(A) under the map R. Notice that A is a unital convex
subset of Q(U(A)). It then follows that (J(A),A) and (A*,S(A)) are isomorphic
as base normed spaces, hence ||[R¢||a equals ||¢|| for all elements ¢ in A*. The
question as to when A exhausts Q(U (A)) is treated in [8].

THEOREM 6.1. Let A be a JBW-algebra and let (U(A), L, ®,0,1) be the or-
thoalgebra of idempotents in A.

Then the convex set of probability charges obtained by restricting the states
on A to U(A) has the approximate Jordan-Hahn property.
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Proof. 1t is an immediate consequence of the spectral theorem that the order-
interval [0, 1] of the order unit normed space (A,A,,1) coincides with the
norm-closure of the convex hull of U(A). The affine map @ — 2a — 1 is a
norm-homeomorphism of A and maps the order-interval [0, 1] bijectively onto
the order-interval [—1, 1]. Since the set [—1, 1] is the unit ball of A we conclude,
by Lemma 3.2, that for every element ¢ in A*

IRélls = Il = swp 6@

= sup{¢(@):a €con{p —p' :p € UA)}}
sup ¢(p —p') = sup (RY(p) — Ro(p")) = [|RY||,.

pEU(A) peU(4)

Il

An allusion to Theorem 4.3 and the previous remarks concludes the proof.

6.2 Locally finite orthoalgebras. A non-zero element p of an orthoalgebra
(L, 1,,0,1) is said to be an atom in L if, for elements ¢,r in L,

p = q@®r implies that g =0 or r = 0.

Lemma 6.2. Let (L, 1,®,0,1) be a locally finite orthoalgebra. Then:
(i) For each non-zero element p in L there exists an atom q and an element
r in L such that p equals q ®r.
(i) For each non-zero element p in L there exists a difference set D con-
sisting of atoms such that p = @ D.
(iii) A difference set consisting of atoms is maximal as such if and only if 1
equals @D.

Proof. (i): Suppose that there exists a non-zero element p in L for which the
assertion is false. Then there exists a strictly antitone sequence (p;);2, with p;
equals p. For each natural number #, the set

Dy :=A{pi—pin:i=12,...,n}

is a difference set, hence an orthogonal subset. Since D,¢N is a strictly isotone
sequence of subsets of L it follows that J;2, D, is an orthogonal set and that
each of its finite subsets is a difference set. Therefore, by Theorem 2.1, U?i, D,
is an infinite jointly orthogonal set; a contradiction.

(ii): Let p be a non-zero element of L. By (i) and by a similar argument as
in the proof of (i), we find a finite sequence (g;)_,, n 2 1, of atoms such that

p>p—q1>@P—q)—q@>...>0G(..(p—q1))—q2)...—qn) =0.

Clearly, this so defined strictly isotone sequence yields the difference set
{91,492, .., qn}. Then B{q1,92,...,9a} =p -0 =p.
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(iii): Let D be a difference set consisting of atoms and suppose that D < 1.
Then (D D) is different from O and therefore, by (i), there exists an atom p
such that p L €@ D. By Theorem 2.2, D U {p} is a difference set showing that
D is not maximal.

Conversely, if D is a difference set consisting of atoms and not maximal as
such then there exists a difference set £ properly containing D. it follows, by
Theorem 2.2, that @D < PE = 1.

Let (L, 1,,0,1) be a locally finite orthoalgebra. We denote with A(L) the
collection of atoms in L and with O(L) the collection of maximal difference
sets consisting of atoms. Both sets are not empty and the pair (A(L), O(L)) is a
hypergraph [7], the atom-hypergraph of L. Up to isomorphisms, a locally finite
orthoalgebra is uniquely determined by its atom-hypergraph [17], [30], [31],
[32]. From the results of the aforementioned papers an intrinsic characterization
may be deduced, namely, of those hypergraphs which are atom-hypergraphs of
locally finite orthoalgebras.

Lemma 6.3. Let (L, L,,0,1) be a locally finite orthoalgebra with atom-
hypergraph (A(L), O(L)). Then:
(i) For every charge p on L and for all elements E,F in O(L),

> up) =) wa).

peEE qeF

(i) A functional w : A(L) — R such that

D> wp) =) wig) forall E,F€OWL)

pEE q€eF

admits a unique extension to a charge on L.

Proof. (i): This follows from 6.2(iii).

(ii): Let w : A(L) — R be a functional satisfying the condition. Let M, N be
difference sets consisting of atoms such that @M and @ N are equal. Let E
be an element of O(L) such that N C E. Then

1 = @E = BN & PE\N),

thus @M L @E\N) and it follows that M U (E\N) is a difference set. Also
M N(E\N) is empty and

@M UE\N)) = BM & DE\N) = DM & (PM) = 1.
We conclude, by Lemma 6.2(iii), that

F:=MU(E\N) € O(L).
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Then in the case that N is different from E,

Dowp) =Y wp)=Y wp)+ Y wp)

PEE peEF pPEM pEE\N
=D wl@)— D wp)+ Y wip).
qeE geN pPEM

It follows that 3° v w(q) equals 37, w(p). We define an element u,, in R
by

)_{0 Lifp=0
WPV =\ ywl@) L ifp#0

where N is a difference set consisting of atoms such that @ N equals p, and
claim that p,, is a charge on L which extends w. Let p, g be non-zero elements
in L with p L ¢ and let M,N be difference sets consisting of atoms, such
that p equals @M and g equals @ N. Then M UN is a difference set and
PMUN)=PM DEDN =p®q. Then, since M NN is empty,

Ho(p @ q) = Z w(r) = E w(r) + Z w(r)

reMUN reM reN
= Mu(]’) + /Ju(q)

Finally, p,(p) is equal to w(p) for all elements p in A(L) since p equals @{p}.
Uniqueness of the extension follows from Lemma 6.2(ii).

A locally finite orthoalgebra (L, L,®,0,1) is said to satisfy the outer point
condition (see [28]) if for every element £ in O(L) there exists an element p
such that, for all elements F in O(L),

1) pEF & E=F.

It is a consequence of the following theorem that the convex sets of all
probability charges of the locally finite orthoalgebras Jig(Janowitz [26]) and
Di¢(Dilworth [11]) have the Jordan-Hahn property. This theorem generalizes a
result by Schindler [43].

THEOREM 6.4. Let (L, L,®,0, 1) be a locally finite orthoalgebra. If L satisfies
the outer point condition then every bounded charge on L is Jordan and the
convex set QL) of probability charges on L has the approximate Jordan-Hahn

property.

Proof. We show that condition (i) of Corollary 4.4 holds true. Let p be a
bounded charge on L such that u(p) = 1 for all elements p in L. For each
element £ in O(L) we define a scalar ¢tz by

te =) prp);

pEE
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then 0 = 7z = 1, by hypothesis. Also for each element E in O(L) we select an
element pg which satisfies condition (1) and define a functional w : A(L) — R
as follows

1 —tg+p*pe) ,if p=pg for some E € O(L)

wip) = { ur(p) , otherwise.

Then w(p) 2 0 and u(p) = p*(p) = w(p) for all elements p in A(L). Then for
every element F in O(L) with more than one element

dowp)=wpr+ Y wp)

peF peF\{pr}
=1—tp+p o)+ Y, 4P
peF\{pr}
=l—tp+y prP)=1—tp+ip = 1.
peF

The same conclusion is reached when F is a singleton set. Let p,, be the charge
on L which extends the functional w (see Lemma 6.2) then p, is a positive
charge and p(p) = pu(p) = 1 for all elements p in L.

Using Lemma 4.1 and Theorem 4.3 it is easily verified that the “Schindler
Fork™ Schyo [43] and Greechie’s G3; [18] are finite orthomodular orthoalgebras
for which the convex sets of all probability charges do not have the Jordan-
Hahn property.

6.3 Boolean Algebras. Let (B,L1,1N, 1,0, 1) be a Boolean algebra. An element
p in R is said to be a charge, resp. bounded charge, positive charge, Jordan
charge, probability charge, on the Boolean algebra (B,L,1M,1,0,1) if u is a
charge, resp. bounded charge, positive charge, Jordan charge, probability charge
on the corresponding orthoalgebra (B, L, €D, 0, 1) (see 2).

Let 4 be a bounded charge on B. We claim that p* is a subadditive functional
on B, hence a positive charge on B: Let p, g be elements in B such that p 1 g.
If  is an element of B with r = p @ g then r is equal to (* M p) & (r M q).
Therefore

p(r) = p(r Mp)+pu@r Ng) = p'(p) + p*(g),
hence,
prp®q) = ptp)+ptg)

The following classical result (see e.g. [34]) is obtained as a corollary to
Theorem 4.3.

CoroLLARY 6.5. Let (B,U,M,1,0,1) be a Boolean algebra.
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Then every bounded charge on B is Jordan and the convex set (B) of
probability charges on B has the approximate Jordan-Hahn property.

Proof. Let u be a bounded charge such that u(p) < 1 for all elements in
p in B. As observed above, p* is a positive charge on B and, clearly, u(p) =
p¥(p) = 1 for all elements p in B. The assertion follows from 4.4.

The next result is an immediate consequence of the above and Corollary 5.3.

COROLLARY 6.6. Let (B,U,M,1,0,1) be a Boolean algebra and let Q(B) be
the convex set of probability charges on B.
Then C(B) has the Jordan-Hahn property if and only if B is finite.

Proof. Let p be a non-zero element of B. Then there exists a two-valued
Boolean homomorphism p : B — {0, 1} such that u(p) equals one (see [22]).
Then clearly, u is a bounded charge on B and therefore Q(B) is unital. If Q(B)
has the Jordan-Hahn property then, by Corollary 5.3, B is locally finite. The set
of atoms of the orthomodular orthoalgebra (B, L, ®,0, 1) is orthogonal, hence,
Jjointly orthogonal and therefore finite. Finiteness of B now follows from Lemma
6.2. The converse follows from Corollary 6.5.
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