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SOME EXAMPLES OF INTEGRAL DEFINITE QUATERNARY

QUADRATIC FORMS WITH PRIME DISCRIMINANT

KI-ICHIRO HASHIMOTO

Introduction

In the theory of integral quadratic forms or the related theory such
as modular forms, it is important to give examples of forms with given
discriminant for various computational purposes. However, little is known
about this problem even in the case where the explicit formula for the
class number has been given. Among the works that deal with satis-
factorily many examples or give a constructive method of them, there
are [1] for ternary forms, and [5] for quaternary forms with square
discriminants. As for quaternary forms with prime discriminant, P.
Ponomarev [8] gave an explicit way to construct such forms from ternary
forms with discriminant 2q. It was based on the result of his previous
work [7] and that of Y. Kitaoka [6], but was rather complicated.

The purpose of this brief note is to give some examples of quaternary
forms with prime discriminant q, by first constructing the examples of
"symmetric" maximal orders of a quaternion algebra over Q(*/Ίf). So
this could be regarded as a numerical supplement to [2], [6], [7], or [3], [4],

As the numerical table suggests, it is likely that our examples cover
a complete representatives of isometric classes of such forms. Unfortunately
we could not prove this.

§1. Symmetric maximal orders

Let BQ be the definite quaternion algebra over Q with discriminant
q, where q is a prime number such that ^ Ξ I (mod 4). Let F = Q(V q)
be the real quadratic field and B = B0®F be the base extension of Bo;
it is the definite quaternion algebra over F with discriminant (1). As in
[3, Prop. 1], we take and fix a Q-automorphism a of B of order 2, that
induces the non-trivial automorphism on F, and that is trivial on So. A
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maximal order of B will be called "symmetric" if it is stable under the

action of σ.

We collect some known facts that could be found in [3], [4], [7].

PROPOSITION 1. Let Θ be a symmetric maximal order of B. Then Θ&

= Bo Π Θ is a maximal order of Bo. Conversely, for every maximal order

of BQ, there is a unique maximal order of B containing it; and this is

symmetric.

In Bo or B} the set of isomorphic (maximal) orders coincides the set of

conjugate classes, which is called a type. The number of types of maximal

orders is called the type number. Note that, the groups 0*/«Eo, Θ*\E have

finite order and are type invariants. (2?0, E are the groups of units in Q, Fy

respectively.)

PROPOSITION 2. The mapping Θo -> Θ in Prop. 1 induces the map from

the set of types in Bo to that of B. This is one-to-one at the types where

Θx/E has order 1, 3, or 12. It is two-to-one where ΘX\E has order 2, or

6. (We exclude the case for q = 5, where both type numbers are 1, ΘX\E

has order 60.)

PROPOSITION 3. The number of types in B, which contains a symmetric

maximal order is [(q + 19)/24].

Now we give the example of symmetric maximal orders of B. Let

p be a prime number satisfying (p/q) = — 1 and p = 3 mod 4, and let s be

any positive divisor of (p + l)/4. Then we can write

Bo = Q + Qi + Qj + Qij , i2 = -sq , / = -p , ij = - j ϊ .

Following proposition is a generalization of [5].

PROPOSITION 4. We can find an integer a such that a2q + s = 0

(moάp). Then

0O(P, s) = Z + Z(l + j)/2 + Zί(l + j)l2s + Z(aq + i)j/p

is a maximal order of Bo. The type of (P0(p, s) is independent of the choice

of a.

Proof. Evidently (PQ(p, s) = (Po is a lattice in Bo that contains 1. Tα

show that φ0 is a ring, we put ex = 1, e2 = (1 + j)/2, e3 = ί(l + ./)
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€4 = (aq + i)jlp, and then express ehek as a linear combination of ek
9s with

integral coefficients. In fact:

e2e3 = (1+ p)aq/48 eι - (1 + p)aq/2s-e2 + (1 + p)/2 e8 + p ( l + P)/4s e4 ,

e2e4 = — aq-eι + aq-e2 + s-e3 + (1 — p)/2 e4 ,

β3e2 = (1 + p)aq/4s-e1 - (1 + p)aq\2s e2 + (1

- aq-e3
e3e4 = (sq — sqp + a

+ 0- +
0*02 = —aq-e2

e4e3 = ~(sq +

+ aq-e2

04 = —(sq +

2q

p)aq/2s-

- s e3 H

sqp + c

- (1 +

a2q2)IP

2 + a2q2p)βsp

04 ,

- (1 +p)/2 e4

0i - (sg +

ι2q2 + a2q2p)j2sp-e1 + (sq

p)aql2s-e4 ,

Si

Finally, the discriminant of Φo is

det(Tτ(ehek)) -

and this proves

= det

that (

•2

1

0
Ό

%

1

(l-p)/2

0

0

0 -(l+p)g/2β

— αg

is maximal.

-Q

a2q2 + a2c

+ a2q2 +

0

— a

-Q

-2(sq +

a2q2

q

a2q

0

p)lsp-e

2)IP<

THEOREM 1. Let Θ(p, s) be the symmetric maximal order of B that

contains Θ0(P> s). This is given by

Θ{p, s) = OF+ OF(1 + ί)\2 + O,i*(l + j)/2s +

where we write OF the ring of integers of F, and ί* = i

Proof. This may be proved by exactly the same way as Prop. 4,
and we omit the calculation. Another way to prove it consists in corn-
pairing the integral basis of @(p, s) to that of (P0(p, s): if we note the
simple relation i*(l + j)/2s = ej^~q9 (a^~q + i*)j/p = ej^lcf, we can easily
get to the conclusion. The symmetricity of Θ(p, s) is evident.

Remark 1. If we let p and s vary, there arise infinitely many
symmetric maximal orders d)(p, s) of B. So there are many isomorphisms
among them, because the type number is finite (Prop. 3). For example,
we can prove
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(i) Θ(p, s) ^ 0(p, s*) if 4ss* = x2 + pyz for some x,y e Z
(ii) Θ(p, 1) = 0(p*, 1) if and only if pp* = x2 + qy2 for some x,y e Z,

§2. Integral quaternary forms with discriminant q

It is well known that quaternary quadratic space with nonsquare
discriminant D is realized as a subspace of its second Clifford algebra,
which is a quaternion algebra over the quadratic field Q(VD). In our
case, where D = q is a prime as in § 1, it is isomorphic to B. Thus we
consider

V = {xe B\°x = χ} = Q+Qi* + Qj~qj + Qi*j

equipped with the restriction of the reduced norm of B (x-+x denotes
the canonical involution of B).

We quote the following result from [7]:

PROPOSITION 5. Let Θ be a symmetric maximal order of B. Then
L = 0 Π V is a lattice in V, with discriminant q and has a vector of
length 1. Conversely, every such lattice can be written in this way (up to
a similitude of V). Moreover for Lk = Θk Π V, k = 1,2, we have: Lx = L2

if and only if Θx = Θ2.

An easy consequence of the above correspondence is

PROPOSITION 6. Let Θ and L = Θ Ω V be as in Prop. 5, and let O(L)
(O+(L)) be the group of (proper) automorphisms of L. Then we have

O+(L)^ΘηEx {±1},

the automorphism corresponding to ueΘxIE being x—>uxσu~\ where we
take u to be a root of unity.

The proof is easy and therefore omitted, (cf. [2, Prop. 3])
As a direct application, we get

THEOREM 2. Let p be a prime with (pjq) = — 1 and p = 3(mod 4), and

let s be any positive divisor of (1 + p)/4, and aeZ be such that a2q + s = 0

(mod p). Then

L(p, s) = Z+Z(l + ^qj)l2 + Zi*(l + j)/2s + Z(aj~q +
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is a nice lattice in V, i.e, it has discriminant q and has a vector of length

1. Therefore,

f(P,s;x) = fL(x)

(px2 + 2axifql4p + x\jAs + (pxz

is a nice form, i.e, it is an integral quaternary form of discriminant q

that represent 1.

Let an, n = 1,2,3, , be the number of vectors in L with length n.

It is the n-th Fourier coefficient of the theta series associated to /L(x).

Proposition 6 can be interpreted as giving αlβ Namely we can show

easily

PROPOSITION 7. (i) α, = 2.|({we (Px; u*u= Ij/E1),

(ii) a, = 2,4,6,8,12, according as #(0x/#) = 1,2, 3,6,12,

where E1 denotes the group of units in F with norm 1.

(In (ii) of the Proposition 7, and following Proposition 8, we are exclud-

ing the case for q = 5).

PROPOSITION 8. Let Hj denotes the number of classes of nice lattices

for which Θx/E has order j,j = 1,2,3,6,12. They are determined by the

following formulae:

1 + H2 + H3 + HQ + H12 = [(q + 19)/24]

H = ί° q Ξ 1 ( m o d 3) H = ί°
6 l l qϊ=l (mod 3), 12 l l

q Ξ 1 ^
q £? 1 (mod 8)

4H2 + AH, + 2H12 - h(-q) , 4H3 + 2H6 + 4H12 = h(-3q)

where h(ή) is the class number of Q{Λ/ΊΪ).

This is a direct consequence of [3, Theorem 2], and [6].

§ 3. Numerical examples

In the following table we give the examples of (p, s, α)'s so that

f(p, s)'s form a complete set of representatives of classes of nice quaternary

forms. (f(p, s; x) = x\ + xxx2 + a*x\ + 6*x2x4 + c*Xs + x3x4 + d*x\, α* =

(1 + pq)l4, 6* = aq, c* = (1
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Q

5

13

17

29

37

41

53

61

73

(P, s, a)

(3,1,1)

(11,1,4)

(3,1,1)

(3,1,1)

(19,1,6)

(23,3,10)

(23,1,8)

(11,1,2)

(3,1,1)

(23,3,4)

(3,1,1)

(31,1,10)

(7,1,5)

(23,3,3)

(31,1,1)

(59,3,2)

(7,1,3)

(31,2,11)

#«?*/£)

60

12

6

6

12

3

12

2

6

3

6

12

2

3

12

1

2

3

(α,, α
2
, α

3
, o

4
, α

5
, • )

(20,30,60, )

(12,14,48, •••)

(8,24,18, •••)

(8,12,18,32, ••-)

(12,6,24,20, ...)

(6,8,30,24, •••)

(12,6,24,12,...)

(4,16,12, •••)

(8,12,6,-..)

(6,6,18,26,30,18,64, •)

(8,12,6,20,36,12,60, )

(12,6,24,12,24,12,56, •••)

(4,8,20,16,36,20, •••)

(6,2,24,18,30,30, •••)

(12,6,24,12,24,8, •••)

(2,12,14,22,12, •••)

(4,8,12,24,20, •••)

(6,6,12,24,8, •••)

(23,2,4) 1 (2,10,10, •••)
(19,1,4) 2 (4,12,0,-..)
(59,1,23) 2 (4,8,8, •••)
(3,1,1) 6 (8,12, 6, • )

(23,2,8) 1 (2,10,10,.-.)
(71,2,29) 1 (2,8,14, •••)
(7.1.1) 2 (4,8,8, •••)
(59,3,28) 3 (6,6,12, )

(..2,2) 2 (4,8,8,12,32,12,34,32,48,28)
(11,3,2) 2 (4,4,12,16,36,12,28,20,36,42)

101 (83,3,22) 3 (6,0,12,20,30,12,36,30,30,24)
(3,1,1) 6 (8,12,6,20,24,0,24,36,20,36)
(103,13,26) 12 (12,6,24,12,24,8,48,6,36,24)

(23,2,10) 1 (2,6,18,12,22,12,32,24,54,24)
(11,1,1) 2 (4,4,12,12,32,20,28,16,48,26)

109 (47,2,12) 3 (6,2,18,6,18,24,30,20,60,30)
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q (p, s, a) i (&X/E) (au α2, α3, α4, α5, • )

(47,3,13) 3 (6,0,12,18,24,18,36,20,48,18)
(59,1,20) 12 (12,6,24,12,24,8,48,6,36,24)

(23,3, 6) 1 (2,10, 6,20,14,26,26,44,22,28)
(47,4,11) 1 (2,8, 8,26,14,14,22,50,22,40)

113 (23,6,7) 2 (4,12,0,20,12,22,24,48,24,52)
(47, 6,8) 3 (6, 6,12,18, 0,18,32,48,24,42)
(3,1,1) 6 (8,12, 6,20,24, 0,24,36, 8,36)

(.3.2,5) 1 (2, 6,10,20,12,18,18,48,16,38)
(47.3.6) 1 (2,8,4,24,14,14,26,40,18,32)
(47,6,5) 1 (2,10,4,16,12,26,24,42,24,26)
(43,1,4) 2 (4,12,0,20,8,14,20,44,24,52)
(79,2, 7) 3 (6, 6,12,18, 0,12,26,36,24,36)
(3,1,1) 6 (8,12,6,20,24,0,24,36,8,24)

(.3.2,2) 1 (2, 6,10,12,24, 6,36,22,30,20)
(11.1.3) 2 (4,4,4,16,28,12,32,12,32,28)
(23,1, 5) 2 (4,4,8, 8,32, 8,28,24,32,38)

149 (59,5,6) 3 (6,0,12,12,18,6,38,24,36,30)
(139,5,25) 3 (6, 0, 6,14,24,18,36,24,24,18)
(..1,1) 6 (8,12,6,20,24, 0,24,36,8,24)
(7..20,13) 12 (12, 6,24,12,24,8,48,6,36,24)

(23,3,8) 1 (2,2,18,12,16,14,18,20,46,22)
(103,2,24) 1 (2,4,14,10,18,20,24,12,46, 8)
(..2,2) 2 (4,8,8, 8,16,12,18,28, 52,16)

157 (79,2,9) 3 (6,6,12,18,0,12,24,20,36,12)
(79,5,20) 3 (6,0,12,12,14,12,30,24,48,6)
(139, 5,39) 3 (6,2,18, 6,12,12,18,14, 60,18)
(8..21,14) 12 (12, 6,24,12,24,8,48, 6,36,24)

(59,3, 24) 1 (2,4,10,14,22, 6,28,20,32,16)
(7,2,1) 2 (4,8,8,8,16,8,14,32,40,20)
(11,3,1) 2 (4,4,4,12,24,16,28,12,32,20)
(79,2,11) 3 (6,6,12,18,0,12,24,18,24,14)
(127,4,28) 3 (6,0,12,12,12,6,36,24,30,14)
(191,4,19) 3 (6, 0, 6,14,18,12,30,30,30,18)
(3,1,1) 6 (8,12, 6,20,24,0,24,36, 8,24)
(127,1,14) 12 (12,6,24,12,24,8,48, 6,36,24)
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q (p, s, a) I (&X/E) (au α2, α3, α4, α5, •)

(.3.2,4) 1 (2,2,14,12,20,14,16,12,38,20)
(31,2,9) 1 (2,2,16,8,18,18,16,18,38,22)
(47,3,9) 1 (2,4,10,12,20,12,26,14,42,12)
(7,1,1) 2 (4,8,8,8,16,8,10,28,48,20)
(19, 5,3) 2 (4,4, 8,4,28,12,20,16,40,26)
(71, 6,7) 3 (6,0,12,12,12, 6,30,20,36,18)
(103,2,13) 3 (6,2,18, 6,12,12,12,8, 54,18)
(131,1,29) 12 (12,6,24,12,24,8,48,6,36,24)

(47, 6,11) 1 (2, 6, 8,10,10,24,18,32,20,28)
(71,2, 8) 1 (2,10,4,10,4,26,16,36,32,18)
(71, 6,11) 1 (2,4,8,18, 6,22,20,32,22,18)
(79.4.6) 1 (2,4,6,20,12,22,10,24,26,22)
(127,16,20) 1 (2,4,10,14,6,28,12,28,30,24)
(11,1,3) 2 (4,4,4,12,16,24,12,28,24,32)
(79,10,13) 3 (6, 6,12,18, 0,12,24,18,18,12)
(127,4,10) 3 (6, 0, 6,12, 8,30,18,36,24,24)

(31.4.5) ϊ (2, 6, 8,8,18, 8,30,26,32,12)
(.1.3,7) 1 (2,4,8,14,18, 6,36,14,26,14)
(11,1,1) 2 (4,4,4,12,20,8,28,16,36,28)
(79,4,18) 3 (6, 0, 6,12,12,18,30,18,36,20)

197 (103,13,14) 3 (6,6,12,18,0,12,24,18,18,8)
(167, 7,27) 3 (6,0,6, 8,18,12,42,24,18,18)
(227,3,39) 3 (6,0,12,12,12,0,32,24,30,12)
(3,1,1) 6 (8,12, 6,20,24,0,24,36,8,24)
(103,26,17) 12 (12,6,24,12,24,8,48,6,36,24)

(Calculation was done by hand up to q = 97, by electric machine
for 100 < q < 200)
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