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1. Introduction. An algebra (L; v, A,*,7,0,1) of type (2,2,1,1,0,0) is a distribu-
tive double p-algebra provided (L;v, A, 0, 1) is a distributive (0, 1)-lattice, and *, * are
unary operations of pseudocomplementation, or dual pseudocomplementation, respec-
tively: the operation * satisfies x <a™ if and only if x Aa =0, while x = a™ holds if and only
if xva=1.

A category C is universal (or binding) if any full category of algebras is isomorphic to
a full subcategory of C. In particular, see [10] or [18], for every monoid M there is a
proper class K of pairwise non-isomorphic objects in C such that M is isomorphic to the
endomorphism monoid End(X) for every X € K; hence any binding class C of algebras
contains arbitrarily large members with endomorphism monoids isomorphic to M.

In [3] it was shown that the category DP of all homomorphisms of distributive double
p-algebras contains infinitely many non-isomorphic finite algebras X; with End(X)=M
for any finite monoid M, and that there exist arbitrarily large double p-algebras with
one-element endomorphism monoid. In the present paper we exhibit a finitely generated
universal subvariety V of DP; this strengthens the results of [3] and also answers a
question, raised by Ervin Fried, of whether a finitely generated congruence distributive
variety can be universal as a category. Since any nontrivial finitely generated variety of
distributive double p-algebras contains a finite simple algebra [4], [6], it is natural to ask
whether a variety generated by finitely many finite simple double p-algebras can be
universal. We show that this is not the case; in fact, there are groups not representable as
automorphism groups of algebras in such a variety.

A category E is an iso-category if all morphisms of E are invertible; thus the category
Iso(C) of all isomorphisms of any category C is an iso-category. We say that a category
C is iso-universal if Iso(A) is isomorphic to a full subcategory of Iso(C) for any full
category A of algebras. Consequently [18], if C is an iso-universal category of algebras
then, for any group G, there is a proper class K of algebras in C such that Aut(X)= G for
every X e K. In this terminology, we show that a finitely generated variety V of double
p-algebras is iso-universal if and only if it contains a subdirectly irreducible algebra which
is not simple, that is, if and only if V is not a congruence permutable variety. On the other
hand, the variety generated in DP by all simple algebras of range two is congruence
permutable and iso-universal. We are thus led to the following modifications of Fried’s
original question.
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PrOBLEM 1. Are there any iso-universal or universal finitely generated congruence
permutable varieties of any type?

In connection with this question, it should be pointed out that congruence permutabil-
ity and universality do not exclude each other in general: adding a new nullary operation
to Heyting algebras constructed in [2] produces a universal congruence permutable
variety.

ProBLEM 2. Characterize finitely generated universal varieties of double p-algebras.

It is a pleasure to acknowledge stimulating and extensive correspondence with R.
Beazer on varieties of double p-algebras, as well as numerous fruitful discussions with M.
E. Adams concerning Priestley’s duality.

2. Preliminaries. Priestley’s duality [14], [15] for distributive lattices is used exten-
sively throughout this paper. We recall briefly its basic properties; for details, the reader is

referred to B. Davey [6], H. A. Priestley [14], [15], or to overview articles by B. Davey
and D. Duflus [7], H. A. Priestley [17].

An ordered space (X ; 1, <) consists of a poset (X; <) and a topology T on X. A subset
A of X is decreasing if x<ae A implies x € A for every x € X; increasing set is defined
dually. An ordered space (X; T, <) is totally order disconnected if x#y implies the
existence of a clopen decreasing set A < X with xe A and y¢ A for any x, ye X, Let CT
denote the category of all continuous order preserving maps between compact totally
order disconnected spaces, and let D be the category of all (0, 1)-homomorphisms of
distributive (0, 1)-lattices.

THeorREM 2.1 (H. A. Priestley [14]). There is a contravariant isofunctor A : CT — D.
The lattice A(X; 1, <) is the inclusion-ordered set of all clopen decreasing subsets of
(X; 7, =). For any CT-morphism f:S — S’ and every clopen decreasing subset Y' of S', the
lattice homomorphism A(f) is given by A()(Y')=f"'(Y").

Let Min{x) be the set of all minimal elements of (X; <) below x € X and, for any
A c X, let Min(A) be the union |J (Min(a):a € A); define Max(x) and Max(A) dually.
The sets Min(x) and Max(x) are nonvoid for any element x of a compact totally order
disconnected space (X7, =), called also a Priestley space. For any aeX, let (a]=
{xeX:x=a},[a)={xe X:a<x}; given a subset A of X, set (A]=J((a]:acA) and
[A)=U (a):aec A). Clearly [A)=[Min(A)) for any decreasing subset A of X, and,
dually, (A]=(Max (A)] if A is increasing. The following result describes the restriction of
Priestley’s duality to the category DP of distributive double p-algebras [15]; see also [17]
or [6].

THEOREM 2.2 (H. A. Priestley). If S =(X; 7, <) is a Priestley space then A(S) lies in
DP if and only if [A) is clopen for any clopen decreasing set A of S, and (B] is clopen for
any clopen increasing set B of S.

Let f:S'— S be a CT-morphism with A(S), A(S")e DP. Then A(f):A(S)— A(S) is a
DP-morphism if and only if f(Min(x)) =Min(f(x)) and f(Max(x))=Max(f(x)) for every
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x € X. Furthermore, A(f) is one-to-one (onto) if and only if f is onto (f is a homeomorphism
and order isomorphism of S' into S).

Next we recall a characterization of finite subdirectly irreducible distributive double
p-algebras due to B. Davey [6].

THEOREM 2.3 (B. Davey). Let S =(X; 7, <) be a Priestley space. Then

(a) A(S) is a finite simple double p-algebra if and only if (X; <) is a finite connected
poset such that X =Min(X)UMax(X);

(b) A(S) is a finite subdirectly irreducible double p-algebra if and only if (X;<) is a
finite connected poset and X has at most one element outside Min(X)UMax(X).

Given a finite simple distributive double p-algebra F, let V(F) denote the subvariety
of DP generated by all finite subdirectly irreducible algebras having F as a homomorphic
image. Theorems 2.2 and 2.3 combine to give Proposition 2.4 below.

ProposITION 2.4. The variety V(F) is finitely generated.

The following sufficient condition for simplicity is easily obtained from Theorem 2.4
of B. Davey [6].

ProrosiTion 2.5. If A(X; 7, <)e DP is such that (X; <) is a connected poset with
X =Min(X)UMax(X) then A(X; 7, <) is a simple distributive double p-algebra.

Let L; denote the category whose objects (L;a, b, c) consist of a distributive
(0, 1)-lattice and three constants a, b, c € L\{0, 1} satisfying avb=1>avc, ¢<b, and
anc=0<anb; the morphisms of L, are all lattice homomorphisms preserving these
three constants. It was shown in [1] that L, is a universal category. Since every lattice
homomorphism preserving the three constants is a (0, 1)-homomorphism, Priestley’s
duality can be used to reformulate Theorem 1.1 of [1] as follows.

PropoSITION 2.6 [1]. The category T? of all Priestley spaces X with three distinguished
clopen decreasing sets A, B, C satisfying ANC=J, C<B, AUB=X, and of all
continuous order preserving maps f:(X; A, B, C) — (X'; A’, B, C") of X into X' such that
f(AA\B)c A'\B’, fLANB)c A'NB’, f(B\(AUC))cB\(A'UC"), and f(C)= C’ is du-
ally isomorphic to a universal category.

Any totally order disconnected space (X;7, <) whose topology = has a subbase
consisting of clopen decreasing sets and their complements (that is, clopen increasing sets)
has an open base formed by sets of the form CND with C clopen increasing and D
clopen decreasing; any such space will be called order regular. Clearly, any subspace of a
Priestley space S whose order is the restriction of that of S is an order regular space; on
the other hand, every compact order regular space is a Priestley space.

For an order regular space (X; 1, <), let K(X) be the Boolean algebra of all clopen
sets of (X; 7), and let BX denote the set of all prime filters of K(X). For every W e K(X)
set c(W)={aeBX:Wea}, and let B={cl(W): We K(X)}. It is easy to see that B is
closed under finite unions; there is a topology o of X having B as its base for closed sets.
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Standard arguments show that (8X; o) is a compact totally disconnected space containing
(X; 1) as a dense subspace, once every x X is identified with the prime filter p(x)=
{WeK(X):xe W} of K(X). Every continuous map f of (X;7) into a compact totally
disconnected space Y extends uniquely to a continuous map g defined on (8X; o). Define
a relation e < BX X BX as the set of all pairs (a, b) such that b ecl(W) implies a € ci(W)
for every decreasing We K(X). It is easily seen that e is a preorder on 8X. If x,ye X
then (x, y) € e is equivalent to x <y since (X; 7, <) is totally order disconnected; further-
more, (a, x), (x, a)€ e can hold only if a = x.

If ¢:B8X — aX is an onto map such that ¢(a)=¢(b) if and only if (a, b), (b, a)ee,
then the ¢-quotient < of e is a partial order and the quotient topology v is compact and
totally order disconnected with respect to <. Thus (aX; v, <) is a Priestley space; its
existence was first proved by L. Nachbin [13] (see also H. A. Priestley [14]). It is easy to
show that the continuous extension g of an order preserving continuous mapping f of
(X; 7, <) into a Priestley space Y has the form g=hece for some continuous order
preserving mapping h.

ProrosITION 2.7 (L. Nachbin, H. A. Priestley). For every order regular space (X; 1, <)
there exists a uniquely determined Priestley space (aX; v, <) containing (X;1,<) as an
ordered dense subspace such that every continuous order preserving mapping f of (X; 1, <)
into a Priestley space (Y;p, <) extends to a continuous order preserving mapping
h:(aX;v,<)—>(Y;p =)

If S, =(X;; 7, <;) is a Priestley space for every i€ I, set X to be the disjoint union of
(X;:ieI), and define x<y iff x<;y for some i€ I. Equipped with the union topology T,
the space ¥, (S;:ieI)=(X; r,=<)=S is order regular; the inclusion map ¢; of X; into X is a
homeomorphism of S; into S and also an order embedding for every i € I. Hence ¢; is also
a continuous order embedding of S; into aS=(aX;v, <). If Y is a Priestley space and
f;:S;— Y is a continuous order preserving mapping for every i€, then the joint
extension f:S — Y of all f; preserves order and is continuous. The continuous extension h
of f from Proposition 2.7 preserves order and hee, = f; for every i € I. Since h is the only
continuous map with the latter property, it follows from Theorem 2.1 that A(aS) is
isomorphic to the product [J(A(S;):i€I) of distributive lattices A(S;). The product of
double p-algebras is again a double p-algebra; this completes the proof of the claim
below.

ProrosiTion 2.8. For any system (A(S;):ieI) of double p-algebras, the product
[T(A(S)):ieI) is isomorphic to the dual of a Y (S;:iel).

3. A finitely generated universal variety. Theorem 4.6 of the next section shows
that any universal variety of distributive double p-aigebras must contain a subdirectly
irreducible algebra which is not simple. The universal variety V exhibited here will be
generated by four finite subdirectly irreducible algebras whose quotients modulo their
respective critical congruences are isomorphic to a simple algebra F.

To prove the universality of such a variety V, a full embedding ® of the category T3
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described in Proposition 2.6 into the class of Priestley spaces dual to algebras in V will be
constructed as follows.

Let T=(X;A,B,C) be an object of T> Extending X by the set S=
{aq, ¢o» Po» 90> @1, b1, P1> g1} Of eight isolated points preserves compactness. The order of
the compact space (T)=(XUS; 1, <) is defined by

(i) for any x,ye X, x<y in ®&(T) if and only if x<y in X,
(if) Min(®(T)) ={aq, o, Po> go} and Max(®(T)) ={a4, by, py, a1},
(iii) Min(a,)={po, co}, Max(co) ={ay, q1, b;}, Min(by) ={co, qo, ao}, Max(ao) ={by, p1},
and go=<4q;;
furthermore, for any x e X,

(iv) co=x (if and only if x€ X\C; apo<x if and only if xe X\A;

(v) x<a, if and only if x€ A; x<b, if and only if xe B.

It is easily verified that (i)-(v) indeed define a partial order on X U S; since the poset
X is convex in ®(T), the ordered space ®(T) is totally order disconnected. To see that
®(T) is a space dual to a double p-algebra, in view of (ii) it suffices to observe that
[ag)N X =X\A,[c))NX=X\C, [po)NX =[qy) N X = are clopen in ®(T), and so are
the sets (a;]NX=A, (b, ]JNX=B, and (), |INX=(q,]NX=I.

The conditions (ii) and (iii) show that (S;=) is a connected poset with S=
Min(S) UMax(S); by Theorem 2.3(a), A(S) is a simple double p-algebra. If A(g) is an
endomorphism of A(S) then the finiteness of S implies that g is a bijection of S onto itself.
Since py€ S is the only minimal element of S with exactly one maximal element above it,
g(po) = po follows by Theorem 2.2. Furthermore, g(c,) = c, because |Max(s)|=3 if and
only if s=c, Arguments dual to these show that g(p;)=p;,; and g(b,)=b,. From
Min(p,) ={ao}, Max(py) ={a,} it follows that g(ay)=a, g(a,)=a,, respectively. Now
g(q;) = q; for i =0, 1 since g permutes Max(S), Min(S). Thus the algebra A(S) is rigid, that
is, its endomorphism monoid is trivial.

Let f:(X; A, B,C)—(X'; A", B’, C')= T’ be a morphism of T3, see Proposition 2.6.
Using Theorem 2.2 it is routine to verify that the extension ®(f):®(T)— &(T’) of f by
the identity of S is a dual of a double p-algebra homomorphism. This also shows that ® is
a faithful functor.

To show that the image of ® is a full subcategory in the category of all Priestley
spaces dual to double p-algebras, let g:®(T)— ®(T’') be such that A(g)e DP. Since
Min(D(T)) UMax(®(T)) = S = Min(®(T")) U Max(P(T")), the restriction of g to S is an
endomorphism of S; since S is rigid, g preserves S pointwise. From (iii), (iv), and (v) it
follows that Min(z) ={c,} and Max(z) ={a,} hold simultaneously for any z € ®(T) if and
only if ze X\B = A\B. Thus g(A\B)< A’\B' by Theorem 2.2. An element z of ANB is
characterized by Min(z) ={c,} and Max(z)={a,, b,}, so that g(ANB)c A'NB’. Ele-
ments of X\(AUC)=B\(AUC) are singled out as those with Min(z)={a,, ¢},
Max(z) = {b,}, while C is the set of all z satisfying Min(z) ={co} and Max(z) ={b,}; the
inclusions g(B\(AUC))cB\(A'UC’) and g(C)c C’' thus follow analogously to the
previous two cases. Proposition 2.6 concludes the proof of the claim below.

LemMa 3.1. The full subcategory of DP determined by double p-algebras dual to spaces
®(T) with Te T3 is universal.
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For any T e T3, the subspace Min(®(T)) UMax(®(T)) =S of ®(T) represents a finite
simple double p-algebra F; in fact, F is the quotient of A(®(T)) modulo the determination
congruence 8, defined by x8y if and only if x*=y* and x*=y™*, see R. Beazer [4]. Let
Q(F) denote the class of all algebras A whose quotient by the determination congruence
is isomorphic to F, or, equivalently, such that the dual X of A satisfies Min(X)U
Max(X) = S. To show that the class ®(T?) is contained in a finitely generated variety, we
need the following claim.

Lemma 3.2. If F is a finite simple double p-algebra and B € Q(F) then B is a subdirect
product of subdirectly irreducible members of Q(F).

Proof. Let 'Y, S be the dual spaces of B, F, respectively. For any ye
Y\(Min(Y) NMax(Y)), the subspace S(y) =S U{y} represents a finite subdirectly irreduci-
ble double p-algebra A(y), see Theorem 2.3. From Theorem 2.2, it follows that A(y)e
Q(A(S)). The dual A(£,) of the embedding £,:S(y)—Y is a double p-algebra

homomorphism for every ye Y\S. Since the embeddings £, are collectively onto, the
algebra A(Y) is embedded into the direct product of algebras A(S(y)) = A(y)e Q(F).

Lemmata 3.1 and 3.2 combine as follows.

THeEOREM 3.3. There exists a finitely generated universal variety of distributive double
p-algebras, namely the variety V(F) generated by all subdirectly irreducible algebras whose
quotient modulo the critical congruence is isomorphic to the finite simple distributive double
p-algebra F represented by the poset S defined by (i)-(iii) above.

It is easy to see that the four subdirectly irreducible algebras represented by finite
posets containing S € ®(T) whose respective nonextremal elements represent the relative
order of A\B, AUB, B\(AUC), and of C to elements of S already generate a variety
containing the class ®(T?). Furthermore, every ®(T) is dual to an algebra of range three,
that is, V(F) satisfies the identity x**" = x3",

4. Iso-universal varieties. To investigate iso-universality of varieties generated by
simple algebras we consider compactifications of split spaces, defined as order regular
spaces (X; 1, <) such that X =Min(X)UMax(X) and both m =Min(X)\Max(X) and
M =Max(X)\Min(X) are r-clopen.

Lemma 4.1, If S=(X; 7, <) is a split space then aS = BS is a compact split space with
cl(Max(X)\Min(X)) = Max(8S)\Min(8S) and cl(Min(X)\Max(X))=Min(B8S)\Max(BS).

Proof. The space S is a disjoint union of clopen sets M, m, and I = Max(X) N Min(X).
Suppose that a#b and (a,b)ce. If meb then, for any Zeb, the set ZNmeb is
decreasing, so that (a, b)e e implies ZNm € a. Thus b c a; since a, b are prime filters, a
contradictory a = b is obtained. Therefore m¢ b, and, similarly, I¢ b; it follows that M e b.
Since (a, b) € e if and only if We b for any clopen increasing W € a, an argument dual to
the previous one shows that m € a. Thus e is a partial order containing no three-element
chain and, consequently, oS = S is a compact split space such that Max(8S)\Min(3S) <
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cl(M) and Min(BS)\Max(BS)ccl(m). Since clMin(X))=Min(BS) and cl(Max)(X))=
Max(BS), from the definition of M and m it follows that cl(M)< Max(8S)\Min(B8S) and
cl(m) = Min(BS)\Max(gS).

The following claim describes the order of B8S.

Lemma 4.2, If S =(X; 7, <) is a discrete split space then, for any x € X and a € X\ X,
x=<a if and only if xeMin(X) and Maxg(x)e a. In particular, if Maxg(x) is finite then
Maxgx(x) € X for every xe X.

Proof. If Ze a is decreasing and Maxg(x) € a, then Z NMaxg(x)€ a is nonvoid and
hence xe€ Z; thus x=<a. Conversely, [x)€ a follows from x<a. Since x, a are distinct,
Maxg(X)ea and x e Ming(X) by Lemma 4.1, so that Maxg(x) =[x) NMax(X) € a.

Let (V,E) be an undirected graph, that is, let the set E of edges consist of
two-element subsets of the vertex set V. The graph (V, E) will be connected: for every
pair v, we V there exist edges ey, ..., e, such that vee, wee, and ¢ Ne ¥ D for
i=0,...,n—1,

For a connected graph (V, E) set X=VUE U{p, q}, where p, q are distinct elements
not contained in VUE. Define a partial order on X by requiring Max(X) = E U{q},
Min(X)=VU{p}, v<e if and only if vee, v<q for every ve V, and p<e for every
ec E. If § is the discrete topology then S =(X; §, <) is a split discrete space whose order
is connected. Set ®(V, E) = aS. Then ®(V, E) is a Priestley space, see Proposition 2.7; by
Lemma 4.1, ®(V, E) is defined on the set X of all ultrafilters on X. If Max(X)e a and
{q}€ a then a € X; otherwise E € a, and p < a follows from E = Max(p) by Lemma 4.2. In
particular, a € Max(aS)\Min(aS). If, on the other hand, Max(X) does not lie in a, then
Min(X) = X\Max(X)e a. If aeBX\X then V=Min(X)\{p}€a, and a=<gq is obtained
from a statement dual to that of Lemma 4.2. Thus a € Min(aS)\Max(aS) in this case. We
see that aX is a compact split space with connected order.

To show that ®(V, E) is a space dual to a simple double p-algebra, the claim below is
needed, see Theorem 2.2.

Lemma 4.3, If the compaciification (8X; o, <) of S=(X;r,=<) is partially ordered,
and if the smallest increasing subset 1Y of X containing Y is r-clopen for any clopen
decreasing Y € X, then [C) is a-clopen for every o-clopen decreasing C < BX.

Proof. Clearly CNXc(CNX)<[C), where 1(CNX) is 7-clopen by hypothesis;
since [C) is closed in any Priestley space, c{CNX)cc(NCNX))<[C). From the
definition of < on BX it is clear that cl(f(C N X)) is an increasing set; since C = cl(C N X),
the claim follows because [C) is the smallest increasing set containing C and cl(Z) is
o-clopen for any r-clopen Z< X.

Lemma 4.3 and its dual show that ®(V, E) represents a double p-algebra. Since
®(V, E) is an order connected split space, the double p-algebra represented by ®(V, E) is
simple for any connected undirected graph (V, E) by Proposition 2.5.

Let f:(V,E)— (V', E’) be a graph isomorphism, that is, a bijection of V onto V'
such that {v, w}€ E if and only if {f(v), f(w)}€ E'. The extension f' of f to VUEU{p, q}
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by f'(p)=p, f'(@) =q, and f'{v, w}={f(v), f(w)} for all {v, w}e E is an order preserving
isomorphism of S=(X;$§,=<) onto S'. By Proposition 2.7, there is a unique order
preserving homeomorphism ®(f) = B8 (f") of ®(V, E) onto ®(V', E’). It is easily seen that
o(f)(Max(a)) =Max(®(f)(a)) and D(f)(Min(a))=Min(®(f)(a)) for every acpX
Clearly, @ is a one-to-one functor of the iso-universal category Iso(G) of all isomorphisms
of connected graphs with more than two vertices [8] into the category of Priestley spaces
dual to the variety Q generated by all simple double p-algebras ®(V, E). Since the dual of
an iso-universal category is iso-universal itself, the iso-universality of Q will be demon-
strated once it is shown that every order preserving homeomorphism g of ®(V, E) onto
®(V', E’) has the form g =®(f) for some invertible f:(V, E) - (V' E).

Let g:®(V, E) - ®(V’, E’) be an order preserving continuous invertible mapping. A
singleton set {a}€ BX is o-clopen if and only if a € X = VU E U{p, q}; the mapping g also
preserves maximality and minimality. Hence g(EU{q})=E'U{q} and g(VU{p}H) =
V'U{p}. The minimal elements of BX below any e ={v, w}e E are just v and w, by the
dual of Lemma 4.2; if g(e)=gq then Min(q)= V' can have only two elements. For | V|,
|V'| > 2-we thus conclude g(E) = E’ and g(q) = g. Since p is the only minimal element not
below q in either space, g(p) = p and g(V)= V' follow. Let f denote the restriction of g to
the set V. If {v, w}€ E then g{v, w}e E’ is an upper bound of {f(v), f(w)}<c V', and
gi{v, w}={f(v), f(w)} follows by the definition of the order. Therefore the restriction of g
to (X; 8, <) coincides with f’ for some isomorphism f of (V, E) onto (V', E'); hence
g = B(f)=d(f) as was to be shown.

Let us consider the variety Q generated by all algebras ®(V, E) in more detail. Recall
that, for ¢ € A(T) € DP represented by the clopen decreasing set C, the pseudocomplement
c* of ¢ is represented by C*=T\[C) and the dual pseudocomplement c* of ¢ corres-
ponds to C*=(T\C]. If C is a proper clopen decreasing subset of T =®(V, E}= X, then
the clopen set (T\C)NMax(T) is nonvoid and hence it contains some xeMax(X)=
E U{q}. Consequently there is v € V such that v e C" = (T\C]. Since (V, E) is a connected
graph, there exists some e € E in [C™); note that also qe[C™). The set C** = T\[C") thus
contains neither e nor g, so that {e, g} = (T\C**]= C***. Every minimal element of T is
below e or below g; thus Min(T)< C***, and C****=J follows. Hence, in every
generating algebra ®(V, E) of Q, the polynomial p(x)=x*"*** = x2*% satisfies p(1)=1
and p(x)=0 for all x<1. Consequently, p(x)** = p(x), that is, every algebra of Q is of
range two.

LemmaA 4.4 (R. Beazer [5]). Any variety V of distributive double p-algebras generated
by a class of simple algebras is congruence permutable.

Proof. The determination congruence on any simple algebra must be trivial, that is to
say, every simple distributive double p-algebra is regular. Regular algebras form a
subvariety R of DP, see J. Varlet [19]. Since R is congruence permutable [4], so is its
subvariety V.

Lemma 4.4 and the arguments presented earlier combine as follows.

THEOREM 4.5. The class of all simple distributive double p-algebras of range two, and
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hence also the congruence permutable variety S(2) generated by simple algebras of range two
are iso-universal.

Let V be a finitely generated subvariety of DP. If V has only simple algebras in its
generating set then V is congruence permutable by Lemma 4.4. Therefore any finitely
generated variety V which is not congruence permutable must contain a finite subdirectly
irreducible algebra T which is not simple. The dual of T is a finite connected poset D
which is the disjoint union of Max(D), Min(D), and a singleton {d}, see Proposition 2.3.
Clearly, the three-element chain C;={0, ¢, 1} is a quotient of D via an onto map whose
dual is a one-to-one homomorphism of A(C;) into A(T). Hence the four-element chain
A(G;) is a subdirectly irreducible algebra in V; as a result, V contains the variety S? of
distributive double Stone algebras, see T. Katrifidk [12). The variety S* contains the
five-element chain which, as a double p-algebra, is not congruence permutable. This
establishes the equivalence of (i), (ii), and (iii) in Theorem 4.6 below.

THEOREM 4.6. The following conditions are equivalent for any finitely generated variety
V of distributive double p-algebras:
(i) V is not congruence permutable,
(i) V contains a subdirectly irreducible algebra which is not simple,
(iii) the variety S* of distributive double Stone algebras is contained in V,
(iv) V is iso-universal.

To show that (iii) implies (iv), define ¥(V, E) as the disjoint union ®(V, E)U{0, 1},
where 0, 1 are isolated points such that 0=z =<1 for all z in ¥(V, E). It is clear that
Y(V, E) is a dual of a double p-algebra for any graph (V, E), and that, for every graph
isomorphism f, the mapping ¥(f) defined as the extension of ®(f) by the identity mapping
of {0, 1} is order preserving, continuous, and invertible. Conversely, any invertible order
preserving homeomorphism g:¥(V, E) - ¥(V’, E’) satisfies g(®(V, E))=®(V', E') and
preserves 0 and 1; thus g | ®(V, E)=®(f) for some graph isomorphism as in Theorem

4.5 and, as a result, g ="V¥(f). From Lemma 3.2, it follows that AoW¥ maps the category
Iso(G) into the variety S? generated by the non-simple subdirectly irreducible four-

element chain A(C;). Thus (iii) implies (iv).

To prove the converse implication, let S be a finite set of finite simple double
p-algebras generating a variety V; without a loss of generality we may assume that S is
hereditary. Translated by the duality, S is represented by a set F={Y,, ..., Y,} of finite
connected posets with discrete topology such that Y =Min(Y)UMax(Y) for every YeF.
Since S is hereditary, F is closed under quotients; apart from the one-element poset, any
Y e F is a disjoint union of Max(Y) and Min(Y). Any algebra from V is then dual to a
quotient T of some Priestley space a } (X;:ieI), where every X; is a finite poset
isomorphic to a member of F, see Propositions 2.2 and 2.8.

To be more definite, let k:T— {1, ..., n} be an arbitrary mapping, and let S be the
union order on the set X = | ({i} X Y, :i€I). Then S is a split space; by Lemma 4.1, the
dual &S of the product is the split space BS of all ultrafilters on X; order components of
BS are completely contained either in S or in BS\S by Lemma 4.2. For every proper
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ultrafilter a € BX there is exactly one je{l, ..., n} such that k™*{j}c a. The set k™ '{j} is a
disjoint union of finitely many sets of the form k~'{j} x{y} with y € Y,. Thus every a € X
uniquely determines je{l,...,n} and yeY; such that aecl(k™'{j}x{y}). Since cl(X")
properly contains X'c X whenever X' is infinite, it is easily seen that any order
component of BS\S containing some a € cl(k™'{j}) is isomorphic to Y. If T is a Priestley
space representing a subalgebra of [] (A(Y, ) :i € I) then every order component of T is a
quotient of an order component in 3S; as a result, the cardinalities of order components
of T are finite and bounded. Let @ be an equivalence on T consisting of all pairs (t, u)
such that t, ue Q for some order component Q of T, and let B be the quotient of T
modulo 0. The space B is clearly Boolean; let h:T— B denote the onto map with
Ker(h)=6.

If Aut(T) is the group of all order preserving continuous invertible maps of T into
itself, then g(Q) is an order component of T for any order component Q and any
g € Aut(T). Assume that Aut(T) contains an element g of a prime order p>|Y]| for every
YeF. For some teT the elements t,=g"(t) with rep={0,1,...,p—1} are pairwise
distinct, so that there are disjoint order components Q,...,Q,_; of T such that
g(Q,)= Q,,, (where the addition is performed modulo p) for all rep. Since the image
g(Q) of any order component Q is order connected, there is an automorphism g’ of B
satisfying g'ch = heg; if {b,}= h(Q,), then g'(b,) = b,., and the elements by, ..., b,_, of B
are distinct. Since B is totally disconnected there exists a clopen set A, such that
{b,:rep}NA,={by}; clearly, b,e A, =(g')(A,) if and only if s=r. The sets B,=
AA\U (A, :s#r) are pairwise disjoint, clopen, and such that g'(B,)= B,,, and b, € B, for
every rep. Set T, =h~'(B,); the clopen sets T, are pairwise disjoint and g(T,) =T, for
all rep. For any permutation 7 of {0,...,p—1} set g .(t)=g"™"(t) whenever teT,
g.(t)=1t for all te T outside ToN...NT,_,. It is routine to verify that g, € Aut(T); thus
Aut(T) contains the symmetric group Sym(p) for any element ge Aut(T) of sufficiently
large prime order p. Therefore the variety V is not iso-universal. This completes the proof
of Theorem 4.6.
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