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the number component attributes. A recursive greedy algorithm is proposed to handle the general cost 
function in the problem for product family design. The formulation and the algorithm are tested for a 
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determines optimal values of the components which are suspensions, stabilizer bars, and tires in the 
vehicle model. 
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1 INTRODUCTION
Product family design provides efficient product platforms that are used to produce similar types of
products. The variety of products enables manufacturers to meet the needs of various markets. Also,
platform-based products reduce costs and make logistics effective (Simpson, 2004). However, building
a platform for different types of products can cause performance loss. Also, commonality of the plat-
form design will affect the modularity in each product. In the early stage of the product family design,
designers have to consider the performance of products, commonality of components, and modularity
of an individual product. Scale-based product family design (Simpson et al., 2001) and module-based
product family design (Du et al., 2001) can be used to create new product platform from the products
that are produced from existing platforms. The scale-based product family design scales the platform to
create variants of the product family, while module-based product family design generates products by
substituting components.
When the designers build platform design, the key factor of product family design is the efficiency of
the platform. The commonality among the variants would reduce the manufacturing cost of the products
which eventually increase the net profit. Also, designers should consider the performance loss caused
by sharing components. The main goal of the optimizing the platform design is maximizing the com-
monality while minimizing the performance loss. Various approaches that optimize the product family
platform have been proposed. In the early studies, sharing components are selected prior to designing
the optimal components. Nelson et al. (2001) proposed a multi-criteria optimization to optimize com-
ponents when the sharing components are given. The result is compared to the optimal design without
sharing so that they can quantify the performance loss caused by the commonality. Gonzalez-Zugasti
et al. (2000) built a multidisciplinary optimization problem for platform selection. They proposed an
interactive approach to design the product family. Platform design processes and variant design pro-
cesses are done iteratively until the platform design team and the variant design team satisfy with the
results from each other. Rai and Allada (2003) optimized the combination of components under the
predefined component candidates. Also, Rojas Arciniegas and Kim (2011) provided an iterative pro-
cess that optimizes the modularity and commonality of product families with predefined component
candidates.
There are several methods in the literature that optimize the component selection and component design
simultaneously. Fujita and Yoshida (2004) developed an optimization problem that maximizes the profit
under performance constraints. They formulated a problem that optimizes the module attributes and
selection simultaneously. The problem is solved by a genetic algorithm. Simpson and D’souza (2004)
also presented a model with all-common or all-distinct restriction. That means a component should
be either in one product or all products, but partial sharing is not allowed. The limitation had been
relaxed by Khajavirad et al. (2009). The optimization problem is formulated as bi-level decomposition
problems. Chowdhury et al. (2011) used a similar commonality matrix to formulate a mixed integer
non-linear programming (MINLP). They maximized the performance of each product and minimized
the production cost.
In product family design, performance functions of products are used to evaluate the performance loss
and maximize the performance of the product. For complex product designs such as vehicle design and
aircraft design, numerically expensive performance functions are handled as those includes dynamics
and simulations. Due to their complexity, designers can set a target range for each performance function
and define the acceptable region of design variables. The region is called a solution space. Designs in
the solution space are identical in terms of the performance as they satisfy the target range. Instead of
evaluating the performance functions for every iteration, a predetermined solution space can be used
in optimization processes. Also, designers will get an infinite set of solutions so that they can easily
adapt to a new target rather than having one best point. Eichstetter et al. (2015) set target ranges for
performance functions as constraints and analyzed the solution spaces. Good design points that are in
the solution space are sampled with Monte Carlo simulation and Bayesian statistics. They estimated the
solution space with a box-shaped region. Since the estimation is a Cartesian product of the lower and
upper bound of each design variable, the method has limitations if the actual solution space is nonconvex
or has disconnected sets.
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In this paper, we used a finite set of the solution space for each product. Since the actual solution space
is computationally expensive to be obtained unless it is an approximation, discrete design points are uti-
lized in the proposed method. With the good design points in the finite set, a combinatorial optimization
problem is solved to maximize the commonality of the product family design. In section 2, the proposed
method is introduced. In section 3, a numerical experiment is performed for a vehicle design problem.
Lastly, discussion and conclusion are provided in section 4 and 5.

2 METHOD: MAXIMIZING COMMONALITY WITH WEIGHTED SET COVER
PROBLEM

2.1 Overview
In the early stage of a platform design, target ranges of performance functions determine the char-
acteristics of different products in the product family. For example, the target range can aim higher
performance level for a high-end product than for a low-end product. If there are P number of products
to be designed, each of the product has different boundaries of design variables and target ranges of
performance functions. The solution space for each product p can be represented as follows.

Fp = {x |xL
p ≤ x ≤ xU

p ,TL
p ≤ R(x) ≤ TU

p } ∀p = 1, ...,P (1)

In Equation 1, x is a vector of design variables which define attributes of components. If the values are
different, components are considered as distinct components. A lower bound and upper bound of x are
denoted as xL

p and xU
p . R(x) represents the performance function, and TL

p and TU
p are target ranges.

The main goal of the proposed method is maximizing commonality of product family by minimizing the
number of distinct components. The method starts with the table of candidate designs. An example of
the table is shown in Table 1 where S, N , and P represent the number of candidate design point, design
variables, and products, respectively. In the table, θ represents an attribute value of the component. For
the n-th design variable, an means the number of distinct attribute values for the variable. Each row of
the table contains information about the design point. For example, design 1 consists of the components
θ1

1 , θ1
2 , and θ1

N for the design variables 1, 2, and N . As it is denoted as ‘Yes’ for the product 1 and there
are ‘No’ for the rest of products, design 1 satisfies the boundary and the target range only for product
1. In the table, design 1, design 2, and design 3 shares the component θ1

1 for design variable 1. Also,
design 2 and design 3 satisfy multiple products. As the table is a collection of candidate design points,
the designs that do not satisfy any product are not included in the table.

Table 1. A table of candidate designs

Design variables Products
1 2 · · · N 1 2 · · · P

Design 1 θ1
1 θ1

2 · · · θ1
N Yes No · · · No

Design 2 θ1
1 θ2

2 · · · θ2
N Yes Yes · · · No

Design 3 θ1
1 θ2

2 · · · θ3
N Yes No · · · Yes

...
...

...
. . .

...
...

...
. . .

...
Design S θ

a1
1 θ

a2
1 · · · θ

aN
N No No · · · Yes

Designers will choose design points that will satisfy all the product in the family while minimizing the
manufacturing cost. It is a combinatorial optimization problem with a substantial number of instances
(design points). The objective of the problem is minimizing the number of distinct components, which
will minimize the cost. The constraint is that the selected design points have to satisfy the boundaries
and target ranges for the product family. In the table, for every product, at least one selected point should
be ‘Yes’ for the product. The proposed method utilizes the table to formulate the product family design
as a weighted set cover problem (WSC). Also, we introduce a recursive greedy algorithm to solve the
problem.
The table of candidate designs can be obtained from the earlier version of the products. If designers don’t
have enough data, they have to do preprocessing to creates the table. The detailed process is explained
in the following subsection.
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2.2 Preprocessing
In this section, the preprocessing that provides the table of candidate designs is explained. We assumed
that performance functions and the target range are given for each product and the attributes are con-
tinuous values. Designers can predict the solution space in the design variable space and sample design
points that satisfy the boundaries and at least one target range of the performance function. With an exist-
ing sampling technique such as Monte Carlo simulation, the sampling process starts from F1, which is
the solution space of the first product. For the samples in F1, we test their feasibility for the other solu-
tion spaces (F2, ..., FN ). When the sampling process for the first product is done, the same process is
performed for the second product and so on. Collected points are denoted as xs

= (xs
1,xs

2, ...,xs
N ), where

s is from 1 to S. For each design sample, attributes of the components and the feasibility for the products
are recorded in the table.
As the attributes are continuous values, all the components in the samples are distinct. For each design
variable, the tolerance of attribute are defined as ε = (ε1,ε2, ...,εN ). The element in ε defines the size of
a grid for each variable and discretize the continuous design variables. For design variable n and prod-
uct p , the number of component attributes that the variable can have is dxU

p ,n − xL
p ,n/εne. By discretizing

the design variables, we can redefine the attributes of the samples as x̄s
n which is a discretized value of

xs
n. Since the values become discrete, there are some duplicated values of x̄s

n in the table of candidate
designs. For example, there are two products (P = 2), two design variables (N = 2), and three sam-
ples (S = 3). The sample points are x1

= (3.54,7.61), x2
= (3.52,8.47), and x3

= (3.35,8.29). In this
example, x1 satisfies the first product, x2 satisfies the first and second product, and x3 satisfies the second
product. The sizes of grids are defined as ε = (0.1,0.5). Then the discretized points are x̄1

= (3.5,7.5),
x̄2
= (3.5,8.0), and x̄3

= (3.3,8.0). For the discretized points, two equations are obtained; x̄1
1 = x̄2

1 and
x̄2

2 = x̄3
2. After reordering the indices, the table of the candidate design for the example is following.

Table 2. An example of candidate designs

Design variables Products
1 2 1 2

Design 1 θ1
1 = 3.5 θ1

2 = 7.5 Yes No
Design 2 θ1

1 = 3.5 θ2
2 = 8.0 Yes Yes

Design 3 θ2
1 = 3.3 θ2

2 = 8.0 No Yes

2.3 Formulation: Weighted set cover problem (WSC)
WSC is a classical problem in graph theory. Given a set of elements U , subsets, S (⊆ U ), are selected
to cover all the elements while minimizing the cost, c. In the problem, there is a fixed cost for each sub-
set. Since the weighted set covering problem is NP-complete, a greedy algorithm is used as a polytime
approximation (Chvatal, 1979). The greedy algorithm evaluates the ratio of the cost and the num-
ber of added elements. For each iteration, a subset that has a minimum ratio is added to the solution.
The iteration ends when selected subsets cover all the elements. The greedy algorithm is presented in
Algorithm 1.

Algorithm 1 Greedy algorithm for WSC
Input: Universe (U ), Subsets (S ), Cost (c)
procedure GREEDY(U , S ,c)

I ← ∅
X ← ∅

while I 6= U do
Pick S ∗ ∈ S that minimizes cS ∗

|S ∗−I |

X ←X ∪ {S ∗}
I ← I ∪S ∗

end while
return X

end procedure

ICED192954

https://doi.org/10.1017/dsi.2019.302 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.302


We formulate the maximum commonality problem as an weighted set cover problem. In the prod-
uct family design, the products become elements, and the design points represent subsets of the WSC
problem. Each subset has product number if the corresponding design point satisfies the product. For
instance, the subset S7 = {1,3} means the seventh design point satisfies product 1 and 3. The cost
represents the total number of components that are used.

Universe: U = {1,2, ...,P}

Subsets: S = {S1,S2, ...,SS}

Cost: c(S )

(2)

The problem has two main features that are different from the traditional WSC problem. Because of the
difference, the recursive greedy algorithm is proposed by modifying the original greedy algorithm. The
proposed algorithm is shown in Algorithm 2. First, the costs are defined as functions of all the subsets,
c(S ). In WSC, the cost function only depends on one subset and does not consider interactions among
subsets. However, in our formulation, we take into account all the interactions. For example, there are
three design points in total (x̄1

= (θ1
1 ,θ1

2 ,θ1
3 ,θ1

4 ), x̄2
= (θ1

1 ,θ2
2 ,θ2

3 ,θ1
4 ), and x̄3

= (θ1
1 ,θ2

2 ,θ3
3 ,θ2

4 )). As we
select a point iteratively by the greedy algorithm, the total cost increases as iteration continue. Let’s say
the first design point, x̄1 is selected. The cost becomes 4 as we added four different components (θ1

1 , θ1
2 ,

θ1
3 , and θ1

4 ). In the second iteration, if x̄3 is selected, the total cost is 7 because three new components
added as the first component, θ1

1 , is already used by x̄1. As the cost function in the formulation is
different from the traditional WSC, the greedy algorithm cannot be directly applied. In the proposed
method, the cost is set as N initially and updated for every iteration. The maximum cost of adding one
subset (design point) is N if there is no sharing component in the design point. In order to update the cost
function, components that are used by the selected design points are defined as active components.For
each unselected design point, if b is the number of components that are in the set of active components
and used for the selected points, the cost of the design point become N − b. The updating is done before
evaluating the minimum ratio.

Algorithm 2 Recursive greedy for maximum commonality
Input: Products (U ), Points (S ), Cost (c),Candidate points (S LIST), Selected points (X ), Covered
products (P), Best solution (X ∗)
S LIST

← ∅

X ← ∅

P ← ∅
X ∗
← ∅

procedure RECURSIVE_GREEDY(U , S ,c(S ),S LIST,X ,P ,X ∗)
for i = 1, ..., |S LIST

| do
Pick S LIST

i ∈ S LIST

X ←X ∪ {S LIST
i }

P ←P ∪S LIST
i

Update c
if P = U then

Update X ∗ if current solution is better.
end if
Create S LIST including points that minimize c(S )

|S−P|

RECURSIVE_GREEDY(U , S ,c(S ),S LIST,X ,P ,X ∗)
end for
return X ∗

end procedure

The second feature of the problem is that the number of subsets are much more than the number of
elements. In the original greedy algorithm, one subset is picked in a iteration based on the minimum
ratio test. In the product family design, a lot of points are tied for the minimum ratio test. Instead
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of randomly choosing a point, recursive greedy algorithm tries every point that have the same ratio.
Among the results, the recursive algorithm will return the best solution. In the algorithm, S LIST is the
set of points (subsets) whose minimum ratio are the same. The algorithm will try all the points in the set
of candidate points. The set of selected points is denoted as X , and the set of covered products are P .
When there is no element in the first set of candidate points, the algorithm will stop and return the best
solution, X ∗.
The recursive greedy algorithm is similar to the depth-first search for a tree in graph theory. Before the
iteration starts, S LIST, which is the set of candidate points is defined as an empty set. It is the root node
of the tree. In the first iteration, the first set of candidate points are determined by the minimum ratio
test. The elements in the set become children of the root node. The elements in the first set of candidate
points are selected as the first subset one by one. Each selected subset creates its own set of candidate
points which become children of the selected subset. The algorithm stops when all the nodes in the tree
are explored.

3 NUMERICAL EXPERIMENT
For numerical experiments, a vehicle design problem of three-degree-of-freedom (3DOF) model is used.
The proposed formulation with WSC is solved by the proposed recursive greedy algorithm.

3.1 A linear three-degree-of-freedom (3DOF) model

3.1.1 State equations of the linear 3DOF model

Figure 1. Geometry diagram of the vehicle model

A linear 3DOF model is derived for the automotive vehicle design (Peng, 1996). The geometry diagram
of the vehicle model is shown in Figure 1. The linear 3DOF model is obtained by adding a roll degree
of freedom to a bicycle model. In the model, four state equations are defined with four state variables
which are yaw rate (x1 = r), lateral velocity (x2 = V), roll angle (x3 = φ), and roll rate (x4 = p = φ̇).
The four equations of motion are derived from lateral dynamics (Y), roll moment (N ), yaw moment (N ),
and the roll kinematics. The roll kinematics is simply defined as ẋ3 = x4. In lateral dynamics, a linear
tire model is used. The total side-force in front axle is

Fyf = Cαf αf + (Cγ f εcf )φ (3)

where Cαf is the tire cornering stiffness, αf is the slip angle, Cγ f is the tire camber stiffness, and εcf is
the suspension roll-camber coefficient. With the front roll-steer coefficient as εrf , the slip angle can be
defined as

αf = δ + εrf φ −
V+ ar

U
(4)
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where U is the longitudinal velocity, δ is the steering angle, and a is a distance between the front axle
and the center of mass. By Equations 3 and 4 and Newton’s law of motion, an equation is derived as
follows.

Y = Fyf + Fyr

= Cαf

(
(δ + εrf φ)−

V+ ar
U

)
+ (Cγ f εcf )φ + Cαr

(
(δ + εrrφ)−

V+ ar
U

)
+ (Cγ rεcr)φ

≡ YVV+ Yrr+ Yφφ + Ypp + Yδδ

= M (V̇+ ṗh1 + rU)

(5)

Here, YV, Yr, Yφ , Yp , and Yδ are coefficients of V, r, φ, p ,and δ respectively. Also, h1 is the height of the
mass center above the roll axis. In a similar way, the rest two equations can be derived by the total roll
moment (L), the total yaw moment (N ). The equations are

L = Lsuspension + Lweight

= −(Kφf + Kφr)φ − (Bφf + Bφr)p +Wh1φ ≡ LVV+ Lrr+ Lφφ + Lpp + Lδδ

= Ixxṗ − Ixz ṙ+Mh1(V̇+ rU)

(6)

N = aFyf − bFyr

= a
{

Cαf

(
(δ + εrf φ)−

V+ ar
U

)
+ (Cγ f εcf )φ

}
− b

{
Cαr

(
(δ + εrrφ)−

V+ ar
U

)
+ (Cγ rεcr)φ

}
≡ NVV+ Nrr+ Nφφ + Npp + Nδδ

= Izz ṙ− Ixzṗ

(7)

where b is a distance between the rear axle and the center of mass, Kφf is the front suspension roll
stiffness, Bφf is the front suspension roll damping. By Equations 5 - 7 and the roll kinematics, a matrix
format of the state equations is following.

ẋ = (M−1
1 M2)x + (M−1

1 M3)u (8)

M1 =


0 M 0 Mh1
−Ixz Mh1 0 Ixx − εIxz
Izz 0 0 −Ixz + εIzz
0 0 1 0

 , M2 =


Yr −MU YV Yφ YP

Lr −Mh1U LV Lφ LP
Nr NV Nφ NP
0 0 0 1

 , M3 =


Yδ
Lδ
Nδ
0


In the linear 3DOF model, we categorize the parameters into two groups, which are design variables and
the design parameters. Design variables are the design factors that are directly related to the component
and properties that are used to design components. Design parameters are fixed values for the products,
which are defined according to the vehicle types. Table 3 shows the values for design parameters that
are used for all types of vehicles in this product family. We set front roll steer, rear roll steer, front roll
camber, and rear roll camber 0.27, −0.03, −0.29, and 0.23 in deg/1000N . The values in Table 3 are
converted to rad/N . For the front camber stiffness and the rear camber stiffness, they are set as −65 and
−40 in N/deg for one tire. The values are converted to N/deg.

3.1.2 Product family design in the linear 3DOF model

In this numerical experiment, eight types of cars are designed based on three criteria (sedan vs. SUV,
normal vs. sports, light vs. heavy). Design parameters are determined depending on the characteristics
of the products. For example, the height of the mass center above ground for sedans is higher than that
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for SUVs. Also, the values of wheelbase, total weight at the front and rear axle, and yaw moment of
inertia are assigned appropriately as shown in Table 4.

Table 3. Common design parameters

Description Value (Unit) Description Value (Unit)

Ixx Roll inertia about mass center 200 (kgm2) εrf Front roll steer 4.71e−6 (rad/N )
Ixz Product of inertia 0 εrr Rear roll steer −5.24e−7 (rad/N )
bf Front suspension damping rate 1100 (n/(m/s)) εcf Front roll camber −5.06e−6 (rad/N )
br Rear suspension damping rate 1200 (n/(m/s)) εcr Rear roll camber 4.01e−6 (rad/N )
sf Front spring and damper spacing 1.2 (m) Cγ f Front camber stiffness −7448.45 (N/rad)
sr Rear spring and damper spacing 1.2 (m) Cγ r Rear camber stiffness −4583.66 (N/rad)

hrf Height of front roll center 0.2 (m) hrr Height of rear roll center 0.5 (m)

Table 4. Design parameters for different vehicle types

Products

Sedan SUV
Normal Sports Normal Sports

Light Heavy Light Heavy Light Heavy Light Heavy
1 2 3 4 5 6 7 8

hm height of mass center above ground (m) 0.56 0.56 0.56 0.56 0.62 0.62 0.62 0.62

l wheelbase (m) 2.4 2.4 2.4 2.4 2.7 2.7 2.7 2.7

wf total weight at front axle (kg) 725 825 725 825 850 925 850 925

wr total weight at rear axle (kg) 575 625 575 625 700 725 700 725

Izz Yaw moment of inertia (kgm2) 2250 2350 2250 2350 2450 2550 2450 2550

Four performance functions are used to evaluate vehicles. They are the roll gain (R1,deg/g), steering
sensitivity (R2,(m/s2)/100deg), steady state roll angle (R3,deg), and yaw rate gain (R4,1/sec). There
are six design variables which are directly related to the components in the model; front suspension stiff-
ness (ξ1,N/m), rear suspension stiffness (ξ2,N/m), front stabilizer bar (ξ3,Nm/deg), rear stabilizer bar
(ξ4,Nm/deg), front cornering stiffness (ξ5,N/deg), and rear cornering stiffness (ξ6,N/deg). Boundaries
of the design variables and target ranges of performance functions are set differently by the character-
istics of the vehicles. For sedans, we set higher target ranges for R2 and R4, and lower target ranges
for R1 and R3 so that the sedans achieves faster handling response than SUV. In the same way, light
vehicles and sports vehicles have higher targets for R2 and R4, and lower targets for R1 and R3 than
heavy vehicles and normal vehicles.
The goal of the experiment is maximizing commonality among the products (i.e., minimizing the total
number of components). With the WSC formulation and the proposed method, values for each design
variable are obtained. Designers can create suspensions, stabilizer bars, and tire components with the
obtained values. The target ranges and boundaries for each product are shown in Table 5.

3.1.3 Result

In this experiment, eight products are produced with the maximum commonality of components. The
optimization problem is solved with the proposed method, recursive greedy algorithm. The result is
displayed in Table 6.
Before solving the optimization problem, the design points that satisfy the target ranges of products are
obtained. The sampled design point is checked its feasibility for every product. In the design exploration,
8049 points are sampled in total. The points are discretized with grid points. 7781 design points and 268
components are obtained from the discretization.
The result shows that 24 components are required to produce eight types of vehicles. From the table,
designers can build components accordingly. For example, to make front tires that are needed to build
eight types of vehicles, the values of ξ5 should be examined. Since it is a simple 3DOF model, the front
cornering stiffness is the only design parameter that differentiates the attribute of the front tire. In the
result, we have three different values for ξ5 (981.25, 1168.75, and 1181.25). Then, the designer will
make three different type of tires, and it is sufficient for the front tire to build eight different vehicles.
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Table 5. Product specifications

Products
Variables Performance functions

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 R1 R2 R3 R4
Se

da
n

Normal
Light 1

LB 16000 17600 640 480 950 850 2.999 0.978 -1.247 49.53
UB 24000 26400 960 720 1050 950 3.117 1.023 -1.199 50.72

Heavy 2
LB 16000 17600 640 480 950 850 3.275 0.953 -1.361 46.31
UB 24000 26400 960 720 1050 950 3.403 0.995 -1.310 47.47

Sports
Light 3

LB 16000 17600 765 605 1150 950 2.913 0.997 -1.210 54.44
UB 24000 26400 1085 845 1250 1050 3.024 1.040 -1.165 55.68

Heavy 4
LB 16000 17600 765 605 1150 950 3.121 0.976 -1.292 51.53
UB 24000 26400 1085 845 1250 1050 3.230 1.020 -1.248 52.64

SU
V

Normal
Light 5

LB 20000 22400 720 560 950 850 3.531 0.979 -1.467 45.54
UB 30000 33600 1080 840 1050 950 3.668 1.024 -1.413 46.76

Heavy 6
LB 20000 22400 720 560 950 850 3.818 0.915 -1.588 42.66
UB 30000 33600 1080 840 1050 950 3.970 0.957 -1.527 43.80

Sports
Light 7

LB 20000 22400 845 685 1150 950 3.429 0.983 -1.421 50.20
UB 30000 33600 1205 965 1250 1050 3.552 1.025 -1.372 51.30

Heavy 8
LB 20000 22400 845 685 1150 950 3.686 0.948 -1.527 47.44
UB 30000 33600 1205 965 1250 1050 3.816 0.988 -1.474 48.50

Table 6. Result of 3DOF problem

Product Components
1 2 3 4 5 6 7 8 Total

ξ1 18100 18500 23700 24900 23700 18100 24900 24500

24

ξ2 26300 22300 26300 29900 20300 21300 26300 27500
ξ3 831.25 831.25 943.75 831.25 831.25 943.75 981.25 981.25
ξ4 506.25 581.25 706.25 706.25 706.25 706.25 893.75 893.75
ξ5 981.25 981.25 981.25 981.25 1168.75 1181.25 1181.25 1181.25
ξ6 881.25 881.25 881.25 881.25 968.75 993.75 993.75 993.75

4 DISCUSSION
In the proposed method, we assumed that one attribute defines the characteristics of a component. In the
numerical experiment, the rear tire is manufactured based on the values of the rear cornering stiffness.
In the 3DOF vehicle model, there is another factor that determines the characteristics of the tire, which
is the rear camber stiffness. As we set a constant value for the parameter, we can assume that the tires
that have the same rear cornering stiffness are the identical tires. However, if the rear camber stiffness
becomes a design variable, the cost function of the proposed method should be modified. Let’s say there
is another variable ξ7 that is the rear camber stiffness. In this case, the pair of the variables, both ξ6 and
ξ7 will determine the attribute of the rear tire. The updating scheme of the cost function will be different
for this case.
In the preprocessing, we assumed continuous attributes for design variables. If attributes of the compo-
nents are discrete or have countable options, designers can obtain the candidate designs by trying the
different combinations of the attributes. For example, designers would like to choose existing tires that
are already available in practice instead of manufacturing there own tire. In this case, they can create
candidate designs with existing tires. If the number of options is too huge to create all the combinations
of attributes, they can assume the attribute as continuous variables and choose the existing tire that has
the most similar attribute to the optimal solution.
In product family design, modularity can be considered to build better platforms. Since there is a trade-
off between modularity and commonality, a multi-objective problem can be solved to achieve Pareto
optimality. Rather than considering modularity as an objective, it can be considered as constraints as if
target ranges of performance functions are constraints in the proposed method. From the design structure
matrix (DSM), designers can have optimal modularity for each product. If the number of components
that violate the optimal modularity is evaluated, the constraint for the modularity can be added to the
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integer problem in section 3. The violation can be calculated by building a matrix that represents rela-
tionships between products and components. For each component, there are restrictions on sharing the
component among the product based on the optimal modularity.
An objective of the proposed method is to maximize the commonality of the product family. It is done
by setting the cost function as the number of components. The cost function can be set in different ways,
such as considering manufacturing cost of components or economics of scale. The manufacturing cost
of components can be easily adapted to the proposed method if designers have the price information
of each component. For the economics of scale, we have to analyze the demand of the markets. To
maximize profit, demand model should be studied to meet needs in various markets. By analyzing
market data, the market segments can be obtained by clustering so that designers can determine the
product positioning (Lei and Moon, 2015).

5 CONCLUSION
We utilize WSC to formulate product family design. The greedy algorithm for WSC is modified because
of the generalized cost and the property of the formulation. Targets for the performance functions are set
as constraints of designing products, while the commonality is maximized. The proposed method can
be applied directly if designers already have candidates of the components. Otherwise, designers can
sample design points that satisfy the target ranges of performance functions, and discretize the problem
to apply the proposed method as it is done in section 2.2. With the proposed algorithm, the optimal
attributes of the components that minimize the number of distinct components are obtained.

REFERENCES

Simpson, T.W., 2004. “Product platform design and customization: Status and promise.” Ai Edam, Vol. 18 No. 1,
pp. 3–20.

Simpson, T.W., Maier, J.R. and Mistree, F., 2001. “Product platform design: method and application.” Research
in engineering Design, Vol. 13 No. 1, pp. 2–22.

Du, X., Jiao, J. and Tseng, M.M., 2001. “Architecture of product family: fundamentals and methodology.”
Concurrent Engineering, Vol. 9 No. 4, pp. 309–325.

Gonzalez-Zugasti, J.P., Otto, K.N. and Baker, J.D., 2000. “A method for architecting product platforms.”
Research in engineering design, Vol. 12 No. 2, pp. 61–72.

Fujita, K. and Yoshida, H., 2004. “Product variety optimization simultaneously designing module combination
and module attributes.” Concurrent Engineering, Vol. 12 No. 2, pp. 105–118.

Baylis, K., Zhang, G. and McAdams, D.A., 2018. “Product family platform selection using a Pareto front of
maximum commonality and strategic modularity.” Research in Engineering Design, pp. 1–17.

Rojas Arciniegas, A.J. and Kim, H.M., 2011. “Optimal component sharing in a product family by simultaneous
consideration of minimum description length and impact metric.” Engineering Optimization, Vol. 43 No. 2,
pp. 175–192.

Eichstetter, M., Müller, S. and Zimmermann, M., 2015. “Product family design with solution spaces.” Journal of
Mechanical Design, Vol. 137 No. 12, p. 121401.

Chvatal, V., 1979. “A greedy heuristic for the set-covering problem.” Mathematics of operations research, Vol. 4
No. 3, pp. 233–235.

Peng, H., 1996. Lecture Notes for ME542: Vehicle Dynamics. Mechanical Engineering Department, University
of Michigan.

Lei, N. and Moon, S.K., 2015. “A Decision Support System for market-driven product positioning and design.”
Decision Support Systems, Vol. 69, pp. 82–91.

Rai, R. and Allada, V., 2003. “Modular product family design: agent-based Pareto-optimization and quality loss
function-based post-optimal analysis.” International Journal of Production Research, Vol. 41 No. 17, pp.
4075–4098.

Simpson, T.W. and D’souza, B.S., 2004. “Assessing variable levels of platform commonality within a product
family using a multiobjective genetic algorithm.” Concurrent Engineering, Vol. 12 No. 2, pp. 119–129.

Khajavirad, A., Michalek, J.J. and Simpson, T.W., 2009. “An efficient decomposed multiobjective genetic
algorithm for solving the joint product platform selection and product family design problem with
generalized commonality.” Structural and Multidisciplinary Optimization, Vol. 39 No. 2, pp. 187–201.

Chowdhury, S., Messac, A. and Khire, R.A., 2011. “Comprehensive product platform planning (cp3)
framework.” Journal of Mechanical Design, Vol. 133 No. 10, p. 101004.

Nelson, S.A., Parkinson, M.B. and Papalambros, P.Y., 2001. “Multicriteria optimization in product platform
design.” Journal of Mechanical Design, Vol. 123 No. 2, pp. 199–204.

ICED192960

https://doi.org/10.1017/dsi.2019.302 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.302

	049_ICED2019_460_CE
	049_ICED2019_460_PE
	203_ICED2019_557_PE
	299_ICED2019_463_CE
	299_ICED2019_463_PE

