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Abstract

The goal of this paper is to prove that if certain ‘standard’ conjectures on motives
over algebraically closed fields hold, then over any ‘reasonable’ scheme S there exists
a motivic t-structure for the category DMc(S) of relative Voevodsky’s motives (to be
more precise, for the Beilinson motives described by Cisinski and Deglise). If S is of
finite type over a field, then the heart of this t-structure (the category of mixed motivic
sheaves over S) is endowed with a weight filtration with semisimple factors. We also prove
a certain ‘motivic decomposition theorem’ (assuming the conjectures mentioned) and
characterize semisimple motivic sheaves over S in terms of those over its residue fields.
Our main tool is the theory of weight structures. We actually prove somewhat more than
the existence of a weight filtration for mixed motivic sheaves: we prove that the motivic
t-structure is transversal to the Chow weight structure for DMc(S) (that was introduced
previously by Hébert and the author). We also deduce several properties of mixed motivic
sheaves from this fact. Our reasoning relies on the degeneration of Chow weight spectral
sequences for ‘perverse étale homology’ (which we prove unconditionally); this statement
also yields the existence of the Chow weight filtration for such (co)homology that is
strictly restricted by (‘motivic’) morphisms.

Introduction

The famous conjectures of Beilinson (see [Bei87, § 5.10A]) predict the existence of an abelian
categoryMM(S) of mixed motivic sheaves over a (more or less, arbitrary) scheme S. This category
should be endowed with a so-called weight filtration whose factors are semisimple; it should
possess an exact realization whose target is the category of perverse (Ql-) étale sheaves. The goal
of this paper is to deduce these conjectures from certain ‘standard’ conjectures on motives over
algebraically closed fields.

Let us explain this in more detail. It is widely believed that MM(S) should be the heart of a
certain (motivic) t-structure for some triangulated category of (Voevodsky’s) motives over S. In
this paper we treat this question for the category DMc(S) of constructible Beilinson motives (as
described in [CD09]) over a (very reasonable) base scheme S, and prove that a (‘nice’) motivic
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t-structure exists for it if it exists for Voevodsky’s motives over algebraically closed fields. Recall
that the latter assumption requires certain very hard ‘standard’ conjectures (especially for positive
characteristic fields; see § 4.1 below and [Han99, § 2] for a discussion of those), yet it is nice to
know that passing to relative motives in this matter conceals no additional difficulties. Note also
that the paper [CH00] relies on the same conjectures that we need for our main results, whereas
in [CH00] only the properties of (certain) ‘pure’ relative motivic sheaves (and only for S being
a variety over a characteristic 0 field) are established. In particular, we prove a certain motivic
version of the decomposition theorem for perverse sheaves (see § 4.2) that is much stronger than
the corresponding result of [CH00]. We also characterize simple mixed motivic sheaves (those are
certainly ‘pure’) in terms of those over the residue fields of S. Certainly, the results of [CD09] are
crucial for our success here.

We now describe our central results in more detail, and also mention the main prerequisites
for their proofs.

Our first principal result is as follows. Suppose that for some fixed prime l and for any
universal domain K (of characteristic distinct from l; a universal domain is an algebraically
closed field of infinite transcendence degree over its prime subfield) there exists a t-structure tMM

for the category DMgm(K) of Voevodsky’s motives over K that is strictly compatible with the
(canonical) t-structure for Ql-adic étale sheaves (via étale homology; we call the heart of tMM

the category of mixed motives over K). Then tMM also exists for motives over any ‘reasonable’
(see below) SpecZ[1/l]-scheme S. So, one may say that a certain MM(S) exists in this case.
The proof is quite easy (given the properties of Beilinson motives established in [CD09]); we
just apply a simple gluing argument. Actually, it is not necessary to fix l here: if for each K of
characteristic p there exists a (motivic) t-structure for DMgm(K) that is strictly compatible (as
above) with Ql′-adic étale (co)homology for any l′ 6= p, then the motivic t-structure exists over
any (reasonable) S (and it does not depend on l).

The second central result seems to be more interesting; its proof is more complicated.
We verify that certain ‘weights’ exist for mixed motives over any very reasonable (see
Definition 2.1.1(4) below) scheme S (in particular, if S is of finite type over a field); if charS = 0
or if ‘the weights are nice’ over a universal K such that charK = charS, then these weights are
‘nice’ over S also. This sentence requires a considerable amount of explanation, and we give it
here.

The ‘classical’ approach to constructing weights for motives (originating from Beilinson)
was to define a filtration for motives that would split Chow motives into their components
corresponding to single (co)homology groups (i.e., would yield the so-called Chow–Kunneth
decompositions). Since the existence of Chow–Kunneth decompositions is very much conjectural,
it is no wonder that this approach has not yielded any significant (general) results up to this
moment (to the knowledge of the author).

An alternative method for defining (certain) weights for motives was proposed and successfully
implemented in [Bon10a]. To this end weight structures for triangulated categories were defined.
This notion is a natural important counterpart of t-structures; somewhat similarly to t-structures,
weight structures for a triangulated C are defined in terms of Cw60, Cw>0 ⊂ ObjC. For the Chow
weight structure wChow for DMc(S) its heart DMc(S)wChow60 ∩DMc(S)wChow>0 consists of Chow
motives (over S; these are ‘ordinary’ Chow motives if S is the spectrum of a perfect field); we avoid
Chow–Kunneth decompositions this way. The weight structure wChow allows us to define certain
spectral sequences for any (co)homology of motives; for singular and étale cohomology those are
isomorphic to the ‘classical’ ones. The Chow weight structure wChow for DMc(S) was introduced
in [Heb11] and [Bon14]; it is closely related to the weights for mixed complexes of sheaves

918

https://doi.org/10.1112/S0010437X14007763 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007763


Mixed motivic sheaves

(as introduced in [BBD82, § 5.1.8]; see [Bon14, §§ 3.4–3.6]) and for mixed Hodge complexes and
modules (see [Bon12, § 2.3]). All of these results are unconditional.

In [Bon12] and (especially) in the current paper we demonstrate that the Chow weight
structure is also useful for the study of motivic conjectures. In particular (using the results
of [Bon12, § 3]), we prove the following statement: if tMM exists over a scheme S that is of finite
type over a field, then Chow weight spectral sequences yield a weight filtration for S-motivic
sheaves; this filtration is strictly respected by morphisms of motives. Our argument relies on
the degeneration at E2 of Chow weight spectral sequences for the ‘perverse étale homology’. We
prove the latter result unconditionally. It also yields the existence of the Chow weight filtration
for perverse étale (co)homology of motives that is strictly restricted by ‘motivic’ morphisms; so
it could be useful in itself. The proof relies on certain new ‘continuity’ properties of the Chow
weight structure.

Moreover, in [Bon12, § 1] also the conjectural relation of wChow to the motivic t-structure was
axiomatized. The corresponding notion of transversal weight and t-structures was introduced,
and several equivalent definitions of transversality were given. So we actually prove the following:
if over a universal domain K of characteristic p (which could be 0) tMM exists and is transversal
to wChow, then the same is true for DMc(S) for any very reasonable S of characteristic p.

This ‘triangulated’ approach to weights (for mixed motives) has serious advantages over
the (usual) ‘abelian’ version. First, it allows the conjectural properties of mixed motives to be
combined with unconditional results on the Chow weight structure (and on Chow weight spectral
sequences). We obtain some ‘new’ properties of mixed motivic sheaves this way; note that (by
virtue of our results) all of them follow from ‘standard’ motivic conjectures (cf. the discussion in
§ 4.1 below). Besides, we obtain a description of weights for mixed motives whose only conjectural
ingredient is the existence of tMM. Finally, note that the ‘triangulated’ approach allows us to apply
a certain gluing argument (heavily reliant on [BBD82, § 1.4]) that does not seem to work in the
context of filtered abelian categories.

Summarizing: we prove that if a certain list of standard (motivic) conjectures over
algebraically closed fields hold, then the category of mixed motivic sheaves exists over any
reasonable scheme S; for very reasonable S we obtain ‘nice weights’ for S-motivic sheaves. We
also deduce (most of) the properties of this category that were conjectured by Beilinson and
others, and prove some of their ‘triangulated extensions’. Besides, we prove a certain ‘motivic
decomposition theorem’, and calculate the Grothendieck group of mixed motivic sheaves.

Finally, we note that the results of the current paper (as well as the results of [Bon14]) only
rely upon a certain ‘axiomatics’ of Beilinson motives (i.e., on a certain list of their properties;
cf. Remark 3.2.2(1) below). It follows that our arguments could be applied to the study of other
categories satisfying similar properties. A natural candidate here would be Saito’s Hodge modules.
It seems that this setting has already been thoroughly studied by Saito himself (cf. [Bon12,
Proposition 2.3.1(I)]); on the other hand, our methods may possibly yield certain simplifications
of his arguments.

We now list the contents of the paper. More details can be found at the beginning of each
section.

Section 1 is dedicated to recalling some results from homological algebra. We recall some basics
of t-structures. We also remind the reader of basic definitions and results on weight structures,
weight filtrations and spectral sequences, as well as the notion of transversality of weight and
t-structures (following [Bon10a] and [Bon12]). We also recall (mostly from [BBD82, § 1.4]) several
basic results on gluing of t-structures and weight structures.
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In § 2 we recall the basic properties of S-motives (as defined and studied in [CD09]) and
the Chow weight structure for them (as introduced in [Heb11] and [Bon14]; we prove some new
‘continuity’ properties of the Chow weight structure). We also recall some properties of the
perverse t-structure for Ql-étale sheaves, and study weight spectral sequences for the ‘perverse
étale homology’. Those degenerate at E2 if S is a very reasonable scheme; we conjecture that
they degenerate for a general (reasonable) S also.

In § 3 we define the motivic t-structure (when it exists) as the one that is (strictly) compatible
with the perverse t-structure for complexes of Ql-adic sheaves. We prove that the motivic t-
structure exists over S if it exists over (all) universal domains. We also deduce some simple
consequences from the ‘niceness’ of the motivic t-structure (i.e., from its transversality with
wChow). These enable us to prove that over a very reasonable scheme there exists a nice tl if the
same is true over some universal domain of the same characteristic.

In § 4 we verify that the existence of a (nice) motivic t-structure and its independence from l
follow from a certain list of (more or less) ‘standard’ motivic conjectures (over algebraically closed
base fields). We also prove a certain ‘motivic decomposition theorem’ (modulo the conjectures
mentioned). In particular, we characterize semisimple (pure) motives over S in terms of those
over its residue fields. This enables us to calculate K0(DMc(S)).

Notation. C below will always denote some triangulated category. t will always denote a bounded
t-structure, and w will be a bounded weight structure (the theory of weight structures was
thoroughly studied in [Bon10a]; see also § 1.1 below).

D ⊂ ObjC will be called extension-stable if for any distinguished triangle A→ B → C in
C we have A,C ∈ D =⇒ B ∈ D. Note that Ct6i, Ct>i, Ct=0 (see § 1.2), Cw>i, and Cw6i
(see § 1.1) are extension-stable for any t, w and any i ∈ Z.

For D,E ⊂ ObjC we will write D ⊥ E if C(X,Y ) = {0} for all X ∈ D, Y ∈ E. For D ⊂ C
we will denote by D⊥ the class

{Y ∈ ObjC : X ⊥ Y ∀X ∈ D}.

Dually, ⊥D is the class {Y ∈ ObjC : Y ⊥ X ∀X ∈ D}.
A full subcategory B ⊂ C is called Karoubi-closed in C if B contains all C-retracts of its

objects For B ⊂ C we will call the subcategory of C whose objects are all retracts of objects of
B (in C) the Karoubi-closure of B in C.

For a class of objects Ci ∈ ObjC, i ∈ I, we will denote by 〈Ci〉 the smallest strictly full
triangulated subcategory containing all Ci. We will call the Karoubi-closure of 〈Ci〉 in C the
triangulated category generated by Ci.

A will always be an abelian category. We will call a covariant (respectively contravariant)
additive functor H : C → A homological (respectively cohomological) if it converts distinguished
triangles into long exact sequences.

1. Preliminaries on triangulated categories, weight structures and t-structures

In § 1.1 we recall some basics on weight structures (as developed in [Bon10a]).
In § 1.2 we recall the definition of a t-structure and introduce some notation.
In § 1.3 we study weight spectral sequences (following [Bon10a, § 2] and [Bon12, § 3]), their

degeneration, and weight filtrations for Ht coming from w.
In § 1.4 we recall the notion of transversal weight structures and t-structures (as introduced

in [Bon12]).
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In § 1.5 we prove (relying heavily upon [BBD82, § 1.4]) several auxiliary statements on
t-structures and weights in the ‘gluing setting’.

1.1 Weight structures: short reminder
Definition 1.1.1. (I) A pair of subclasses Cw60, Cw>0 ⊂ ObjC will be said to define a weight
structure w for C if they satisfy the following conditions:

(i) Cw>0, Cw60 are additive and Karoubi-closed in C (i.e., contain all C-retracts of their
objects);

(ii) semi-invariance with respect to translations, Cw60 ⊂ Cw60[1], Cw>0[1] ⊂ Cw>0;
(iii) orthogonality, Cw60 ⊥ Cw>0[1];
(iv) weight decompositions.

For any M ∈ ObjC there exists a distinguished triangle

B→M → A
f
→ B[1] (1)

such that A ∈ Cw>0[1], B ∈ Cw60.
(II) The category Hw ⊂ C whose objects are Cw=0 = Cw>0 ∩ Cw60, Hw(Z, T ) = C(Z, T ),

for Z, T ∈ Cw=0, will be called the heart of w.
(III) Cw>i (respectively Cw6i, respectively Cw=i) will denote Cw>0[i] (respectively Cw60[i],

respectively Cw=0[i]).
(IV) We will say that (C,w) is bounded if

⋃
i∈ZCw6i = ObjC =

⋃
i∈ZCw>i.

(V) Let C and C ′ be triangulated categories endowed with weight structures w and w′,
respectively; let F : C → C ′ be an exact functor. F will be called left weight-exact (with respect
to w,w′) if it maps Cw60 to C ′w′60; it will be called right weight-exact if it maps Cw>0 to C ′w′>0.
F is called weight-exact if it is both left and right weight-exact.

Remark 1.1.2. (1) A simple (and yet useful) example of a weight structure comes from the stupid
filtration on the homotopy categories K(B) ⊃Kb(B) of cohomological complexes for an arbitrary
additive category B. In this case K(B)w60 (respectively K(B)w>0) is the class of complexes
that are homotopy equivalent to complexes concentrated in degrees greater than or equal to 0
(respectively less than or equal to 0). The heart of this weight structure (either for K(B) or for
Kb(B)) is the Karoubi-closure of B in the corresponding category.

(2) A weight decomposition (of any M ∈ ObjC) is (almost) never canonical. Yet for an m ∈ Z
we will often need an (arbitrary) choice of a weight decomposition of M [−m] shifted by [m]. This
way we obtain a distinguished triangle

w6mM →M → w>m+1M (2)

with some w>m+1M ∈ Cw>m+1, w6mM ∈ Cw6m (see [Bon10a, Remark 1.2.2]); we will use this
notation below (though w>m+1M and w6mM are not canonically determined by M unless we
impose some additional restrictions on these objects).

(3) Caution on signs of weights. When the author defined weight structures (in [Bon10a]),
he considered (Cw60, Cw>0) such that Cw60 is stable with respect to [1] (similarly to the usual
convention for t-structures); in particular, this meant that for C = K(B) and for the ‘stupid’
weight structure for it mentioned above a complex C whose only non-zero term is the fifth one
(i.e., C5 6= 0) was ‘of weight 5’. Whereas this (cohomological) convention seems to be quite natural,
for weights of mixed Hodge complexes, mixed Hodge modules (see [Bon12, Proposition 2.6]),
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and mixed complexes of sheaves (see [Bon14, Proposition 3.6.1] and Proposition 2.5.1(I) below)
‘classically’ exactly the opposite convention was used (so, in this convention our C is of weight
−5). For this reason, in the current paper we use the ‘reverse’ (homological) convention for the
signs of weights, that is compatible with the ‘classical weights’ (this convention for the Chow
weight structure for motives was used in [Heb11, Bon12, Bon14]; see also [Bon11]); so the signs
of weights used below will be opposite to those in [Bon10a, Bon10b].

We now recall those properties of weight structures that will be needed below.

Proposition 1.1.3. Let C be a triangulated category. w will be a weight structure for C
everywhere except in assertion (i).

(i) (C1, C2) (C1, C2 ⊂ ObjC) define a weight structure for C if and only if (Cop
2 , Cop

1 ) define
a weight structure for Cop.

(ii) Cw60, Cw>0, and Cw=0 are extension-stable.
(iii) Let w be a weight structure for C. Then Cw>0 = (Cw6−1)

⊥ and Cw60 = ⊥Cw>1 (see
Notation).

(iv) Let C and D be triangulated categories endowed with weight structures w and v,
respectively; let w be bounded. Then an exact functor F : C → D is left (respectively right)
weight-exact if and only if F (Cw=0) ⊂ Dv60 (respectively F (Cw=0) ⊂ Dv>0).

(v) Suppose that v is another weight structure for C; let Cv60 ⊂ Cw60 and Cv>0 ⊂ Cw>0.
Then v = w (i.e., the inclusions are equalities).

(vi) If w is bounded, then Cw60 is the smallest extension-stable subclass of ObjC containing⋃
i60 Cw=i; Cw>0 is the smallest extension-stable class of ObjC containing

⋃
i>0 Cw=i.

Proof. Most of the assertions were proved in [Bon10a] (pay attention to Remark 1.1.2(3)!);
see [Bon14, Proposition 1.2.3] for more details. 2

1.2 t-structures: a very short reminder and notation
To fix the notation we recall the definition of a t-structure (following [BBD82]).

Definition 1.2.1. A pair of subclasses Ct>0, Ct60 ⊂ ObjC will be said to define a t-structure t
if they satisfy the following conditions:

(i) Ct>0, Ct60 are strict, i.e., contain all objects of C isomorphic to their elements;
(ii) Ct>0 ⊂ Ct>0[1], Ct60[1] ⊂ Ct60;
(iii) orthogonality, Ct60[1] ⊥ Ct>0;
(iv) t-decompositions.

For any M ∈ ObjC there exists a distinguished triangle

A→M → B→A[1] (3)

such that A ∈ Ct60, B ∈ Ct>0[−1].
Bounded t-structures can be defined similarly to Definition 1.1.1(IV). We recall that all the

weight structures and t-structures that we will consider below will be bounded.
We will need some more notation for t-structures.

Definition 1.2.2. (1) The category Ht whose objects are Ct=0 = Ct>0 ∩ Ct60, Ht(M,Y ) =
C(M,Y ) for M,Y ∈ Ct=0, will be called the heart of t. Recall that Ht is always abelian; short
exact sequences in Ht come from distinguished triangles in C.

(2) Ct>l (respectively Ct6l) will denote Ct>0[−l] (respectively Ct60[−l]).
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Remark 1.2.3. (1) Recall that (3) defines additive functors C → Ct60 : M 7→ A and C →
Ct>1 : M 7→ B. We will denote A,B by M t60 and M t>1[−1], respectively. (3) will be called the
t-decomposition of M .

More generally, the t-components of M [i] (for any i ∈ Z) will be denoted by M t6i ∈ Ct60

and M t>i+1[−1] ∈ Ct>1, respectively.
t6iM will denote M t6i[−i]; t>iM will denote M t>i[−i].
(2) The functor M 7→ t>0M is left adjoint to the inclusion Ct>0

→ C.
(3) We will also need the following easy (and well-known) properties of t-structures.
Firstly [BBD82, Proposition 1.3.17(iii)], if a functor F is left adjoint to G, and their targets

are endowed with t-structures, then F is right t-exact if and only if G is left t-exact. The latter
assertions mean that F respects ‘t-negative’ objects, whereas G respects t-positive ones.

Secondly, if for two t-structures t and t′ on a triangulated category C the identity functor is
t-exact (for the pairs (C, t) and (C, t′), i.e., Ct60 ⊂ Ct′60 and Ct>0 ⊂ Ct′>0), then t = t′. Indeed,
the previous statement yields that the identity is also t-exact as a functor from (C, t′) to (C, t).

(4) We denote by Ht
0 the zeroth homology functor corresponding to t. Shifting the t-

decomposition of M t60[−1] by [1] we obtain a canonical and functorial (with respect to M)
distinguished triangle t6−1M → t60M → Ht

0(M); we denote Ht
0(M [i]) by Ht

i (M).
If a t-structure is non-degenerate (i.e., if

⋂
i∈ZC

t6i =
⋂

i∈ZC
t>i = {0}; note that this is

certainly the case for bounded t-structures) then the collection of Ht
i is conservative. Moreover,

in this case for C ∈ ObjC we have C ∈ Ct60 (respectively C ∈ Ct>0) whenever Ht
i (C) = 0 for

all i > 0 (respectively for all i < 0).

1.3 On weight filtrations and (degenerating) weight spectral sequences
We recall certain properties of weight filtrations and weight spectral sequences. Most of them were
established in [Bon10a, § 2], whereas the degeneration of weight spectral sequences was studied
in [Bon12, § 3].

Let A be an abelian category. In [Bon10a, § 2] for H : C → A that is either cohomological or
homological (i.e., it is either covariant or contravariant, and converts distinguished triangles into
long exact sequences) certain weight filtrations and weight spectral sequences (corresponding to w)
were introduced. Below we will be more interested in the homological functor case; certainly, one
can pass to cohomology by a simple reversion of arrows (cf. [Bon10a, § 2.4]).

Definition 1.3.1. Let H : C → A be a covariant functor, i ∈ Z.
(1) We denote H ◦ [i] : C → A by Hi.
(2) We choose some w6iM and define the weight filtration for H by WiH : M 7→

Im(H(w6iM)→ H(M)).
Recall that WiH is functorial in M (in particular, it does not depend on the choice of w6iM);

see [Bon10a, Proposition 2.1.2(1)].

We now recall some of the properties of weight spectral sequences; we are especially interested
in the case where they degenerate.

Proposition 1.3.2. (I) For a homological functor H : C→ A and any M ∈ ObjC there exists a
spectral sequence T = Tw(H,M) with Epq

1 (T ) = Hq(M
p) for certain Mm ∈ Cw=0 (coming from

certain weight decompositions as in (2)) that converges to Ep+q
∞ = Hp+q(M). T is C-functorial in

M starting from E2. Also, if F : A→ A′ is an exact functor of abelian categories then applying
F to (a choice of) Tw(H,M), one obtains a choice of Tw(F ◦ H,M) coming from the same
choices of weight decompositions; this gives a canonical isomorphism starting from E2. Besides,
the filtration step given by (El,m−l

∞ : l > k) on Hm(M) (for some k,m ∈ Z) equals (W−kHm)(M).
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Moreover, T (H,M) comes from an exact couple with Dpq
1 = Hp+q(w6−pM) (here one can fix any

choice of w6−pM).
We will say that T degenerates at E2 (for a fixed H) if Tw(H,M) does so for any M ∈ ObjC.
(II) Suppose that T degenerates at E2 (as above), i ∈ Z. Then the following statements are

fulfilled.

(1) The functors WiH and W ′iH : M 7→ H(M)/Wi−1H(M) are homological.
(2) For any f ∈ C(M,Y ) the morphism H(f) is strictly compatible with the filtration of

H by Wi, i.e., WiH(M) surjects onto WiH(Y ) ∩ ImH(f).

Proof. This is immediate from [Bon12, Proposition 3.1.2] (recall that w is bounded by our
convention). 2

Remark 1.3.3. The description of the exact couple for Tw(H,M) (which can be found in [Bon12,
Proposition 3.1.2]) also easily yields the following results.

(1) If H ′ = H ◦ [d] then Tw(H
′,M) for any M ∈ ObjC can be obtained by a ‘shift’ from

Tw(H,M), i.e., one can take Ep,q
r Tw(H

′,M) = Ep,q+d
r Tw(H,M) for all r > 1, p, q ∈ Z, and the

differentials behave in the similar way. Certainly, this yields a functorial description of Tw(H
′,M)

starting from E2.
(2) The functoriality of Tw(H,M) in H described in assertion (I) of the proposition can be

easily generalized as follows. Let

C
F //

H
��

C ′

H′

��
A

G // A′

(4)

be a commutative square of functors, where C ′ is a triangulated category endowed with a weight
structure w′ such that F is a weight-exact (and exact) functor, andG is an exact functor of abelian
categories. Then for any M ∈ ObjC one can obtain Tw′(H ′, F (M)) by applying G (termwise) to
Tw(H,M). Again, this is a functorial isomorphism starting from E2.

(3) Hence in this setting for any d ∈ Z we obtain the following: if the spectral sequence
Tw(H,M) degenerates at E2, then Tw′(H ′ ◦ [d], F (M)) also does. The converse statement is also
true if G is conservative.

This is a generalization of Proposition 1.3.6(II) below.

We now introduce the notion of a weight filtration for an abelian category following [BK14,
Definition D.7.2].

Definition 1.3.4. For an abelian A, we will say that an increasing family of full subcategories
A6i ⊂ A, i ∈ Z, yields a weight filtration for A if

⋂
i∈ZA6i = {0},

⋃
i∈ZA6i = A, and there exist

exact right adjoints W6i to the embeddings A6i→ A.

We will need the following statement.

Lemma 1.3.5. Consider a family A6m, m ∈ Z, yielding a weight filtration for A. Then the
following statements are valid.

(1) A6m are exact abelian subcategories of A.
(2) All W6m are idempotent endofunctors.
(3) The adjunctions yield functorial embeddings of W6mM → M such that W6m−1M ⊂

W6mM for all m ∈ Z, and the functors W>m : M 7→M/W6m−1M are exact also.
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(4) The categories Am being the ‘kernels’ of the restriction of W6m−1 to A6m, are abelian,
and Am ⊥ Aj for any j 6= m.

Proof. As was said in the proof of [Bon12, Lemma 2.1.2], the result easily follows from [BK14,
Remark D.7.8, Lemma D.7.5, and Proposition D.7.4(4)]. 2

We now fix certain (bounded) w and t for C, and study a condition ensuring that w induces
a weight filtration for Ht.

Proposition 1.3.6. Let H = Ht
0.

(I) Suppose that the corresponding spectral sequence T degenerates. Then the functors WiH :
C → Ht are homological. The restrictions W6i of WiH to Ht define a weight filtration for this
category. Besides, WiH = W6i ◦H.

(II) Let B be an abelian category; let F : Ht→ B be an exact functor.

(1) Suppose that T degenerates. Then Tw(F ◦H,−) also does.
(2) Conversely, suppose that F is conservative and that Tw(F ◦H,−) degenerates. Then

T degenerates.

Moreover, for M ∈ Ct=0 we have W6iM = M (respectively W6iM = 0) if and only if Wi(F ◦
H)(M) = F (M) (respectively Wi(F ◦H)(M) = 0).

Proof. This is (part of) [Bon12, Proposition 3.2.1]. 2

1.4 On transversal weight and t-structures
Let t be a t-structure for C, and w be a weight structure for it.

Definition 1.4.1. (1) For some C, t, w we will say that a distinguished triangle (2) (for some
m,M) is nice if w6mM,M,w>m+1M ∈ Ct=0. We will also say that this distinguished triangle is
a nice decomposition of M (for the corresponding m).

(2) Suppose (as we always do) that t and w are bounded. We will say that t and w are
transversal if a nice decomposition exists for any m ∈ Z and any M ∈ Ct=0.

Proposition 1.4.2. (I) We fix some C,w, t,m. Suppose that for a certain N ⊂ Ct=0 a nice
decomposition exists for any M ∈ N . Consider N ′ ⊂ Ct=0, being the smallest subclass containing
N that satisfies the following condition: if A,C ∈ N ′,

A
f
→ B

g
→ C (5)

is a complex (i.e., g ◦ f = 0), f is monomorphic, g is epimorphic, Ker g/Im f ∈ N ′, then B ∈ N ′.
Then a nice choice of (2) exists for any M ∈ N ′.

(II) If t is transversal to w, then the following statements are fulfilled for any i ∈ Z, M ∈ Ct=0,
Y ∈ ObjC.

(1) For any H that could be presented as F ◦Ht
m, where F : Ht→ A is an exact functor,

the weight spectral sequence Tw(H,−) degenerates at E2.
(2) Nice decompositions exist and are Ht-functorial in M (for a fixed m). The

corresponding functor W6m : M 7→ w6mM can be described as (the restriction to
Ht of) WmHt

0 (see Definition 1.3.1(2)); i.e., it coincides with the functor W6m given
by Proposition 1.3.6(I).

(3) The category Am = Ct=0 ∩Cw=m is (abelian) semisimple; there is a splitting Cw=0 =⊕
m∈ZObjAm[−m] given by Y 7→⊕

i∈ZH
t
i (Y )[−i].
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(4) W6mM yield an increasing filtration forM whosemth factor belongs to Am. Moreover,
this filtration is uniquely and functorially determined by this condition.

(5) Y ∈ Cw6m (respectively Y ∈ Cw>m) if and only if for any j ∈ Z we have
W6m+j(H

t
j(Y )) = Ht

j(Y ) (respectively W6m+j−1(H
t
j(Y )) = 0).

(III) For any t, w, m ∈ Z, and any choice of w6mM (and a morphism w6mM → M
corresponding to a weight decomposition) consider the morphism fm(M) : (WmHt

0)(M)→M (cf.
Definition 1.3.1(2)). Then t is transversal to w if and only if this morphism extends to a nice
decomposition (for any M,m).

(IV) For a family of semisimple (abelian) {Am ⊂ C,m ∈ Z}, suppose that 〈⋃m∈ZObjAm〉 =
C, and Am ⊥ Aj [s] for any m, j, s ∈ Z such that either s < 0, or s > m− j, or s = 0 and m > j.
Then there exist transversal w and t such that Cw=0 =

⊕
mObjAm[−m], and Ht is the smallest

extension-stable subcategory of C containing ∪Am.
(V) For any t, w, t is transversal to w if and only if there exists a family of semisimple abelian

categories Am ⊂ Ht (m ∈ Z) such that: ObjAm ∩ ObjAj = {0} for all j 6= m, j ∈ Z, and
Cw=0 =

⊕
mObjAm[−m].

Proof. (I) This is [Bon12, Lemma 1.1.3 ].

(II) (1) This is immediate from [Bon12, Proposition 3.2.1(II, III.1)].
(2) The functoriality of nice decompositions is the condition (iv’) of [Bon12, Theorem

1.2.1] (which is equivalent to condition (iv) of [Bon12, Theorem 1.2.1] that we took
above for the definition of transversality). The equality of two distinct descriptions
of W6m is given by [Bon12, Proposition 3.2.1(II)].

(3) See [Bon12, Remark 1.2.3(2)].
(4) This is immediate from condition (iii’) of [Bon12, Theorem 1.2.1] (cf. the proof of

assertion II.2).
(5) This is [Bon12, Proposition 1.2.4(I.2)].

(III) See [Bon12, Remark 1.2.3(4)].
(IV) [Bon12, Theorem 1.2.1] implies that such a family of Am does yield some transversal

structures t, w. Besides, [Bon12, Theorem 1.2.1] also allows us to calculate Ht, whereas Cw=0 =⊕
mObjAm[−m] by [Bon12, Remark 1.8(2)].
(V) Since 〈Hw〉 = C, we obtain 〈⋃m∈ZObjAm〉 = C. Since Am are semisimple, we obtain

that Am ⊥ Aj for any m 6= j. The orthogonality axioms of weight structures and t-structures
also yield the remaining orthogonality conditions that are needed in order to apply the previous
assertion. Hence, certain transversal t′ and w′ exist; besides, Hw′ = Hw and Ht′ ⊂ Ht. Since
w′ is bounded, this implies w = w′ (see Proposition 1.1.3(iv), (v)). Since t′ is bounded also, we
easily deduce that t′ = t. 2

Remark 1.4.3. In the case of motives (of smooth projective varieties over a field) the
splittings mentioned in assertions (II)(3) and (IV) correspond to the so-called Chow–Kunneth
decompositions (‘of the diagonal’).

1.5 Some auxiliary ‘gluing statements’
Below we will apply several gluing arguments. We chose to gather the definitions and auxiliary
statements related to this matter here.
Definition 1.5.1. (1) The 9-tuple (C,D,E, i∗, j

∗, i∗, i!, j!, j∗) is called a gluing datum if it
satisfies the following conditions:
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(i) C,D,E are triangulated categories; i∗ : D → C, j∗ : C → E, i∗ : C → D, i! : C → D,
j∗ : E → C, j! : E → C are exact functors;

(ii) i∗ (respectively i!) is left (respectively right) adjoint to i∗; j! (respectively j∗) is left
(respectively right) adjoint to j∗;

(iii) i∗ is a full embedding; j∗ is isomorphic to the localization (functor) of C by i∗(D);
(iv) for any M ∈ ObjC the pairs of morphisms j!j

∗M →M → i∗i
∗M and i∗i

!M →M → j∗j
∗M

can be completed to distinguished triangles (here the morphisms come from the adjunctions
of (ii));

(v) i∗j! = 0; i!j∗ = 0;
(vi) all of the adjunction transformations i∗i∗ → idD → i!i∗ and j∗j∗ → idE → j∗j! are

isomorphisms of functors.

(2) In the setting of part (1) of this definition, we will say thatM ∈ObjC is a lift of Y ∈ObjE
if j∗M ∼= Y . Similarly, a lift of a distinguished triangle C in E is a distinguished triangle C ′ in
C such that j∗C ′ ∼= C.

(3) In the setting of part (1), suppose that C is endowed with a t-structure t = tC . We
define the intermediate image functor j!∗ : E → C as M 7→ Im(H

tC
0 j!M → H

tC
0 j∗M); here the

morphism j!→ j∗ comes from adjunction (and we use the fact that j∗j!
∼= j∗j∗ ∼= 1E ; cf. [BBD82,

Equation (1.4.6.2) and Definition 1.4.22]).
(4) In the setting of part (1), suppose also that D and E are endowed with certain t-structures

tD and tE , respectively. Then we will say that a t-structure t = tC for C is glued from tD and tE
if we have CtC60 = {M ∈ ObjC : j∗M ∈ EtE60 and i∗M ∈ DtD60} and CtC>0 = {M ∈ ObjC :
j∗M ∈ EtE>0 and i!M ∈ DtD>0}. In this case we will also say that C, D, and E are endowed
with compatible t-structures.

Remark 1.5.2. Our definition of a gluing datum is far from being the ‘minimal’ one. Actually, it is
well known (see [Nee01, ch. 9]) that a gluing datum can be uniquely recovered from an inclusion
D→ C of triangulated categories that admits both a left and a right adjoint functor.

Our notation for a gluing datum is (certainly) coherent with Proposition 2.2.1(viii) below.

Proposition 1.5.3. (I) In the setting of Definition 1.5.1(1) assume that D is endowed with a
t-structure tD. Then for any M ∈ ObjC any distinguished triangle A′ →M ′(= j∗M)→ B′ (in
E) possesses a lift A→M → B (see Definition 1.5.1(2)) such that i∗A ∈DtD60 and i!B ∈DtD>1.

(II) In the setting of Definition 1.5.1(4) the following statements are fulfilled:

(1) there exists a t-structure tC for C glued from tD and tE ;
(2) tC is characterized by the following property: i∗ and j∗ are t-exact.

Moreover, j! and i∗ are right t-exact (see Remark 1.2.3(3)), whereas j∗ and i! are left t-exact
(with respect to tD, tC , and tE , respectively).

(III) In the setting of Definition 1.5.1(1) assume that C,D,E are endowed with weight
structures wC , wD, and wE , respectively, and that i∗ and j∗ are weight-exact. Then we will
say that wC , wD, and wE are compatible.

In this situation j! and i∗ are left weight-exact, whereas j∗ and i! are right weight-exact.
Besides, we have Cw>0 = {M ∈ ObjC : i!M ∈ DwD>0, j

∗M ∈ EwE>0} and Cw60 = {M ∈
ObjC : i∗M ∈ DwD60, j

∗M ∈ EwE60}.
(IV) Assume that C, D, and E are endowed with compatible t-structures (see

Definition 1.5.1(4)). Then for any M,Y ∈ Ct=0, M ′, Y ′ ∈ Et=0, and i ∈ Z, the following
statements are valid:
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(i) j∗j!M
′ ∼= j∗j!∗M

′ ∼= j∗j∗M
′ ∼= M ′;

(ii) i∗j!∗M
′ ∼= t6−1i

∗j∗M
′ and i!j!∗M

′ ∼= t>1i
!j!M

′;
(iii) if a complex A→ B→ C (in HtD) is exact in the term B, then the middle-term homology

object of the complex j!∗A→ j!∗B→ j!∗C belongs to i∗(D
t=0);

(iv) M can be obtained from j!∗j
∗M via two extensions by elements of i∗Dt=0;

(v) j!∗ maps HtE-monomorphisms to HtC-ones, and HtE-epimorphisms to HtC-ones;
(vi) j!∗M

′ does not have non-trivial subobjects of quotient objects belonging to i∗HtD;
(vii) the homomorphism C(j!∗M

′, j!∗Y
′)→ E(M ′, Y ′) induced by j∗ is bijective;

(viii) if M ′ is simple, j!∗M
′ also is;

(ix) if M ′ is semisimple, then j!∗M
′ can be functorially characterized as a semisimple lift of M ′

none of whose components are killed by j∗.

Proof. (I) We argue as in the proof of [BBD82, Theorem 1.4.10]. We consider Y = Cone(M →
j∗B

′)[−1] and A = Cone(Y → i∗(tD,>1i
∗Y ))[−1]. We complete the commutative triangle

A→ Y →M to an octahedral diagram

j∗B
′

[1]

%%
[1]

��

Moo

Y

>>

zz
i∗tD,>1i

∗Y
[1] // A

__

OO

and denote its sixth vertex by B.
Now we argue exactly as in [BBD82, Theorem 1.4.10] (using the fact that exact functors

convert distinguished triangles into distinguished ones, and the ‘axioms’ of a gluing datum). We
obtain j∗(i∗tD,>1i

∗Y → B → j∗B
′) ∼= (0→ j∗B → B′); hence j∗B ∼= B′. Next, j∗(A→ M →

B) ∼= (j∗A → M ′ → B′); hence j∗A ∼= A′. Furthermore, i∗(A → Y → i∗tD,>1i
∗Y ) ∼= (i∗A →

i∗Y → tD,>1i
∗Y ); hence i∗A ∼= tD,60i

∗Y . It remains to note that i!(i∗tD,>1i
∗Y → B → j∗B

′) ∼=
(tD,>1i

∗Y → i∗B→ 0); hence i!B ∼= tD,>1i
∗Y .

(II) (1) This is (exactly) [BBD82, Theorem 1.4.10].
(2) Obviously, if t is glued from tD and tE , then j∗ is t-exact. Since j∗i∗ = 0, the adjunctions

to i∗ also yield that i∗ is t-exact; see Remark 1.2.3(3).
Now, suppose that the t-exactness of i∗ and j∗ is fulfilled for some t-structure t′ for C.

Then Remark 1.2.3(3) yields all of our t-exactness statements for t′ (and so they are fulfilled
for t). It follows that 1C is t-exact as a functor from (C, t′) to (C, t). Applying the other statement
in Remark 1.2.3(3) we obtain t = t′.

(III) This is immediate from [Bon14, Proposition 1.2.3(13, 15)].
(IV) The proofs are easy applications of the results of (the end of) [BBD82, § 1.4].
(IV)(i) This is immediate from the axioms of a gluing datum and the t-exactness of j∗.
(IV)(ii) This is immediate from [BBD82, Proposition 1.4.23].
(IV)(iii) The previous assertion yields that the middle-term homology in question is killed

by j∗. Since the categorical kernel of j∗ is i∗D, and i∗ is t-exact, we obtain the result.
(IV)(iv) By assertion (IV)(i), we have anHtC-epimorphism a :H

tC
0 j!M → j!∗M , and anHtC-

monomorphism b : j!∗M → H
tC
0 j∗M ; both of them become isomorphisms after the application
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of j∗. Besides, adjunctions yield that b ◦ a factorizes through M . As in the proof of (IV)(iii), the
result follows immediately.

(IV)(v),(vi) These are immediate from [BBD82, Corollary 1.4.25]; note that the kernel
(respectively the cokernel) of the j!∗-image of a monomorphism (respectively of an epimorphism)
is necessary killed by j∗.

(IV)(vii) This is an easy consequence of (IV)(vi). Indeed, since j∗j!∗ ∼= 1HtE , it suffices to
verify that the homomorphism C(j!∗M

′, j!∗Y
′)→ E(M ′, Y ′) induced by j∗ is injective. Let f be

a non-zero element of C(j!∗M
′, j!∗Y

′). Then assertion (IV)(vi) yields that Im f is not isomorphic
to an object of i∗(HtD). Hence j∗ Im f 6= 0; since j∗ is t-exact we obtain j∗f 6= 0.

(IV)(viii) This is just [BBD82, Proposition 1.4.26].
(IV)(ix) We may assume thatM ′ is simple. Then j!∗M is simple also by the previous assertion.

Assertion (IV)(iv) yields that j!∗M is the only simple lift of M ′. Finally, assertion (IV)(vi) implies
that this characterization of j!∗M is functorial. 2

Remark 1.5.4. So j!∗M
′ is the ‘minimal’ lift of M ′. As a consequence, when we ‘lift nice

decompositions’ (in the proof of Theorem 3.4.1 below) it will be sufficient to check whether
j!∗ ‘respects weights’. In order to verify the latter assertion, we will apply Theorem 2.5.4(II).

2. On relative motives and Ql-sheaves

In § 2.1 we introduce certain terminology for schemes and their morphisms; we also discuss our
restrictions on base schemes.

In § 2.2 we recall some of basic properties of Beilinson motives over S (as defined in [CD09]).
In § 2.3 we recall certain properties of the Chow weight structure wChow for DMc(S) (as

introduced in [Heb11, Bon14]); we also prove some new ‘continuity’ properties of this weight
structure.

In § 2.4 we treat the étale realization of S-motives and the perverse t-structure for its target.
In § 2.5 we study weights for mixed sheaves and relate them to (the degeneration of) Chow

weight spectral sequences for Het
Ql,0

. The latter degenerate at E2 if S is a very reasonable scheme
(we conjecture that they degenerate for a general reasonable S also). This yields that the Chow
weight filtration for such (co)homology is strictly restricted by (‘motivic’) morphisms.

2.1 Schemes and morphisms: some terminology and a discussion of restrictions
All morphisms and schemes below will be separated. Besides, all schemes will be excellent
Noetherian of finite Krull dimension. S will usually be our base scheme. Often j : U → S will be
an open immersion, and i : Z → S will be the complementary closed embedding.

Below l will always be a prime number (as well as l′); we will usually assume l to be fixed.
p will usually denote the characteristic of some scheme (so it is either a prime number or 0);
usually p 6= l. We will say that p is the characteristic of S (only) if it is an equicharacteristic p
scheme (so it is a SpecFp-scheme if p > 0 and a Spec Q-scheme for p = 0).

Below we will identify a Zariski point (of a scheme S) with the spectrum of its residue field
(sometimes we will also make no distinction between the spectrum of a field and the field itself).
S will denote the set of (Zariski) points of S. For K ∈ S we will denote the natural morphism
K → S by jK . We will call the dimension of the closure of K in S the dimension of K.

We now introduce some terminology for schemes and their morphisms.

Definition 2.1.1. (1) We will call a scheme S reasonable if it is of finite type over some
(Noetherian excellent separated) regular scheme S0 of dimension less than or equal to 1.
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We will only consider reasonable schemes below. For most of them one can assume S0 to be
fixed (yet we will often consider Zariski points of our schemes). In particular, when we say that
a morphism of schemes is of finite type we will always assume that we have chosen a common S0

for them.
(2) A morphism g :X ′→ Y will be called essentially pro-affine if it factorizes asX ′ h

→X
f
→ Y ,

where f is a finite type morphism, and h is the inverse limit of a filtered system of affine morphisms
hi : Xi→ X.

(3) An essentially pro-affine morphism g′ : X → Y will be called quasi-regular if all the
corresponding fi : Xi→ Y are compositions of chains of finite type smooth morphisms and finite
universal homeomorphisms.

(4) A reasonable scheme S will be called very reasonable if there exists a surjective finite type
smooth morphism f : S′→ S such that S′ can be presented as the inverse limit of some filtered
system of schemes S′i that are of finite type over (the spectrum of) some field K and such that
all the transition morphisms S′i→ S′j are smooth affine.

Remark 2.1.2. (I) (1) Obviously, any morphism of spectra of fields is quasi-regular, whereas
any (separated) finite type scheme S over the spectrum of a field is very reasonable (since it is
reasonable and one can take all S′i = S).

(2) Certainly, essentially affine and quasi-regular morphisms are stable with respect to base
change.

(3) Being very reasonable is an (étale) local property; this is why we did not assume that
S = S′ in the definition above. We will use this fact in the proof of Theorem 2.5.4(II) below in
order to reduce general very reasonable schemes to irreducible ones.

(II) By the celebrated theorem of Popescu (see [Pop86, Theorem 1.8] or [CD09, Theorem
4.1.5]) all regular morphisms of Noetherian affine schemes are quasi-regular (this result motivated
our choice of the term).

(III) We have three reasons to restrict ourselves to reasonable schemes (in this paper). Yet
possibly our results can be extended to arbitrary excellent Noetherian separated schemes of finite
Krull dimension. We now explain this in more detail.

(1) The Chow motives over S are only known to yield the heart of a weight structure if S is
of finite type over an S0 of dimension less than or equal to 2. Yet this restriction can be avoided.
In [Bon14, § 2.3] an ‘alternative’ construction of the Chow weight structure was described. It was
proved that this version of wChow possesses all the properties listed in Theorem 2.3.1(II)–(IV)
below, whereas (the new) parts (V)–(VI) of the theorem can be established using the explicit
‘generators’ of (DMc(S)wChow60,DMc(S)wChow60) given by [Bon14, Proposition 2.3.4(I2)].

(2) The existence of such an S0 (that is regular) is also required in [CD13, Theorem 6.2.17(2)]
in order to ensure the existence of a dualizing object in DMh(S,Z). Yet we actually only need
the existence of a dualizing object in the category Db

c(S,Zl) defined in [CD13, § 7.2.18]. Possibly
the latter fact can be deduced from [ILO14, Theorem XVII.0.9].

(3) Quite probably the results of [ILO14] (together with other results proved by O. Gabber)
also yield the existence of a ‘reasonable’ Db

cSh
et(S[1/l],Ql) together with a (self-dual) perverse

t-structure for it for a not necessarily reasonable S. Yet the author has never met any claims of
this sort in the literature. On the other hand, [Eke90, Theorem 6.3] says that all the arguments
of [BBD82] (for l-adic étale sheaves over finite type SpecFp-schemes) carry over to reasonable
schemes.
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(IV) We define the class of very reasonable schemes since we can prove Theorem 2.5.4(II)
for them (and this is crucial for the main results of this paper). We now discuss possible
generalizations of this statement.

(2) One can reduce Conjecture 2.5.3 for S to its base changes to the completions of S0 at
closed points. Next, our method of the proof of Theorem 2.5.4(II) would require ‘approximating’
the corresponding S′ by schemes S′i such that certain ‘weights’ are defined for (some version of)
perverse sheaves over Si.

Yet the author does not know of any weights of this sort in the case where S′i are not
equicharacteristic schemes (even if they are the spectra of complete discrete valuations rings);
this problem seems to be related to Deligne’s weight-monodromy conjecture.

(3) Moreover, the argument we use below does not work (even) for S′ being the spectrum of
K[[t]] (K is a field). The problem here is as follows: though any motif M over S′ has a ‘model’
MR over some SpecR, for R finitely generated over K (see Proposition 2.2.1(xi)), the morphism
S′→ SpecR does not even have to be equidimensional (since the dimension of R can be arbitrarily
large). Possibly, one can apply the method used for the proof of [Ito05, Proposition 5.1], and
consider the pullback MR′ of MR to a one-dimensional factor R′ of R. Next in order to establish
the degeneration of TwChow(S′)(Het

Ql
,M) one should apply the proper base change theorem (in order

to relate M to MR′) and (probably) consider a perversity for SpecR that is not self-dual (so that
the higher perverse inverse images with respect to morphisms S′→ SpecR and SpecR′→ SpecR
of the terms of the Chow weight spectral sequence for perverse étale homology of MR would
vanish). One may say that such an MR′ is a ‘clever model’ for M (a sort of Artin approximation
for R).

The author may study these questions (and relate them to Rappoport–Zink spectral
sequences) in a subsequent paper.

All the motives that we will consider in this paper will have rational coefficients (so that we
will not mention rational coefficients in the notation; this includes Chow and DMgm).

2.2 Beilinson S-motives (after Cisinski and Deglise)
We list some of the properties of the triangulated categories of Beilinson motives (this is the
version of relative Voevodsky’s motives with rational coefficients described by Cisinski and
Deglise).

Proposition 2.2.1. Let X,Y be any (reasonable) schemes; f : X → Y is a (separated) finite
type morphism.

(i) A tensor triangulated Q-linear category DMc(X) with the unit object QX is defined.
DMc(X) is the category of constructible Beilinson motives over X, as defined (and thoroughly
studied) in [CD09, § 14].

(ii) If S is the spectrum of a perfect field, DMc(S) is isomorphic to the category DMgm =
DMgm(S) of Voevodsky’s geometric motives (with rational coefficients) over S (see [Voe00]).
Besides, DMgm = 〈Chow〉 (here we consider the full embedding Chow → DMgm that is a
natural extension of the embedding Choweff

→ DMeff
gm given by [Voe00]).

(iii) All DMc(X) are idempotent complete.
(iv) The following functors are defined: f∗ : DMc(Y ) � DMc(X) : f∗ and f! : DMc(X) �

DMc(Y ) : f !; f∗ is left adjoint to f∗ and f! is left adjoint to f !. We call these the motivic image
functors. Any of them (when f varies) yields a 2-functor from the category of reasonable
schemes with separated morphisms of finite type to the 2-category of triangulated categories.
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(v) f∗ is symmetric monoidal; f∗(QY ) = QX .
(vi) f∗ ∼= f! if f is proper. If f is an open immersion, we have f ! = f∗. More generally,

f !(−) ∼= f∗(−)(s)[2s] if f is smooth (everywhere) of relative dimension s.
(vii) If X,Y are regular, and OX is a free finite-dimensional OY -module, then the adjunction

morphism M → f∗f
∗(M) splits for any M ∈ ObjDMc(Y ).

(viii) If i : Z → X is a closed embedding, U = X\Z, and j : U → X is the complementary
open immersion, then the motivic image functors yield a gluing datum for DMc(−) (in the
sense of Definition 1.5.1(1); one should set C = DMc(S), D = DMc(Z), and E = DMc(U) in
it).

(ix) DMc(S) (as a triangulated category) is generated by {g∗(QX)(r)}, where g : X → S
runs through all smooth separated finite type morphisms, r ∈ Z.

(x) The functor g∗ can be defined for any separated morphism g (of schemes) not necessarily
of finite type; this definition respects the composition for morphisms. Moreover, one can also
define j!

K for K ∈ S (see § 2.1). Besides, if for composable morphisms g, h (not necessarily of
finite type) all of h!, g!, (h ◦ g)! are defined (i.e., any of h, g, h ◦ g is either of finite type or of
the type jK), then (h ◦ g)! ∼= g! ◦ h!.

(xi) Let g :X ′→ Y be an essentially pro-affine morphism (see Definition 2.1.1(2)); adopt the
notation of Definition 2.1.1(2). Then DMc(X

′) is isomorphic to the 2-colimit of the categories
DMc(Xi); in these isomorphism all the connecting functors are given by the corresponding
(−)∗ (cf. the previous assertion).
(xii) The functor g∗ is conservative for any essentially pro-affine surjective morphism g (in

particular, for a morphism of spectra of fields).
(xiii) The family of functors j∗K , where K runs through S (see § 2.1), is conservative on

DMc(S).
(xiv) If g is a pro-finite universal homeomorphism then g∗ is an equivalence of categories.
(xv) For a Cartesian square of separated morphisms

Y ′
f ′
//

g′

��

X ′

g

��
Y

f // X

(6)

we have g∗f!
∼= f ′! g

′∗ (for g not necessarily of finite type) and g′∗f
′! ∼= f !g∗.

(xvi) Adopt the notation of the previous assertion, and assume also that g is a pro-finite
universal homeomorphism. Then we also have g∗f∗ ∼= f ′∗g

′∗ and g′∗f ! ∼= f ′!g∗.
(xvii) We have these isomorphisms also in the case where g is the composition of the inverse
limit of smooth affine morphisms with any smooth finite type morphism.
(xviii) In the setting of assertion (viii), for any M,N ∈ ObjDM(S) there exists a complex
DMc(Z)(i∗(M), i!(N)) → DMc(S)(M,N) → DMc(U)(j∗M, j∗N) (of abelian groups) that is
exact in the middle.

Proof. Most of these statements were made in the introduction of [CD09] (and proved later
in [CD09]); see [Bon14, § 1.1] for more details.

The first part of assertion (ii) is given by [CD09, Corollary 16.1.6]. The second part of it was
proved in [Bon09, § 6.4].
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Assertion (vii) was established in the course of proving [CD09, Theorem 14.3.3].
Assertion (xii) is just the theorem itself (cf. [CD09, Definition 2.1.7]) in the case where g is

of finite type; the general case follows immediately by assertion (xi).
Assertion (xiii) easily follows from Theorem 2.3.1(IV) below.
In the case where g is finite, assertion (xiv) is given by [CD09, Proposition 2.1.9] (note that

we can apply the result cited by [CD09, Theorem 14.3.3]). In order to pass to the limit in this
statement one should apply assertion (xi) (once more).

(xvi) Recall that for any S the category DMc(S) is a full triangulated subcategory of a
certain DM(S); DMc(S) weakly generates DM(S) (i.e., DMc(S)

⊥ = {0} in DM(S)). Moreover,
the motivic image functors can be extended to DM(−); g∗ and its right adjoint g∗ are defined for
these categories for an arbitrary morphism g (of reasonable schemes). Hence in our situation g∗
yields an inverse isomorphism DMc(X

′)→ DMc(X) (since for any M ∈ ObjDMc(X) a cone of
the adjunction unit morphism M → g∗g

∗M is orthogonal to DMc(X) by assertion (xiv)). Hence
it suffices to verify f∗g

′
∗
∼= g∗f

′
∗ and g′∗f

′! ∼= f !g∗. The first isomorphism is obvious, whereas the
second isomorphism was established in [CD09] for g not necessarily of finite type.

Assertion (xvii) is given by [CD09, Propositions 4.3.14 and 4.3.12].
Assertion (xviii) is an easy consequence of assertion (viii). 2

2.3 The Chow weight structure for DMc(S)

We define Chow(S) as the Karoubi-closure of {f∗(QX)(r)[2r]} in DMc(S); here f : X → S runs
through all finite type projective morphisms such that X is regular, r ∈ Z.

Theorem 2.3.1. (I) There exists a (unique) bounded weight structure wChow for DMc(S) whose
heart is Chow(S). For any n ∈ Z the functor −(n)[2n] is weight-exact with respect to this weight
structure.

(II) Let f : X → Y be a (separated) finite type morphism of schemes. Then the following
statements are valid.

(1) f ! and f∗ are right weight-exact; f∗ and f! are left weight-exact.

(2) Suppose, moreover, that f is smooth. Then f∗ and f ! are also weight-exact.

(3) f∗ is weight-exact also if f is a finite universal homeomorphism.

(4) If f is proper, then f∗QX ∈ DMc(Y )wChow60.

(III) Let K be a generic point of S, M ∈ ObjDMc(S).

(1) Suppose that j∗KM ∈ DMc(K)wChow>0 (respectively j∗KM ∈ DMc(K)wChow60). Then
there exists an open immersion j : U → S, K ∈ U , such that j∗M ∈ DMc(U)wChow>0

(respectively j∗M ∈ DMc(U)wChow60).

(2) Suppose that j∗KM ∈ DMc(K)wChow=0. Then there exists an open immersion j :

U → S, K ∈ U , such that j∗M is a retract of (g ◦ h)∗QP (s)[2s], where h : P → U ′ is a
smooth projective morphism, U ′ is a regular scheme, and g : U ′ → U is a finite universal
homeomorphism, s ∈ Z.
(IV) M ∈ DMc(S)wChow>0 (respectively M ∈ DMc(S)wChow60) if and only if for any K ∈ S

we have j!
K(M) ∈ DMc(K)wChow>0 (respectively j∗K(M) ∈ DMc(K)wChow60).

(V) (1) f∗ is left weight-exact for any morphism f : X → Y of reasonable schemes.
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(2) Consider an essentially pro-affine morphism g : X ′ = lim
←−i∈I

Xi → Y (see
Definition 2.1.1(2)) and the corresponding gi : X ′ → Xi. Then for an M ∈
ObjDMc(X

′) we have M ∈ DMc(X
′)wChow60 if and only if there exist i ∈ I and

Mi ∈ DMc(Xi)wChow60 such that M ∼= g∗i (Mi).
(3) In the notation of the previous assertion, the functor g∗ is weight-exact if all the

corresponding functors f∗i : DMc(S)(Y )→ DMc(S)(Xi) are also.
(4) Adopt the assumptions of the previous assertion. Then for an N ∈ ObjDMc(Y ) we

have g∗(N) ∈ DMc(X
′)>0 (respectively g∗(N) ∈ DMc(X

′)wChow60) if and only if for
any large enough i ∈ I we have f∗i (N) ∈ DMc(Xi)wChow>0 (respectively f∗i (N) ∈
DMc(Xi)wChow60).

(5) In particular, all the parts of assertion (V) can be applied if g is quasi-regular (see
Definition 2.1.1(3)).

(VI) Assume that g : X ′→ Y is quasi-regular and surjective. Then for any N ∈ ObjDMc(Y ),
we have g∗N ∈ DMc(X

′)wChow60 (respectively g∗N ∈ DMc(X
′)wChow>0) if and only if N ∈

DMc(Y )wChow60 (respectively N ∈ DMc(Y )wChow>0).

Proof. Assertions (I)–(IV) were established in [Bon14]; see [Bon14, Theorems 2.1.2(I) and
2.2.1(I, II, III, V1), Lemma 2.2.4, Remark 2.3.7(4), and Proposition 2.2.3], respectively. For an f
that is not quasi-projective assertion (II) was proved in [Heb11, Theorem 3.7] (where assertions
(I)–(II) were proved independently and somewhat earlier than in [Bon14]); yet we will not actually
need non-quasi-projective morphisms below.

(V) (1) By Proposition 1.1.3(iv) it suffices to verify that f∗(Chow(Y )) ⊂ DMc(X)wChow60.
Proposition 2.2.1(xv) reduces the latter fact to assertion (II)(4).

(2) The ‘if’ part is immediate from the previous assertion.
We verify the converse assertion. Applying Proposition 1.1.3(vi) to our setting we obtain

the following: there exists a finite set of non-negative indices J ⊂ Z, certain projective pj :
P j
→ X ′ (for all j ∈ J and some regular P j), and an r ∈ Z such that M belongs to the

smallest Karoubi-closed extension-stable subclass of ObjDMc(X
′) containing all pj∗QP j (r)[2r−j].

Certainly, there exists an i ∈ I such that all pj come via base change from certain projective
pji : P

j
i → Xi (for some not necessarily regular P j

i ; see [EGA4(3), Theorems 8.8.2 and 8.10.5]).
By Proposition 2.2.1(xi, xv), we can also assume that M ∼= g∗i (Mi) for some Mi belonging to the
smallest Karoubi-closed extension-stable subclass ofObjDMc(Xi) containing all p

j
i∗QP j

i
(r)[2r−j].

Finally, Proposition 1.1.3(ii) yields that Mi ∈ DMc(Xi)wChow60.
(3) We should verify the right weight-exactness of g∗. By Proposition 1.1.3(vi) it suffices to

verify M ⊥ g∗N for any M ∈ DMc(X
′)wChow6−1, N ∈ DMc(Y )wChow>0. We fix M and N ; let

s ∈ DMc(X
′)(M, g∗N). By the previous assertions there exist i ∈ I and Mi ∈ DMc(Xi)wChow6−1

such that M ∼= g∗i (Mi). Hence for the transition morphisms gji : Xj → Xi (for all j > i) we
have g∗ji(Mj) ∈ DMc(Xj)wChow6−1. Next, the weight-exactness of f∗j yields g∗ji(Mj) ⊥ f∗j (N). It
remains to apply Proposition 2.2.1(xi).

(4) The ‘wChow 6 0’ part of the statement is given by assertions (V)(1)–(2). So we verify the
remaining part.

Consider a weight decomposition of N [1]: B s
→ N [1]→A→ B[1]. If g∗N ∈ DMc(Y )wChow>0

then g∗(s) = 0 (since DMc(X
′)wChow60 ⊥ g∗(N)[1]). Applying Proposition 2.2.1(xi) once more

we obtain: for any large enough i ∈ I we have f∗i (s) = 0. Hence f∗i (N) is a direct summand of
f∗i (A[−1]) for all such i. Since f∗i (A[−1]) ∈ DMc(Xi)wChow>0 and DMc(Xi)wChow>0 is Karoubi-
closed in DMc(Xi), we obtain the result.
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Conversely, assume that f∗i (N) ∈ DMc(Xi)wChow>0 for some i ∈ I. Then we obtain f∗j (s) = 0.
Hence g∗(s) = 0 also; thus g∗N is a retract of g∗(A)[−1].

(5) The corresponding fi are weight-exact by assertions (II)(2)–(3).
(VI) The ‘if’ statement is given by the previous assertion. It also yields that, in order to verify

the converse implication, it suffices to do so for g being either a finite universal homeomorphism or
a smooth finite type surjective morphism. The latter case is easy since g∗ is an isomorphism
(see Proposition 2.2.1(xiv); hence Proposition 1.1.3(v) (together with assertion (II)(3)) yields the
result.

Now let g be smooth surjective. First consider the case where Y = SpecK (K is a field;
this case is of most interest to us). Since X ′ is smooth (and hence Zariski-locally étale over an
affine SpecK-space) there exists a morphism l : SpecK ′ → X ′ (for a field K ′/K) such that the
composition (structure) morphism k′ = g ◦ l : SpecK ′→ SpecK is étale.

If g∗N ∈ DMc(X
′)wChow60, then k′∗N = l∗(g∗N) ∈ DMc(K

′)wChow60 (see assertion (II)(1)).
Since k′∗ is weight-exact, we also have k′∗k

′∗N ∈ DMc(K)wChow60. Since N is a retract of b′∗b′∗N
(see Proposition 2.2.1(vii)), we conclude that N ∈ DMc(K)wChow60.

Next, if g∗N ∈ DMc(S)wChow>0, then we also have g!N ∈ DMc(X)wChow>0 (by assertion (I)
and Proposition 2.2.1(vi)). Since k′∗N = k′!N , we obtain k′∗N ∈ DMc(SpecK

′)wChow>0. Hence
k′∗k
′∗N ∈ DMc(K

′)wChow>0 and Proposition 2.2.1(vii) yields the result (again).
In order to reduce our claim from the case of arbitrary finite type smooth morphisms to the

one when Y is the spectrum of a field, we apply assertion (IV). Here we apply the 2-functoriality of
(−)∗ when we consider the case g∗N ∈DMc(X

′)wChow60, and combine it with Proposition 2.2.1(vi)
when g∗N ∈ DMc(X

′)wChow>0. 2

Remark 2.3.2. Note also that an alternative construction of wChow over any (not necessarily
reasonable) excellent separated finite-dimensional scheme S was considered in [Bon14, § 2.3]. Its
functoriality properties were only studied with respect to quasi-projective morphisms; yet this is
quite sufficient for our purposes.

Below we will call weight spectral sequences and weight filtrations corresponding to wChow

the Chow weight ones.

2.4 On the étale realization of motives and the perverse t-structure
This subsection is dedicated to the justification of the following statement.

Theorem 2.4.1. Let S/SpecZ[1/l] be a reasonable scheme.
(I) (1) We have an exact functor Het

Ql
(S) : DMc(S) → Db

cSh
et(S,Ql); the latter is the

triangulated category of constructible étale Ql-sheaves over S (see below).
(2) The target categories Db

cSh
et(−,Ql) of Het

Ql
(−) are equipped with connecting

functors of the type g∗ for any morphism g of reasonable schemes, and also with f∗, f!,
and f ! for a finite type morphism f .

Moreover,Het
Ql
(−) converts the corresponding motivic image functors (i.e., the ‘motivic’

g∗, f∗, f!, and f ! mentioned in Proposition 2.2.1(x),(iv)) into these étale versions.
(II) The category Db

cSh
et(−,Ql) (for any reasonable S/SpecZ[1/l]) is equipped with a

bounded perverse t-structure (for the self-dual perversity) that we will denote just by t; the
heart of t will be denoted by Shetper(S,Ql). The collection of these t-structures over all reasonable
schemes enjoys the following properties (for f :X→ Y being a finite type morphism of reasonable
schemes).
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(1) If f is an immersion, then f∗ and f ! are left t-exact, whereas f! and f∗ are right
t-exact (see Definition 3.1.1(3)).

(2) If f is affine, then f! is left t-exact, and f∗ is right t-exact.
(3) If f is quasi-finite affine, then f∗ and f! are t-exact.
(4) If f is proper of relative dimension less than or equal to d, then f∗[d](= f![d]) is

left t-exact, and f∗[−d] is right t-exact.
(5) If f is smooth (everywhere) of dimension d, then f ![−d] and f∗[d] are t-exact.
(6) If K is a point of S of dimension d (see § 2.1), then j∗K [−d] (respectively j!

K [−d];
see Remark 2.4.2 below) is left (respectively right) t-exact.

(7) Moreover, for M ∈ ObjDb
cSh

et(S,Ql) we have M ∈ Db
cSh

et(S,Ql)
t60 (respectively

M ∈ Db
cSh

et(S,Ql)
t>0) whenever, for any K ∈ S, where K is of dimension d, we have

j∗KM [−d] ∈ Db
cSh

et(K,Ql)
t60 (respectively j!

KM [−d] ∈ Db
cSh

et(K,Ql)
t60).

(8) For a closed embedding i : Z → S and the complementary immersion j : U → S

for M ∈ ObjDb
cSh

et(S,Ql) we have M ∈ Db
cSh

et(S,Ql)
t60 (respectively M ∈ Db

cSh
et(S,

Ql)
t>0) whenever j∗M ∈ Db

cSh
et(U,Ql)

t60 and i∗M ∈ Db
cSh

et(Z,Ql)
t60 (respectively

j∗M ∈ Db
cSh

et(U,Ql)
t>0 and i!M ∈ Db

cSh
et(Z,Ql)

t>0).
(III) Let g : X → Y be a surjective morphism of (reasonable) schemes. Then the following

statements are valid.
(1) g∗ is conservative.
(2) If g is smooth (everywhere) of dimension d, then for M ∈ ObjDb

cSh
et(Y,Ql) we

have M ∈ ObjDb
cSh

et(Y,Ql)
t60 (respectively M ∈ ObjDb

cSh
et(Y,Ql)

t>0) if and only if
g∗[d](M) ∈ ObjDb

cSh
et(X,Ql)

t60 (respectively g∗[d](M) ∈ ObjDb
cSh

et(X,Ql)
t>0).

(IV) Let g : X → Y be a morphism such that for any irreducible component Yi of Y the
dimension of g−1(Yi) equals dimYi+ d (for some fixed d ∈ Z). Then the following statements are
valid.

(1) g∗[d]Db
cSh

et(X,Ql)
t60 ⊂ Db

cSh
et(X,Ql)

t60.
(2) Moreover, g∗ is t-exact if g is a universal homeomorphism.
(3) Assume that g is a projective limit of smooth affine morphisms. Then g∗[d] is t-exact.

(V) For S of finite type over SpecFp (p 6= l), Db
cSh

et(S,Ql) is the category of constructible
Ql-perverse sheaves as defined in [BBD82], and t is the corresponding perverse t-structure for the
self-dual perversity.

Proof. (I) See [CD13, Remark 7.2.25].
(II) It is stated in [Eke90, Theorem 6.3] that the corresponding results of [BBD82] carry

over to Db
cSh

et(−,Ql) (over schemes that are called reasonable in this paper). The properties of
Db

cSh
et(−,Ql) that are required to establish these facts are given by [CD13, Theorem 6.2.17(2),

Theorem 7.2.11 and Proposition 7.2.21]; also, apply Proposition 1.5.3(II2) in order to establish
assertion (II)(8).

(III)(1) The statement easily follows from its Z/lZ-coefficients analogue given by [SGA4(2),
Proposition 9.1]. Note here that, the categories Db

cSh
et(−,Ql) are defined as the rational hulls of

certain Db
cSh

et(−,Zl), whereas the latter are equipped with conservative functors to Db
cSh

et(−,
Z/lZ) (see [Eke90, Theorem 6.3(i)] and [BBD82, § 2.2]). Moreover, both of these ‘change of
coefficient’ functors are compatible with all the connecting functors of assertion (I)(2).
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(2) This is immediate from the previous assertion together with the t-exactness of g∗[d] (see
assertion (I)(5)). Note here that a t-exact conservative functor cannot kill non-zero objects in the
heart of the corresponding t; hence we can apply Remark 1.2.3(4).

(IV)(1) Obvious from assertion (II)(6).
(2) We should verify the left t-exactness of g∗. Now g∗ (in this case) possesses an inverse

functor g∗ (see [SGA4(2), Theorem 1.1]; note that it is sufficient to know this statement for
complexes of Z/lZ-module sheaves). Hence it suffices to note that the functors −∗ possess the
base change property with respect to −! (by [SGA4(3), Corollary 3.1.12.3]): for any cartesian
diagram

x
iX //

g′

��

X

g

��
y

iY // Y

(7)

we have g′∗ ◦ i!X ∼= i!Y ◦ g∗ (note again that it suffices to verify the latter fact for the categories
Db

cSh
et(−,Z/lZ)).

(3) Again, we should verify the left t-exactness property. Let y be a Zariski point of Y ;
consider diagram (7) again. Then we have g′∗ ◦ i!Y ∼= i!X ◦ g∗; this statement can be proved via
reducing to the case of Z/lZ-coefficients and applying the argument used in the proof of [CD09,
Proposition 4.3.12]. This reduces the statement to the case where Y is (the spectrum of) a field.
In the latter case it is an easy consequence of absolute purity (see [ILO14, Theorem XVI.3.1.1]).

(V) This is just a partial case of the definition of Db
cSh

et(−,Ql). 2

Remark 2.4.2. (1) For a K ∈ S (see § 2.1) one can define the étale version of j!
K using the

‘classical’ method (see [BBD82, § 2.2.12]): for its decomposition K
iK
→ K

jK
→ S (K is the closure

of K in S) one should take j!
K = i∗K ◦ j!

K
. This definition is certainly compatible with its motivic

version (see [Bon14, Remark 1.1.3(2)]).
(2) Note that we will not really need parts (II)(2)–(3) of our theorem below, and we will only

need part (II)(4) in the (trivial) case of finite extensions of fields.

2.5 On weights for perverse S-sheaves; the degeneration of Chow weight spectral
sequences for étale homology

Below we will need certain ‘weights’ for Het
Ql
(−). First we recall that in certain cases weights are

defined on Db
cSh

et(S,Ql).

Proposition 2.5.1. (I) Let S be a finite type (separated) SpecFp-scheme (for a prime p 6= l).
Then there exist certain Db

cSh
et(S,Ql)w60, D

b
cSh

et(S,Ql)w>0 ⊂ ObjDb
cSh

et(S,Ql), that satisfy
the following properties.

(i) For any m ∈ Z denote Db
cSh

et(S,Ql)w60[m] by Db
cSh

et(S,Ql)w6m and denote Db
cSh

et(S,
Ql)w>0[m] by Db

cSh
et(S,Ql)w>m. Then for X ∈ ObjDb

cSh
et(S,Ql) we have X ∈ Db

cSh
et(S,

Ql)w6m (respectively X ∈ Db
cSh

et(S,Ql)w>m) if and only if for any j ∈ Z we have Ht
j(X) ∈

Db
cSh

et(S,Ql)w6m+j (respectively Ht
j(X) ∈ Db

cSh
et(S,Ql)w>m+j).

(ii) Denote Db
cSh

et(S,Ql)w6m∩Db
cSh

et(S,Ql)
t=0 by Shetper(S,Ql)w6m, and denote Db

cSh
et(S,

Ql)w>m ∩Db
cSh

et(S,Ql)
t=0 by Shetper(S,Ql)w>m; Shetper(S,Ql)w=m = Shetper(S,Ql)w6m ∩ Shetper(S,

Ql)w>m. Then Shetper(S,Ql)w=m yield exact abelian subcategories of Shetper(S,Ql) that contain all
Shetper(S,Ql)-subquotients of their objects. Besides, for j 6= m ∈ Z we have Shetper(S,Ql)w=m ⊥
Shetper(S,Ql)w=j .
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(iii) For any open immersion j : U → S and m ∈ Z (the perverse sheaf version of) the
functor j!∗ sends Shetper(S,Ql)(U)w6m into Shetper(S,Ql)w6m, and sends Shetper(S,Ql)(U)w>m into
Shetper(S,Ql)w>m.

(iv) Het
Ql

is ‘weight-exact’, i.e., it sends DMc(S)wChow6m into Db
cSh

et(S,Ql)w6m, and sends
DMc(S)wChow>m into Db

cSh
et(S,Ql)w>m.

(II) Let S be a finite type (separated) Spec Q-scheme. Present S as an inverse limit of
finite type SpecZ[1/l]-schemes Si (with connecting morphisms being open embeddings), and
define H̃et

Ql
(S) as the direct limit of Het

Ql
(Si) (its target D̃b

cSh
et(S,Ql) is the 2-colimit of

the corresponding Db
cSh

et(Si,Ql)). Then Het
Ql
(S) can be factorized through H̃et

Ql
(S). Moreover,

D̃b
cSh

et(S,Ql) possesses a (perverse) t-structure that is compatible with t (with respect to this
connecting functor). Lastly, for D̃b

cSh
et(S,Ql) one can define weights such that the analogues of

all of the assertions of part (I) are fulfilled.

Proof. (I) All the assertions except (iv) are well-known properties of weights of mixed complexes
of sheaves that were established in [BBD82, § 5], whereas assertion (iv) was verified in [Bon14,
§ 3.6].

(II) The t-exactness of the connection functor D̃b
cSh

et(S,Ql)→ Db
cSh

et(S,Ql) is immediate
from Theorem 2.4.1(IV)(3). Everything else was verified in [Hub97, § 3], except the analogue of
assertion (I)(iv) that was established in [Bon14, § 3.4] (in this case). 2

Remark 2.5.2. (1) For S being of finite type over SpecFp there exists a weight filtration (in the
sense of Definition 1.3.4) for the heart of the perverse t-structure for the category Db

m(X,Ql) of
mixed complexes of sheaves; see [BBD82, Theorem 5.3.5].

On the other hand, the corresponding ‘pure factors’ Am are not semisimple. Indeed, there
are non-trivial 1-extensions of pure (perverse) sheaves even in the case where S = SpecFp (since
for ‘abstract’ pure Galois representations of Gal(Fp) the action of the Frobenius does not have to
be semisimple due to the fact that one cannot impose any polarizability restrictions on these
representations). Since all C-extensions in the heart of a weight structure for C necessarily
split (immediately from the orthogonality axiom), this weight filtration does not yield a weight
structure for this category.

The author made an attempt to ‘axiomatize’ this setting by introducing the notion of a
relative weight structure; see [Bon14, §§ 3.5–3.6].

(2) For S being of finite type over Spec Q the category of mixed perverse sheaves
D̃b

cSh
et(S,Ql) does not possess a weight filtration (in our sense) at all; cf. the warning

preceding [Hub97, Proposition 3.4]. The problem here is that (due to the non-vanishing of the
corresponding extension groups) one can construct a mixed perverse sheaf whose pure factors are
‘in the wrong order’. Besides, note that D̃b

cSh
et(S,Ql) is not isomorphic to Db

cSh
et(S,Ql); see

the end of [Hub97, § 1].
(3) So, in both of these cases we do not have (a ‘true’) weight structure for (any sort of)

triangulated category of complexes of mixed S-sheaves; hence the properties of (relative) motives
are somewhat better than those of mixed complexes of sheaves (even over a finitely generated
base).

We now prove the main properties of Chow weight spectral sequences for Het
Ql,0

. To this end
we state the following conjecture.

Conjecture 2.5.3. The spectral sequence TwChow
(Het

Ql,0
,M) degenerates at E2 for any M ∈

ObjDMc(S) (for any reasonable S).
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Theorem 2.5.4. (I) (1) Let S be a finite type separated scheme over SpecFp, M ∈ ObjDMc(S),
H = Het

Ql,0
. Then Epq

s TwChow
(H,M) ∈ Shetper(S,Ql)w=q for any p, q ∈ Z, s > 0. Besides,

(WmH)(M) is a filtration of H(M) whose mth factor belongs to Shetper(S,Ql)w=m (for all m ∈ Z).
Moreover, this filtration is uniquely and functorially characterized by the latter property.

(2) For S being separated of finite type over Spec Q and H = H̃et
Ql,0

the (obvious)
analogue of assertion (I)(1) is fulfilled.

(II) Let S be a very reasonable scheme of characteristic p (p 6= l; it can be 0). Then the
following statements are valid.

(1) Conjecture 2.5.3 holds.
(2) Let j : U → S be an open embedding; denote the complementary closed

embedding by i. For M ∈ DMc(U)wChow>s (respectively M ∈ DMc(U)wChow6s) suppose
that Het

Ql,m
(M) = 0 for all m 6= 0.

Then (Ws+m+1H
et
Ql,m

)(i!j!M) = 0 for any m > 0 (respectively (Ws+mHet
Ql,m

)(i∗j∗M) =

Het
Ql,m

(i∗j∗M) for any m < 0).

Proof. (I) (1) Proposition 2.5.1(I)(iv) yields that Epq
1 TwChow

(Het
Ql,0

,M) ∈ Shetper(S,Ql)w=q. Hence
the same is true for Epq

s (T ) for any s > 1 (since Epq
s is a subfactor of Epq

1 (T ); here we apply
Proposition 2.5.1(I)(ii)). Hence Ep+q

∞ (T ) ∈ Shetper(S,Ql)w=q also, and we obtain that the factors of
the Chow weight filtration are of the weights prescribed. Now, the orthogonality of (subquotients
of) perverse sheaves of distinct weight yields that this condition determines the filtration in a
functorial way.

The same argument proves assertion (I)(2).
(II) (1) We verify the degeneration of TwChow

(Het
Ql,0

,M) for some fixed M ∈ ObjDMc(S) via
reducing it to the case where S is of finite type over the corresponding prime field (in three steps).
In each of these reduction steps we will apply Remark 1.3.3(3).

Let f : S′→ S be a smooth surjective morphism as in Definition 2.1.1(4). Note that we can
assume that f is equidimensional and that all the connected components of S′ are irreducible. Now
it suffices to verify the degeneration for TwChow(S′)(H

et
Ql,0

(S′), f∗M) instead of TwChow(S)(H
et
Ql,0

(S),

M). Indeed, the étale f∗ is t-exact (up to a shift) and conservative (see Theorem 2.4.1(II)(5),
(III)(1)), whereas the motivic f∗ is wChow-weight exact (see Theorem 2.3.1(II)(2)); hence we can
construct a diagram of type (4) and apply Remark 1.3.3(3) (for the first time). Moreover, it
suffices to verify the degeneration of TwChow

for the restrictions of f∗M to all of the connected
components of S′. For this reason we will assume below that S′ is irreducible.

Next for S′ = lim−→S′i we apply Proposition 2.2.1(xi) in order to find an index i such that
f∗M = g∗Mi for the corresponding g : S′ → S′i and some Mi ∈ ObjDMc(S

′
i). Since the étale

g∗ is t-exact up to a shift (see Theorem 2.4.1(IV)(3)) and the motivic one is weight-exact (see
Theorem 2.3.1(V)(5)), we reduce the statement to the degeneration of TwChow(S′

i)
(Het

Ql,0
(S′i),Mi).

Next, since S′i is of finite type over a field, there exists a finite extension of SpecFp or Spec Q
(in the case p = 0) such that S′i is defined over it. Hence (by Proposition 2.2.1(xi)) there exists
a morphism h : S′i → S′′ that satisfies the following properties: S′′ is of finite type over the
corresponding prime field, M ′ = h∗M ′′ for some M ′′ ∈ ObjDMc(S

′′), and h is the composition
of a pro-finite universal homeomorphism with a projective limit of smooth affine morphisms.
Hence (by the same arguments as above; see also Theorem 2.4.1(IV)(2)) it suffices to verify the
statement for TwChow(S′′)(H

et
Ql,0

(S′′),M ′′).
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Now consider the case p > 0 (i.e., S′ is of finite type over SpecFp). In this case assertion
(I)(1) yields that Epq

s (TwChow(S′′)(H
et
Ql,0

(S′′),M ′′)) ∈ Shetper(S
′′)w=q (for any p, q ∈ Z, s > 0). Now

(by Proposition 2.5.1(I)(ii)) there are no non-zero morphisms between distinct Shetper(S
′′)w=m.

Hence all the connecting morphisms for Es(T ) vanish for all s > 1, and we obtain the result.
In the case where S is of finite type over Spec Q we note that the same argument proves

the degeneration of TwChow(S′′)(H̃
et
Ql,0

(S′′),M ′′); hence the functoriality of Chow weight spectral
sequences (with respect to H; see Proposition 1.3.2(I)) yields the assertion desired.

(2) The same reduction arguments as above (along with Proposition 2.2.1(xv)–(xvii) enable
us to assume that S is of finite type over SpecFp (for p 6= 0) or over Spec Q. In this
case Theorem 2.4.1(I,II) along with assertion (I) allow us to translate our assertion into the
corresponding analogue for weights on Db

cSh
et(S,Ql).

Now, for S/SpecFp we have i!Db
cSh

et(S,Ql)w6s ⊂ Db
cSh

et(Z,Ql)w6s and i∗Db
cSh

et(S,
Ql)w>s ⊂ Db

cSh
et(Z,Ql)w>s by [BBD82, § 5.1.14, (i*) and (i)]. By Proposition 1.5.3(IV)(ii) it

suffices to note that j!∗ respects weights of mixed sheaves; this is [BBD82, Corollary 5.3.2].
For S/Spec Q it suffices to verify the assertion for H̃et

Ql,m
instead of Het

Ql,m
. In this setting

we can apply the remark after [Hub97, Definition 3.3 and Corollary 3.5] (instead of the results
of [BBD82] cited above). 2

Remark 2.5.5. (1) Using Verdier duality (for motives or sheaves), one can easily carry over the
results above from étale homology to étale cohomology.

(2) In the characteristic 0 case of Theorem 2.5.4(II), we could have tried to use M. Saito’s
Hodge modules in our weight arguments (in order to avoid the usage of H̃et

Ql
). The main problem

here is that (to the knowledge of the author) no ‘Hodge module realization’ of motives is known
to exist at the moment (however, see the proof of [Wil12, Proposition 7.6] for reasoning that
avoids this difficulty).

Alternatively, one could try to reduce the characteristic 0 case to the positive characteristic
one using the methods and results of [BBD82, § 6].

3. On the existence of a (nice) motivic t-structure

In § 3.1 we define a (motivic) t-structure tl for DMc(S) as the one that is strictly compatible
with the perverse t-structure for the Ql-étale homology (cf. [Bei02, § 2.10]). We also study the
functoriality of this definition.

In § 3.2 we reduce the existence of tl to the case where S is the (spectrum of) a universal
domain (of characteristic distinct from l). Moreover, the existence of tl over universal domains
automatically yields that Chow weight filtrations and Chow weight spectral sequences can be
lifted from Shetper(S,Ql) to motives. When S is a very reasonable scheme, the weight filtration for
Htl obtained this way is strictly compatible with morphisms.

In § 3.3 we study certain properties of motives that follow from the niceness of tl (i.e., from
its transversality with wChow).

In § 3.4 we apply these results (in a Noetherian induction step). We prove that a nice tl
exists over an arbitrary very reasonable scheme S of characteristic p if such a tl exists over some
universal domain of the same characteristic.

3.1 The motivic t-structure (for S/SpecZ[1/l])
Till § 4.3 we will fix some prime l, and will usually assume that all the schemes we consider are
SpecZ[1/l]-schemes. In this case we will define the motivic t-structure in terms of Het

Ql
; we will

treat the question whether it actually depends on l later.
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Definition 3.1.1. Let S be a (reasonable) scheme.
(1) Consider the class DMc(S)

tl60 (respectively DMc(S)
tl>0) consisting of those M ∈

ObjDMc(S) that satisfy:Het
Ql
(M) ∈Db

cSh
et(S[1/l],Ql)

t60 (respectivelyHet
Ql
(M) ∈Db

cSh
et(S[1/l],

Ql)
t>0; see Theorem 2.4.1).
(2) For a SpecZ[1/l]-scheme S if (DMc(S)

tl60,DMc(S)
tl>0) yield a t-structure for DMc(S),

we will say that (the t-structure) tl exists for DMc(S), or that it exists over S. We will denote
the heart of tl (in this case) by MM(S).

(3) We will use the term ‘(left, right, or both) t-exact functor’ for functors between certain
DMc(−) that respect (the ‘halves of’) tl in the corresponding way without (necessarily) assuming
that tl yields a t-structure.

(4) If tl exists for DMc(S), we will say that it is nice if it is transversal to wChow.
Remark 3.1.2. If tl exists over S, then it is automatically bounded, since the étale homology
of any object of DMc(S) is. The latter fact is immediate from Proposition 2.2.1(ix) and
Theorem 2.4.1(I, II).

In particular, we obtain that tl is non-degenerate (see Remark 1.2.3(4)) and that Het
Ql

is
conservative. Note that the existence of tl is a very strong assumption!

We will need some functoriality properties of (DMc(−)tl60,DMc(−)tl>0) below; certainly,
they become even more interesting (in their own right) if tl exists.
Lemma 3.1.3. Let f : X → Y be a morphism of schemes. Then the following statements are
valid.

(1) If f is an immersion, then f∗ and f ! are left t-exact, whereas f! and f∗ are right t-exact
(see Definition 3.1.1(3)).

(2) If f is affine, then f! is left t-exact, and f∗ is right t-exact.
(3) If f is quasi-finite affine, then f∗ and f! are t-exact.
(4) If f is proper of relative dimension less than or equal to d, then f∗[d](=f![d]) is left t-exact,

and f∗[−d] is right t-exact.
(5) If f is smooth of dimension d, then f ![−d] and f∗[d] are t-exact.
(6) If K is a point of S of dimension d (see § 2.1), then j∗K [−d] (respectively j!

K [−d]) is left
(respectively right) t-exact.

(7) Moreover, for M ∈ ObjDMc(S) we have M ∈ DMc(S)
tl60 (respectively M ∈ DMc(S)

tl>0)
if and only if for any K ∈ S, where K is of dimension d, we have j∗KM [−d] ∈ DMc(K)tl60

(respectively j!
KM [−d] ∈ DMc(K)tl>0).

(8) For a closed embedding i : Z → S and the complementary immersion j : U → S for
M ∈ ObjDMc(S) we have M ∈ DMc(S)

tl60 (respectively M ∈ DMc(S)
tl>0) if and only if j∗M ∈

DMc(U)tl60 and i∗M ∈ DMc(Z)tl60 (respectively j∗M ∈ DMc(U)tl>0 and i!M ∈ DMc(Z)tl>0).

Proof. Immediate from Theorem 2.4.1(II). 2

We now formulate the first of the main results of this paper.
Theorem 3.1.4. Suppose that for any point K of (a reasonable SpecZ[1/l]-)scheme S there
exists tl for DMc(K). Then tl exists for DMc(S) also.

3.2 The proof of the ‘globalization’ theorem for tl
Till § 4.3 we will assume that S is a (reasonable) SpecZ[1/l]-scheme.

We will need the following statement.
Lemma 3.2.1. Let K be a generic point of a scheme U ′ whose dimension is d (see § 2.1); denote
the morphism K → U ′ by jK .
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Let M be an object of DMc(U
′) and assume that j∗KM [−d] ∈ DMc(K)tl60 (respectively

j∗KM [−d] ∈ DMc(K)tl>0). Then there exists an open immersion j : U ′′→ U ′, K ∈ U ′′, such that
j∗M ∈ DMc(U

′′)tl60 (respectively j∗M ∈ DMc(U
′′)tl>0).

Proof. Theorem 2.4.1(I,II) reduces this fact to its Db
cSh

et(S,Ql)-version. Applying Verdier
duality, we obtain the following: for any C ∈ ObjDb

cSh
et(U ′,Ql), if j∗K(C)[−d] ∈ Db

cSh
et(K,

Ql)
t60 then there exists an open immersion j : U ′′ → U ′, K ∈ U ′, such that j∗C ∈ Db

cSh
et(U ′′,

Ql)
t60. Now, over K the perverse t-structure for Db

cSh
et(K,Ql) coincides with the ‘canonical’

one (corresponding to the canonical t-structure for the derived category Db
cSh

et(K,Ql)), whereas
over any U ′′ any (‘ordinary’) constructible Ql-sheaf belongs to Db

cSh
et(U ′′,Ql)

t60. Considering
the canonical homology of C (note that j∗ and j∗K are exact when restricted to the category of
‘ordinary’ Ql-sheaves) we obtain that it suffices to verify that if the stalk of some constructible
Ql-sheaf T at K is zero, then for some open U ′′ ⊂ U ′, K ∈ U ′′, we have j∗T = 0. This is immediate
from [FK88, Proposition I.12.10]. Note that one can apply the method of the proof of [FK88,
Proposition I.12.10] in our (more general) setting by [Eke90, Theorem 6.3(i)]. 2

We now prove Theorem 3.1.4.
We should prove that (DMc(S)

tl60,DMc(S)
tl>0) (see Definition 3.1.1(1)) yield a t-structure

for DMc(S). Obviously, to this end it suffices to verify that for DMc(S)
tl60 and DMc(S)

tl>0

prescribed by Definition 3.1.1 we have the orthogonality property, and that tl-decompositions
exist.

The proof of orthogonality uses an argument contained in the proof of [Bon14, Proposition
2.2.3]. We apply Noetherian induction. Suppose that the assertion is fulfilled over any (proper)
closed subscheme of S.

For any (fixed) M ∈ DMc(S)
tl60, N ∈ DMc(S)

tl>1, h ∈ DMc(S)(M,N), we should prove that
h = 0.

Let K be a generic point of S of dimension d. Lemma 3.1.3(6) yields that j∗KM [−d] ∈
DMc(K)tl60, j!

KN [−d] ∈ DMc(K)tl>1. Hence j∗Kh = 0 (since tl exists for K-motives). Hence
(by Proposition 2.2.1(xi)) there exists an open immersion j : U → S, K ∈ U , such that j∗h =
0. Let i : Z → S denote the complementary closed embedding; Lemma 3.1.3(1) yields that
i∗(M) ∈ DMc(Z)tl60, i!N ∈ DMc(Z)tl>1. By the inductive assumption (applied to Z) we have
DMc(Z)(i∗(M), i!(N)) = {0}. Hence Proposition 2.2.1(xviii) yields the assertion.

It remains to verify the existence of a tl-decomposition for an M ∈ ObjDMc(S). We use the
method of the proof similar to that of [Bon14, Proposition 2.3.4]. Again, we apply Noetherian
induction and assume that the assertion is fulfilled over any proper closed subscheme of S.

We choose some generic point K of S. We consider the tl-decomposition

AK [−d]→ j∗KM [−d]→ BK [−d] (8)

(of j∗KM [−d] in DMc(K)). We verify that there exists an open immersion j : U → S containing
S such that (8) (shifted by [d]) lifts to a tl-decomposition of j∗M . By Proposition 2.2.1(xi) it
suffices to verify the following: for any open U ′ ⊂ S containing K and any AU ′ , BU ′ ∈ DMc(U

′)
such that the ‘restriction’ of (AU ′ , BU ′) to K equals (AK , BK), there exists an open U ⊂ U ′

(containing K) such that ‘restrictions’ AU , BU of AU ′ , BU ′ to U belong to DMc(U)tl60 and to
DMc(U)tl>1, respectively. This is immediate from Lemma 3.2.1.

Again, we consider the closed embedding i : Z → S complementary to j. Now the idea
is that tl for DMc(S) can be glued from those for DMc(U) and DMc(Z). Though we only
have tl-decompositions in the latter category (by the inductive assumption), this is sufficient to
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construct the tl-decomposition of M . Indeed, by Proposition 1.5.3(I) there exists a distinguished
triangle A → M → B such that j∗A ∈ DMc(U)tl60 and i∗A ∈ DMc(Z)tl60 (respectively
j∗B ∈ DMc(U)tl>1 and i!B ∈ DMc(Z)tl>1). By Lemma 3.1.3(7), this triangle yields the tl-
decomposition of M .

Remark 3.2.2. (1) Actually, we do not need a complete characterization of tl for the proof. We
only need a pointwise characterization of tl (cf. Lemma 3.1.3(7)) and Lemma 3.2.1 for it.

We also make the following observation: if we have any t-structures for DMc(S), DMc(K),
and DMc(U) for any U such that all possible j∗ and j∗K [−d] are t-exact, then the statement
of Lemma 3.2.1 for these t-structures is fulfilled automatically. Indeed, Proposition 2.2.1(xi)
implies that j∗(M t>1) (respectively j∗(M t6−1)) vanishes for some U , since j∗K(M t>1) (respectively
j∗K(M t6−1)) does.

Still, the author does not know how to verify Lemma 3.2.1 for the version of (the description
of) the motivic t-structure (over fields) given by [Bei02, Proposition 4.5].

(2) Lemma 3.1.3(7) yields that tl does not depend on the choice of (a version of) Het
Ql

over
S; see also Remark 4.1.2 below.

We now prove that it suffices to verify the conservativity of Het
Ql

and the existence of tl over
universal domains.

Proposition 3.2.3. (1) Assume that Het
Ql

is conservative on DMc(K) for all K ∈ S. Then the
same is true for DMc(S).

(2) Suppose that Het
Ql

is conservative over some set of universal domains Ki of certain
characteristics pi 6= l (one of the pi can be 0). Then Het

Ql
is conservative over any (reasonable) S

that satisfies the following conditions: the characteristic of any point of S is one of the pi.
(3) Suppose that tl exists over some universal domains Ki of characteristics pi. Then tl also

exists over any (reasonable) S as in the previous assertion.

Proof. (1) This is immediate from Proposition 2.2.1(xiii) and Theorem 2.4.1(I).
(2) The previous assertion yields the following: it suffices to verify that Het

Ql
is conservative

over any characteristic p field K (here p can be 0) if it is so over some universal domain K ′ of
characteristic p. We should verify that if Het

Ql
(M) = 0 for an M ∈ ObjDMc(K), then M = 0. We

fix some M .
We note that any object (and morphism) in DMc(K) is defined over some finitely generated

subfield F of K see Proposition 2.2.1(xi). Besides, for any extension of fields the corresponding
base change functor for Db

cSh
et(−,Ql) is conservative (see Theorem 2.4.1(III)(1)). Hence we

obtain that Het
Ql
(MF ) = 0 for the corresponding MF ∈ DMc(SpecF ). Therefore, we may assume

that K ⊂ K ′; denote the corresponding morphism by b. We have Het
Ql
(b∗M) = 0; hence b∗M = 0

and the conservativity of b∗ (see Proposition 2.2.1(xii)) yields the result.
(3) Theorem 3.1.4 implies that it suffices to verify that tl exists over any characteristic p field

K (here p can be 0) if it exists over some universal domain K ′ of characteristic p. We prove this
using an argument that is rather similar to the one above.

Again, in order to prove the existence of tl it suffices to verify the orthogonality axiom and
the existence of tl-decompositions for the classes described in Definition 3.1.1(3).

Arguing as above, we obtain the following: if tl exists over K ′, it also exists over its subfield K.
We consider an algebraically closed K ⊂ K ′. Our arguments along with Lemma 3.2.1 yield

the following: if a tl-decomposition of ZK′ for a Z ∈ ObjDMc(K) exists (over K ′), then
a tl-decomposition of ZU [d] exists over some smooth connected K-variety U of dimension d
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(i.e., a tl-decomposition Z1→ ZU [−d]→ Z2 of ZU [−d] = u∗Z[−d] exists in DMc(U), for u : U →

SpecK being the structure morphism of U). Similarly, if we have a non-zero h ∈ DMc(K)(M,N),
M ∈ DMc(K)tl60, N ∈ DMc(K)tl>1, then it vanishes over a certain U (since it vanishes over K ′).

We denote by s : SpecK → U the embedding of some K-point of U into U . Then h = s∗u∗h;
hence h = 0. Now, Lemma 3.1.3(5) yields that u∗[d] is t-exact. Since it is also conservative, we
obtain that it suffices to verify that Zi = u∗s∗Zi (for i = 1, 2). Since Het

Ql
is conservative by the

previous assertion, it suffices to verify that Het
Ql
(Zi) = (u ◦ s)∗Het

Ql
(Zi). Now it remains to note

that Het
Ql
(Zi) can be obtained by applying u∗[d] to the tl-decomposition of Het

Ql
(Z).

It remains to prove that tl exists over K if it exists over its algebraic closure. Similarly to the
reasoning above, we obtain the following: for any Z ∈ ObjDMc(K) there exists a finite extension
F/K (of some degree d > 0) such that a tl-decomposition of ZF exists (in DMc(F )), and also
any h ∈ DMc(K)(M,N), M ∈ DMc(K)tl60, N ∈ DMc(K)tl>1, vanishes over a certain F . Then
Proposition 2.2.1(vii) yields the existence of tl over K. Indeed, if f : F → K is the corresponding
morphism, [Bei02] yields that the homomorphism DMc(K)(M,N) → DMc(F )(f∗M,f∗N) is
injective. Besides, since f∗ is t-exact (see Lemma 3.1.3(4)), we obtain that a tl-decomposition
exists for f∗f

∗Z; hence it exists for Z also (since DMc(S)
tl60 and DMc(S)

tl>0 are idempotent
complete). 2

We also recall Proposition 2.2.1(ii) here, which yields that DMc(Ki) is the category DMgm(Ki)

of Voevodsky’s motives. Hence it suffices to verify the conservativity of Het
Ql

and the existence of
tl for the latter categories (cf. Remark 4.1.2).

Corollary 3.2.4. (1) Suppose that tl exist over some universal domains Ki of certain
characteristics pi. Then for any S as in Proposition 3.2.3 Chow weight filtrations and spectral
sequences for Het

Ql,0
over S can be lifted to MM(S).

(2) Suppose that tl exists for DMc(K), where K is some universal domain of characteristic p

(p is either a prime or 0); let S be a very reasonable scheme of characteristic p. Then there exists
a weight filtration for MM(S) with the corresponding functors W6i,MM such that for any i ∈ Z
we have WiH

et
Ql,0
∼= Het

Ql
◦W6i,MM ◦Htl

0 .

Proof. (1) This is immediate from Remark 1.3.3(2).
(2) By Theorem 2.5.4(II)(1), Chow weight spectral sequences degenerate (at E2) for H ′ =

Het
Ql,0

. Hence Proposition 1.3.6(II) yields the degeneration of Chow-spectral sequences also for
H = Htl

0 . Therefore, Proposition 1.3.6(I) yields the existence of a weight filtration for MM(S) =

Htl such that WiH
tl
0
∼= W6i,MM ◦Htl

0 . It remains to apply Proposition 1.3.2(I). 2

Remark 3.2.5. (1) Certainly, the assumptions of the corollary also yield that for any open
embedding j : U → S one can lift j!∗ from Shetper(−,Ql) to MM(−). In particular, if U is regular
and dense in S, j!∗QU ∈ DMc(S)

tl=0 could be called the ‘intersection motif’ of S; it corresponds
to the Ql-adic étale intersection homology of S.

(2) Conversely to part 2 of the corollary, suppose that for some S there exists some weight
filtration for MM(S) such that Htl

i (Chow(S)) is of weight i (for any i ∈ Z; this assumption can
be reduced to the following ones: Q(j) is of weight −2j for any j ∈ Z, whereas p! respects weights
in the corresponding sense for p being a projective morphism of schemes). Then for H = Htl

0 one
can easily see that T (H,−) degenerates at E2 (cf. the proof of Theorem 2.5.4(II)(1)). Certainly,
this yields Conjecture 2.5.3 in this case (see Proposition 1.3.6(II)(1)). We obtain a good reason
to believe Conjecture 2.5.3 (for a general S).
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(3) Instead of assuming that tl exists over a universal domain K (of characteristic p), it
suffices to assume that it exists over all members of a family Ki of fields such that any finitely
generated L of characteristic p embeds into one of Ki. One may take algebraically closed fields of
characteristic p such that their transcendence degrees are not bounded (by any natural number)
for Ki.

3.3 Consequences of the existence of a nice motivic t-structure
We now derive certain consequences from the existence of a nice motivic t-structure for DMc(S);
we will need some of them below in order to make a certain inductive step.

Proposition 3.3.1. Suppose that a nice tl exists over S and that m ∈ Z, M ∈ ObjDMc(S).
Then the following statements are fulfilled.

(I) (1) The category MMm(S) = MM ∩HwChow[m] is (abelian) semisimple.
(2) If M ∈ DMc(S)

tl=0, then it possesses an increasing filtration W6r,MMM , r ∈ Z,
whose jth factor belongs to MMj(S) for any j ∈ Z; this filtration is Htl-functorial in M .

(3) M ∈ DMc(S)wChow6m (respectively M ∈ DMc(S)wChow>m) if and only if for any
j ∈ Z we have (Wm+jH

tl
j )(M) = Htl

j (M) (respectively (Wm+j−1H
tl
j )(M) = 0).

(4) M ∈ DMc(S)wChow6m (respectively M ∈ DMc(S)wChow>m) if and only if for any
j ∈ Z we have (Wm+jH

et
Ql,j

)(M) = Het
Ql,j

(M) (respectively (Wm+j−1H
et
Ql,j

)(M) = 0).
(5) If M ∈ ObjChow(S) (⊂ObjDMc(S)), then it can be decomposed into a direct sum

of objects of MMj(S)[−j]; this decomposition is unique up to a (non-unique) isomorphism.
(6) If M ∈ ObjMMm(S), then it can be decomposed as a direct sum of simple objects

of MMm(S); this decomposition is unique up to an isomorphism.
(II) Let S be of finite type over SpecFp (for p 6= l); M ∈ DMc(S)

tl=0. Consider the weights
for Db

cSh
et(S,Ql) defined in [BBD82, § 5] (cf. Proposition 2.5.1(I)). Then M ∈ DMc(S)wChow6m

(respectively M ∈ DMc(S)wChow>m) if and only if Het
Ql
(M) is of weight less (respectively greater)

than or equal to m.

Proof. (I) (1)–(3), (5) These are immediate from Proposition 1.4.2(II).
(4) We note that Het

Ql,j
(M) ∼= Het

Ql,0
(Htl

j (M)). Applying assertion (I)(3), we may assume that
M ∈ DMc(S)

tl=0 and consider onlym = 0. Then applying Proposition 1.3.6(II)(2)) for F =Het
Ql,0

,
we obtain the result (we also use Proposition 1.3.6(II)(2)) in order to relate the weight filtration
for MM to Chow weight spectral sequences).

(6) This is immediate from the semisimplicity of MMm.
(II) This is immediate from assertion (I)(5) along with Theorem 2.5.4(I). 2

Remark 3.3.2. (1) MMm(S) could be called the category of pure motives of weight m (over S).
(2) Consider a category MS of ‘homological S-motives’ whose objects are DMc(S)wChow=0,

and
MS(M,N) = Im(DMc(S)(M,N))→

⊕
m∈Z

Shetper(S,Ql)(H
et
Ql,m

(M), Het
Ql,m

(N)).

We conjecture that it is (anti)-isomorphic to the category M(S) described in [CH00, Definition
5.9] (cf. [Bon14, Remark 2.1.2]).

We obtain that if a nice tl exists over S, then MS is isomorphic to the direct sum of MMm(S)
(as additive categories). Hence, MS is semisimple (cf. [CH00, Theorem 5.13]); so it could also be
called the category of ‘numerical motives’. It is also easily seen that for any M ∈ DMc(S)wChow=0

the kernel of the projectionMM(Z,Z)→MS(Z,Z) is a nilpotent ideal (cf. [CH00, Theorem 6.9]).
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(3) So we have proved that Het
Ql

‘strictly respects weights’ if S is of finite type over SpecFp;
this is also true for H̃et

Ql
if S is of finite type over Spec Q. In [Wil08] a similar statement was

established unconditionally for Artin–Tate motives over number fields.
(4) Assume that I ∈ ObjDb

cSh
et(S,Ql) is semisimple (i.e., that it is a direct sum of shifts

of semisimple objects of Shetper(S,Ql)) and that I is a retract of I ′ = Het
Ql
(N) for some N ∈

ObjDMc(S) (under our assumptions, this is easily seen to be equivalent to I being semisimple of
geometric origin in the sense of [BBD82, § 6.2.4]). Then our assumptions yield that I is a retract
of

⊕
n∈ZH

et
Ql,0

(Mn)[n] for some Mn ∈ Obj
⊕

m∈ZMMm(S).
Indeed, it suffices to verify this statement for a simple I ∈ ObjShetper(S,Ql); hence we can

assume that N ∈ ObjMM(S). Then we have morphisms I → Het
Ql,0

(W6m,MMN) for all m ∈ Z.
Since I is simple, these morphisms are either zero or embeddings; hence I is a retract of one of
Het

Ql,0
(GrWm (N)).

3.4 Reducing the existence of a nice tl to the universal domain case
We are now ready to prove our second main result.

Theorem 3.4.1. Suppose that for any point of a very reasonable scheme S the category DMc(K)
possesses a nice tl. Then the same is also true for DMc(S).

Proof. By Theorem 3.1.4, tl for DMc(S) exists. It remains to verify that tl is transversal to
wChow. For any (fixed) M ∈ DMc(S)

tl=0 and m ∈ Z we should verify the existence of a nice
decomposition of M (see Definition 1.4.1).

We again apply the Noetherian induction, and assume that the statement is fulfilled over any
proper closed subscheme of S.

Let K be a generic point of S. Since j∗K [−d] is t-exact and j∗K is weight-exact, a nice
choice of (2) (with the corresponding mK = m − d) exists for j∗KM [−d] (in DMc(K); see
Theorem 2.3.1(III)). By Theorem 2.3.1(III) and Lemma 3.2.1, there exists an open embedding
j : U → S (U contains K) along with a nice choice

A
f ′
→ j∗M

g′
→ B (9)

of (2).
We verify that this choice can be lifted to a one for M . We apply j!∗ to (9). Since j!∗

preserves monomorphisms and epimorphisms (see Proposition 1.5.3(IV)(v)), we obtain a three-
term complex as in (5) (i.e., f = j!∗f

′ is monomorphic, and g = j!∗g
′ is epimorphic). For Z =

S\U the middle-term homology object Hmid of the complex obtained belongs to i∗(DMc(Z)) by
Proposition 1.5.3(IV)(iii). Since i∗ is t- and weight-exact, the inductive assumption yields that
a nice choice of (2) exists for Hmid. Now suppose that j!∗(W>m+1,MMj∗M) ∈ DMc(S)wChow>m+1

and j!∗(W6m,MMj∗M) ∈ DMc(S)wChow6m. Then we can choose ‘trivial’ nice decompositions for
these objects; hence Proposition 1.4.2(I) would yield that a nice decomposition exists for j!∗j

∗M .
Now, applying Proposition 1.4.2(I) again along with Proposition 1.5.3(IV)(iv), we obtain that a
nice decomposition exists for M also.

Hence it remains to verify that j!∗ maps DMc(U)tl=0 ∩ DMc(U)wChow>m+1 into
DMc(S)wChow>m+1, and maps DMc(U)tl=0 ∩DMc(U)wChow6m into DMc(S)wChow6m.

We fix some M ∈ DMc(U)tl=0 ∩ DMc(U)wChow>m+1 (respectively M ∈ DMc(U)tl=0 ∩
DMc(U)wChow6m). Since j∗j!∗M ∼= M , it suffices to verify that i!j!∗M ∈ DMc(Z)wChow>m+1

(respectively i∗j!∗M ∈ DMc(Z)wChow6m).
The inductive assumption for Z reduces the latter fact to a certain calculation of weight

filtrations for Het
Ql,n

of the corresponding motives; see Proposition 3.3.1(I)(4). In this form the
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statement follows immediately from Proposition 1.5.3(ii) and Theorem 2.5.4(II)(2) (along with
Theorem 2.4.1(I)). 2

Remark 3.4.2. (1) Our arguments demonstrate that the notions of weight structure and of its
transversality with t-structures are really important for the study of the ‘weight filtration’ of
DMc(S)

tl=0 (cf. § 4.1 below). Indeed, it seems that one cannot apply our gluing argument in the
setting of filtered abelian categories (though possibly one could find a way to apply some of the
corresponding arguments of [CH00] in our context).

(2) In contrast to the setting of the Theorem 3.1.4, we cannot prove the niceness of t when
S is not very reasonable (without assuming Conjecture 2.5.3 for it). The problem is that the
‘weight-exactness’ of j!∗ does not follow from the (Noetherian) inductive assumption considered
in the proof of the theorem. Indeed, let S = SpecZ(p) (for a prime p 6= l); then one can glue
tl(SpecFp) with any ‘shift’ of tl(SpecQ) (here we assume that tl(SpecFp) and tl(SpecQ) exist,
and consider (DMc(SpecQ)t

′60,DMc(SpecQ)t
′>0) = (DMc(SpecQ)tl6i,DMc(SpecQ)tl>i) for any

i ∈ Z\{0}). Then the niceness of tl over SpecQ is equivalent to the niceness of t′; yet it seems
highly improbable for j!∗ to be weight-exact for the weight structure obtained via this ‘shifted
gluing’. Hence in order to control the niceness of tl for S in this case, one needs some ‘extra’
information on it. It seems quite reasonable to control motives via their homology; to this end
we have to extend Theorem 2.5.4(II) to this case (cf. some alternative arguments in [Wil12, § 7]).

We now prove that it suffices to verify the niceness of tl over universal domains (only).

Proposition 3.4.3. (1) Suppose that a nice tl exists over a universal domain K of characteristic
p > 0. Then a nice tl exists over any very reasonable S/ SpecFp.

(2) Suppose that tl exists over the field of complex numbers. Then a nice tl exists over any
very reasonable Spec Q-scheme.

Proof. (1) The proof is rather similar to that of Corollary 3.2.4 (along with Proposition 3.2.3).
We will only sketch it, outlining the differences.

Again, it suffices to verify that if the transversality property is fulfilled for motives over a
field L, then it is fulfilled over any its algebraically closed subfield, and over its subfield K such
that the extension L/K is algebraic.

Both of these statements can be proved using the arguments in the proof of Corollary 3.2.4.
Indeed, by Proposition 1.4.2(III), we should verify that for any M ∈ ObjDMc(K) we have
(WmHtl

0 )(M) ∈ DMc(K)wChow6m and M/(WmHtl
0 )(M) ∈ DMc(K)wChow>m+1 (for all m ∈ Z).

This can be easily done by combining the arguments from the proof of Corollary 3.2.4(1) with
Theorem 2.3.1(VI) (see also Remark 2.1.2(I)(1)); note that f∗ = f! is weight-exact if f is a finite
morphism.

(2) The statement is immediate from the previous assertion along with [Bei12, Proposition
1.5]. 2

Remark 3.4.4. (1) It is also easily seen that if tl is nice over S, it is also nice over all of its
subschemes and residue fields. Indeed, it suffices to note that for any open immersion i and (the
complementary) closed embedding j the functors i∗ and j∗ are exact with respect to tl and wChow,
whereas i∗ is a full embedding, j∗ is a localization functor, and Im i∗ = Ker j∗.

Certainly this observation is far from very exciting; yet it will make some of the formulations
in § 4.2 nicer.

(2) [Bon12, Remark 2.1.4] describes a funny way to produce new examples of transversal
weight and t-structures (out of ‘old’ ones for a triangulated C). To this end one should consider
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the so-called ‘truncated categories’ CN (that are ‘usually’ defined for all N > 0). For our t, w,

C = DMc(S), we have C0 = Kb(Chow(S)). So (if certain ‘standard’ conjectures as listed in § 4.1
below hold) this category shares several nice properties with DMc(S); this statement does not
seem to be obvious.

4. Supplements

In § 4.1 we verify that the existence of tl and its niceness (over a very reasonable scheme S) follow
from certain (more or less) ‘standard’ motivic conjectures (over algebraically closed fields; here
we use certain lists of those taken from [Bei02, § 1] and [Han99, § 2]).

In § 4.2 we note that our results yield a ‘motivic decomposition theorem’ (modulo the
conjectures mentioned). In particular, we characterize pure motives over S in terms of those
over its residue fields. This enables us to calculate K0(DMc(S)).

In § 4.3 we extend our results from the case of SpecZ[1/l]-schemes to the case of SpecZ-
schemes, and prove that the t-structure obtained does not depend on the choice of the
corresponding ls. Here we need to assume that the numerical equivalence of cycles is equivalent
to Ql′-adic homological one (for any l′ ∈ P and over universal domains of characteristic not equal
to l′ or 0).

4.1 Relating the existence of a (nice) tl to ‘standard’ motivic conjectures
First we address the question which (more or less) ‘classical’ motivic conjectures ensure the
existence of tl over S, that is nice if S is a very reasonable scheme. By virtue of the results above,
to this end it suffices to treat motives over universal domains only. So we consider motives over
a universal domain K of characteristic p 6= l (p is either a prime or 0); recall that DMc(K) ∼=
DMgm(K). None of the results of this subsection are essentially original (unless combined with
some of our other results).

First we relate the existence of a nice tl to (the widely believed to be true) conjectures A–C
of [Bei02, § 1.2].

Proposition 4.1.1. The existence of a nice tl for DMgm(K) is equivalent to the conjunction of
the following statements.

(A) The étale cohomology functor RHet is conservative on Voevodsky’s DMeff
gm(K).

(B) There exists a t-structure for DMeff
gm(K) such that RHet is t-exact.

(C) All the homology of the motives of smooth projective varieties with respect to this
t-structure is semisimple.

Proof. Since étale cohomology is (‘anti’)-compatible with Tate’s twists, the t-structure mentioned
can be extended to the whole DMgm(K) = DMc(K); we will denote this extension by tMM.

Now it is easy to see that tMM = tl. Indeed, composing RHet with Poincaré duality for
DMc(K), one obtains (a certain version of) étale homology for it, whereas conditions A and B
together yield that tMM is strictly compatible with Het

Ql
(as prescribed by our Definition 3.1.1).

Note here that the Poincaré duality for DMgm(K) exists for K of any characteristic (by an
argument of M. Levine described in [HK06, Appendix B]).

Next, condition C easily yields that that the tMM-homology objects for arbitrary Chow
motives (‘in our sense’) are semisimple (here we apply the compatibility of Het

Ql
with Tate twists).

Moreover, [Bei12, Proposition 1.4(ii)] yields the existence of the corresponding Chow–Kunneth
decompositions (see Remark 1.4.3); hence the functors Htl

i [−i] respect Chow motives. Thus tl is
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nice (over K) by Proposition 1.4.2(V) (since the condition ObjAm ∩ObjAj = {0} for m 6= j is
immediate from the orthogonality axiom of weight structures).

The converse implication is even easier (and is of no great interest to us). 2

Remark 4.1.2. (1) Here and throughout this paper we use the following observation: although
the author does not know whether all possible versions of the (Ql-) étale homology realization
for motives over a field K are isomorphic, one can still be sure that all of them yield the same tl.
Indeed, we have spectral sequences TwChow

(Het
Ql,0

,−) (for any version of Het
Ql,0

) that degenerate
at E2 (in this case; see Theorem 2.5.4(II)(1)). Hence Het

Ql,m
(M) vanishes (for some m ∈ Z) if and

only if Ep,m−p
2 (T ) = 0 for any p ∈ Z. Now, in order to calculate Ep,m−p

2 (T ) it suffices to know
the restriction of Het

Ql
to Chow(K) (see Proposition 1.3.2(I)), and certainly the latter does not

depend on the choice of the version for Het
Ql
.

(2) Combining Proposition 3.2.3(2) with this spectral sequence argument, we obtain that
the conservativity of the étale realization of motives (over fields or over general Z[1/l]-base
schemes) follows from the following conjecture: ifK is an algebraically closed field of characteristic
distinct from l, then any morphism of Chow(K)-motives that yields an injection on their étale
(co)homology, splits (cf. [Bon09, Proposition 7.4.2]). Note that the latter conjecture easily follows
from the niceness of tl over K (since tl ‘splits’ Chow motives into direct sums of objects of
semisimple categories MMm[−m], whereas Het

Ql
is conservative on MMm[−m]). Now, by virtue

of the results below, the niceness of tl follows from ‘standard’ conjectures. Hence, there is good
reason to believe this (‘Chow-splitting’) conjecture.

It may be of interest to study the connection of our results with those of [Ayo07].

We now verify (briefly) the following statement.

Proposition 4.1.3. For K as above, assume that standard conjecture D of [Han99] (that Ql-
homological equivalence of cycles coincides with numerical equivalence), and Murre’s conjectures
A, D, and Van (as stated in [Han99, § 2]) are fulfilled. Then a nice tl exists over K.

Proof. First we note that Murre’s conjecture A yields the existence of Chow–Kunneth
decompositions of motives of smooth projective varieties (over K), i.e., any such motif can
be decomposed (in Chow(K)) into a direct sum of motives each of which has only one non-zero
Ql-adic (co)homology group. Here and below we can consider Het

Ql
instead of étale cohomology;

cf. the proof of Proposition 4.1.1. Next, (the proof of) [Han99, Proposition 2.4] implies that
the conjectures mentioned imply all the remaining Murre conjectures (we can apply [Han99,
Proposition 2.4] here since the Lefschetz type standard conjecture B used in its proof follows
from standard conjecture D by the main result of [Smi97]). We defineMMm(K) as the subcategory
of Chow[m] ⊂ DMgm(K) consisting of objects whose Ql-étale (co)homology is concentrated in
degree 0.

Now [Han99, Proposition 2.3] yields that the categories MMm(K) are isomorphic to the
corresponding pieces of the category of Ql-étale homological motives. Conjecture D embeds them
into the category of numerical motives (which is semisimple by the main result of [Jan92]); hence
they are semisimple also. Next, the arguments used for the proof of [Han99, Proposition 2.9]
yield for MMm(K) the orthogonality conditions of Proposition 1.4.2(IV). Besides, by [Bon12,
Lemma 1.1.1(6)] these conditions also yield that the category C ⊂ Chow(K) with ObjC =
⊕ObjMMm(K)[−m] is idempotent complete; hence C = Chow(K). Since 〈Chow(K)〉 =
DMgm(K) (see Proposition 2.2.1(ii)), Proposition 1.4.2(IV) yields that DMgm(K) possesses a
t-structure tMM that is transversal to wChow. Since all objects of HtMM possess filtrations
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whose factors belong to MMm(K) (see Proposition 1.4.2(II)(4)), we obtain that ObjHtMM ⊂
DMc(K)tl=0; hence Het

Ql
is t-exact with respect to tMM. Moreover, Murre’s conjecture Van

yields that Het
Ql

does not kill non-zero objects of MMm(K) (since it does not kill non-zero
Chow motives). Then Proposition 1.4.2(II)(4) also implies that ObjHtMM = DMc(K)tl=0; cf.
the proof of Proposition 3.3.1(I)(4). Hence tMM = tl (see Remark 1.2.3(3)), and we obtain the
result desired. 2

Remark 4.1.4. (1) Alternatively, one can prove the existence of the motivic t-structure for
DMgm(K) using the arguments from the proof of [Han99, Theorem 3.4], whereas (the proof
of) [Han99, Proposition 2.8] allows us to verify the conditions of Proposition 1.4.2(V) that ensure
(in this case) that wChow(K) is transversal to tl.

(2) For a characteristic 0 field K one can apply the results of Corti and Hanamura directly
(after replacing étale cohomology byHet

Ql
using Poincaré duality). Indeed, it was proved in [Bon09,

§ 4] that in this case Hanamura’s triangulated category of motives is isomorphic to DMgm(K)op.
(3) It seems that the existence of tl without any additional assumptions does not imply

its niceness (at least, easily) over positive characteristic fields (one also needs to assume the
Hodge standard conjecture or the conjectures mentioned above for this matter). Over (very
reasonable Spec Q-schemes and) characteristic 0 fields one does not need any extra assumptions;
cf. Proposition 3.4.3(2) (and also [Bei12, Proposition 2.2]).

4.2 Our ‘motivic decomposition theorem’
Our results easily yield a motivic version of the celebrated topological decomposition theorem
(for perverse sheaves; see Remark 4.2.4). In particular, we characterize pure motives (see
Remark 3.3.2(1)) ‘pointwise’. In order to formulate our results, we need a certain intermediate
image functor for jK , where K ∈ S.

First let K be a generic point of S of dimension d (see § 2.1; so K is the spectrum of a
field). Suppose that a nice tl exists over S; then it also exists over K (see Remark 3.4.4(1)).
We define jdK!∗ for M ∈ MMm(K) (m ∈ Z) in the following way. First we lift M [d] to a certain
MU ∈MMm+d(U) for some open U ⊂ S, K ∈ U ; here we use Lemma 3.2.1 and Theorem 2.3.1(III)
(cf. the proof of Theorem 3.4.1).MU is semisimple inMM(U) (see Proposition 3.3.1(I)(6)); and we
take M ′U as the sum of those components of MU that are not killed by jU∗K (for the corresponding
morphism jUK : K → U ; note that M ′U is determined by MU uniquely up to an isomorphism).
Finally, we set jdK!∗M = j!M

′
U , where j : U → S is the corresponding open immersion.

Now let K be an arbitrary point of S of dimension d, whose closure is Z ⊂ S; i : Z → S is
the corresponding embedding. Then we lift M [d] to MMm+d(Z) using the procedure described
above, and apply i∗ in order to obtain jdK!∗M . Here we use the tl- and wChow-exactness of i∗ = i!.
Note, furthermore, that if we denote the composite immersion U → Z → S by j, then we would
have

jdK!∗M = Im(Htl
0 j!M

′
U → Htl

0 j∗M
′
U ) (10)

in this case (also).

Lemma 4.2.1. (1) jdK!∗M does not depend on any choices (if a nice tl exists over S). Moreover,
jdK!∗ yields a full embedding (of categories).

(2) jdK!∗M is functorially characterized by the following condition: it is a semisimple lift of
M to MMm+d(S) none of whose direct summands are killed by j∗K .

Proof. This is an easy consequence of Proposition 1.5.3(IV)(vii)–(ix). 2
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Remark 4.2.2. Alternatively, one could try to apply here the (somewhat parallel) arguments
of [Sch12, § 5]. However, some adjustments (along with certain results of [Bon14, § 2.3]) are
needed to do so.

Proposition 4.2.3. Let a nice tl exist over S. Then for any m ∈ Z any object of MMm(S) can
be decomposed as a direct sum of jdiKi!∗Mi for Ki ∈ S of dimension di, and Mi ∈ MMm−di(Ki)

being indecomposable objects. This decomposition is unique up to an isomorphism. Moreover,
Mi
∼= Htl

−di(j
∗
Ki
M), whereas Ki can be characterized by the condition that Htl

−di(j
∗
Ki
M) 6= 0.

Proof. We verify that M can be decomposed into a direct sum of some jdiKi!∗Mi in some way.
Since MMm(S) is semisimple, it suffices to prove the following: if M is indecomposable, then it
can be presented as jdMKM !∗MK for some KM ∈ S of dimension dM and MK ∈ MMm−d(KM ). We
prove this statement by Noetherian induction (applying Remark 3.4.4(1) again).

Let K be a generic point of S. If j∗KM 6= 0, Lemma 4.2.1 immediately implies that we can take
KM = K, MK = j∗KM [−d]. On the other hand, if j∗KM = 0, then there exists an open immersion
j : U → S (K ∈ U) such that j∗M = 0. Hence for the complementary closed embedding i : Z→ S

there exists a (simple)MZ ∈MMm(Z) such thatM ∼= i∗MZ (since i∗ is Chow weight and t-exact).
Hence it suffices to apply the inductive assumption to MZ (see (10)).

It remains to verify that for K,K ′ ∈ S of dimensions d and d′ respectively, and M ∈MMn(K)

(n ∈ Z), we have Htl
−d′(j

∗
K′jdK!∗(M)) = 0 if K ′ 6= K and = M otherwise. We consider three cases

here: (1) K ′ = K, (2) K ′ belongs to the closure Z of K in S, and (3) K ′ does not belong to Z.
Denote the embedding of Z into S by i; denote the complementary immersion by j and the

morphism K → Z by jZK . In case (1) it suffices to note that jZ,dK!∗M is a lift of M [d] to DMc(Z),
whereas i∗i∗ = 1DMc(Z). In case (3) it suffices to note that j∗K′ factorizes through j and that
j∗i∗ = 0. In case (2) we can assume that Z = S (since i∗i∗ = 1DMc(Z)); then our claim easily
follows from Proposition 1.5.3(IV)(ii). 2

Remark 4.2.4. (1) The ‘usual’ topological decomposition theorem (see [CH00, Theorem 5.7])
states (for S a variety over a field) that if X → S is a proper morphism, and X is regular,
then f∗QlX ∈ ObjDb

cSh
et(S,Ql) splits as a direct sum of its t-homology, whereas its homology

(perverse) sheaves can be presented as direct sums of intermediate images of pure Ql-local systems
supported on some subvarieties of S. We verify that this decomposition can be lifted to DMc(S)

(hence, we can improve [CH00, Theorem 5.14]) even if we replace QlX here by K = Het
Ql
(N) for

some N ∈ Het
Ql,0

(MMn(X)) (for some n ∈ Z) and do not require X to be regular.
We note that f∗K = Het

Ql
(f∗N) (see Theorem 2.4.1(I)), whereas f∗N ∈ DMc(S)wChow=n (see

Theorem 2.3.1(II)(1)). By Proposition 3.3.1(I)(5) we obtain that tl splits f∗N into a direct sum
of objects of MMj(S)[n − j] (this statement is the relative generalization of the existence of
Chow–Kunneth decompositions).

Hence in order to achieve our goal it suffices to verify (by virtue of Proposition 4.2.3; for an
m ∈ Z) for any M ∈ ObjMMm(S) that the (perverse) homology of the corresponding jdiKi!∗Mi

can be presented as the the intermediate image of a Ql-local system supported on some regular
connected subvariety Ui of S, whereas Ki is the generic point of Ui (cf. [BBD82, Theorem
4.3.1(ii)]). As we have verified above, for any such Ui the motif jdiKi!∗Mi can be presented as
jUi!∗MUi for someMUi ∈ObjMMm(Ui) (here we denote by jUi!∗ the composite of the intermediate
image functor for the embedding of Ui into its closure Zi with the direct image DMc(Zi) →

DMc(S)). We should prove that we can choose Ui,MUi such that Het
Ql
(MUi) ∈ ObjShetper(S,Ql)

is a local Ql-system on Ui.
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By Theorem 2.3.1(III)(2), we can assume (if we choose Ui to be small enough) that there
exist a regular scheme U ′i , a finite universal homeomorphism g : U ′i → Ui, a smooth projective
morphism h : Pi → U ′i , and an s ∈ Z such that MUi is a retract of (g ◦ h)∗QP (s)[2s + m]. It
remains to note that the homology sheaves of (g ◦h)∗QlPi(s) ∈ ObjDb

cSh
et(Ui,Ql) are pure local

systems (since this is true for the ‘canonical’ homology of this derived category, and Ui is regular,
we obtain that the perverse homology equals the canonical homology).

(2) More generally, assume that I is a retract of an object I ′ of Het
Ql
(
⊕

m,j∈ZMMm(X)[j]).
As noted in Remark 3.3.2(4), this condition is fulfilled (in particular) if I is a semisimple complex
of geometric origin (in the sense of [BBD82]). Then f∗I

′ belongs to Het
Ql
(
⊕

m,j∈ZMMm(S)[j]).
Since local systems over subschemes of S yield Krull–Schmidt subcategories, we obtain that f∗I
can be presented as a direct sum of retracts of Het

Ql
(jUi!∗MUi [si]) for (Ui,MUi , si) corresponding

to f∗I
′.

Thus we obtain a certain motivic analogue of [BBD82, Theorem 6.2.5]. Yet note that (in
contrast to [BBD82]) f∗ does not preserve semisimplicity of perverse sheaves in general. Indeed,
even if we take S = SpecK for a (general) field K and a smooth projective X/K, then the
étale cohomology of XKsep need not be semisimple as Gal(K)-representations (for example, for
K = Qp we do not have semisimplicity for H1

et of an elliptic curve with split multiplicative
reduction; see [Sil94, Exercise 5.13]).

We are now (also) able to calculate K0(DMc(S)).

Corollary 4.2.5. Define K0(DMc(S)) as the abelian group whose generators are [C], C ∈
ObjDMc(S); if D → B → C → D[1] is a distinguished triangle in DMc(S) then we set
[B] = [C] + [D]. Let a nice tl exist over S. Then K0(DMc(S)) is a free abelian group with a
basis indexed by isomorphism classes of indecomposable objects of MMm(Ki) for Ki running
through all elements of S, m running through all integers.

Proof. By [Bon12, Proposition 1.2.6], K0(DMc(S)) is a free abelian group with a basis indexed by
isomorphism classes of indecomposable objects of MMm(S) (for m running through all integers).
Now the result follows easily from Proposition 4.2.3. 2

4.3 Changing l; the case of Spec Z-schemes
First we study the question when tl′ exists and coincides with tl for prime l 6= l′ (we fix the
primes, and define tl′ similarly to tl).

Proposition 4.3.1. (1) Suppose that Het
Ql

and Het
Ql′

exist and coincide over universal domains
of all characteristics not equal to l, l′. Then they also exist and coincide over any reasonable
SpecZ[1/l, 1/l′]-scheme S.

In particular, this assertion holds if Het
Ql

and Het
Ql′

are nice over the universal domains
mentioned.

(2) Suppose that for any prime p 6= l, l′ there exists a universal domain K of characteristic p

such that there exists a nice tl for DMc(K), and Het
Ql′

-homological equivalence of cycles coincides
with the numerical equivalence one over K. Then tl and tl′ exist and coincide on DMc(S) for any
reasonable SpecZ[1/l, 1/l′]-scheme S.

Proof. (1) First we note that the niceness of tl and t′l for DMc(K) yields that they coincide (on
DMc(K)) by [Bei02, Proposition 4.5]. So, it remains to verify that tl and t′l exist and coincide
over S if this is true over universal domains (of all characteristics not equal to l, l′).
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By Corollary 3.2.4(1), tl and tl′ exist for DMc(S). By Lemma 3.1.3(7), it suffices to verify that
DMc(F )tl′60 = DMc(F )tl60 and DMc(F )tl′>0 = DMc(F )tl>0 for any point F of S. An argument
similar to the one used in the proof of Corollary 3.2.4(1) yields that we can replace F by one of
our universal domains (of the same characteristic).

(2) By the previous assertion, it suffices to verify that tl coincides with tl′ over K.
Since all MMi(K) = DMc(K)tl=0 ∩ DMc(K)wChow=i are semisimple, we obtain that Het

Ql
-

homological equivalence of cycles is equivalent to numerical equivalence (overK). Indeed, consider
the functor ⊕Grtlm : Chow(K) → ⊕MMm(K) that is given by the direct sum of all (shifted)
tl-homology of Chow motives; see Remark 3.3.2(2). It kills exactly those morphisms of Chow
motives that are Ql-homologically equivalent to zero as cycles (since Het

Ql
does not kill non-zero

morphisms in MMm(K)). It remains to note that Ql-homological equivalence is finer than the
numerical equivalence, and the category of numerical motives (overK) is semisimple (see [Jan92]).
Besides, Het

Ql′
is also conservative on MMm(K) for any m ∈ Z.

Now, for a smooth projective P/K, [Kle94, Proposition 5.4] implies (in our setting) that
the (Chow–)Kunneth decomposition of the motif of P coming from tl is also its Kunneth
decomposition with respect toHet

Ql′
. Indeed, by [Kle94, Proposition 5.4] the numerical equivalence

classes of the corresponding projectors do not depend on the choice of a Weil (co)homology theory;
note that (by the main result of [Smi97]) we can replace the Hodge standard conjecture by
standard conjecture D (see § 4.1) in the assumptions of [Kle94]. Hence Het

Ql′
sends MMm(K) into

Db
cSh

et(K,Ql′)
t=0. Then Proposition 3.3.1(I)(2) easily yields that DMc(K)tl′=0 = DMc(K)tl=0;

boundedness yields that tl′ coincides with tl (see Remark 1.2.3(3)). 2

Now suppose that S is not (necessarily) a SpecZ[1/l]-scheme. We note that Het
Ql

kills all
motives ‘supported on’ S ×SpecZ SpecFp. In order to overcome this difficulty we introduce the
following definition.

Definition 4.3.2. Let l 6= l′ be primes. Consider the class DMc(S)
tl,l′60 (respectively

DMc(S)
tl,l′>0) consisting of those M ∈ ObjDMc(S) that satisfy Het

Ql
(M) ∈Db

cSh
et(S[1/l],Ql)

tl60

and Het
Ql′

(M) ∈ Db
cSh

et(S[1/l′],Ql′)
tl′60 (respectively Het

Ql
(M) ∈ Db

cSh
et(S[1/l],Ql)

tl>0 and
Het

Ql′
(M) ∈ Db

cSh
et(S[1/l′],Ql′)

tl′>0).
If (DMc(S)

tl,l′60,DMc(S)
tl,l′>0) yield a t-structure for DMc(S), we will say that (the t-

structure) tl,l′ exists over S.

Now we observe that ‘standard’ conjectures imply that tl,l′ exists over any (reasonable) S
and does not depend on l. We formulate a concise result of this kind here; further (somewhat
stronger) statements of this sort can also be easily proved.

Proposition 4.3.3. Let l, l′ be as above.
(1) Suppose that a nice tl exists over any universal domain of any characteristic not equal to

l, a nice tl′ exists over a universal domain of characteristic l, and Het
Ql′

-homological equivalence
of cycles is equivalent to numerical equivalence over any universal domain of any characteristic
not equal to l′ or 0. Then tl,l′ is a t-structure over any (reasonable) S.

(2) Suppose, moreover, that for any prime p (distinct from l, l′), Het
Qp

-homological equivalence
of cycles coincides with their numerical equivalence over any universal domain of any characteristic
6= p. Then tl,l′ does not depend on the choice of the pair l, l′.

Proof. (1) It is easy to see that tl,l′ can be characterized similarly to Lemma 3.1.3(7), i.e., M ∈
DMc(S)

tl,l′60 (respectively M ∈ DMc(S)
tl,l′>0) if and only if for any K ∈ S, for K of dimension
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d, we have j∗KM [−d] ∈ DMc(K)tl,l′60 (respectively j!
KM [−d] ∈ DMc(K)tl,l′>0). Indeed, this is an

easy consequence of Lemma 3.1.3(7).
Next we note that over characteristic 0 universal domains the homological equivalence of

cycles relation does not depend on the choice of l since it can be described in terms of singular
(co)homology. Hence Proposition 4.3.1 yields that tl = t′l over any field of characteristic not equal
to l, l′.

It easily follows that tl,l′(S) can be glued from tl for S[1/l] and from tl′ for S ×SpecZ SpecFl;
see Propositions 1.5.3(II)(1) and 2.2.1(viii).

(2) It suffices to apply Proposition 4.3.1 (again) and the arguments described above. 2
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