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Abstract

Establishing the effectiveness of treatments for psychopathology requires accurate models of its progression
over time and the factors that impact it. Longitudinal data is however fraught with missingness, hindering
accurate modeling. We re-analyse data on schizophrenia severity in a clinical trial using hidden Markov
models (HMMs). We consider missing data in HMMs with a focus on situations where data is missing not
at random (MNAR) and missingness depends on the latent states, allowing symptom severity to indirectly
impact probability of missingness. In simulations, we show that including a submodel for state-dependent
missingness reduces bias when data is MNAR and state-dependent, whilst not reducing accuracy when
data is missing-at-random (MAR). When missingness depends on time, a model that allows missingness
to be both state- and time-dependent is unbiased. Overall, these results show that modelling missingness
as state-dependent and including relevant covariates is a useful strategy in applications of HMMs to time-
series with missing data. Applying the model to data from a clinical trial, we find that drop-out is more likely
for patients with less severe symptoms, which may lead to a biased assessment of treatment effectiveness.
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1. Introduction

The progression of mental health and the search for effective interventions to improve it naturally
lead to longitudinal data. Determining the impact of personality and other factors on the progression
of a disorder is vital to understanding mental health dynamics and the effectiveness of treatments.
Longitudinal data are unfortunately fraught with missingness, due to complete or partial drop-out of
patients. Such missingness can severely affect the validity of inferences from the data. For example,
if patients who react adversely to medication drop out of the study, this may lead to an unwarranted
favourable evaluation of the effectiveness of the medication, as the results do not take into consideration
patients who actually were worse off after taking the medication. It is therefore vital to properly address
missing data in such studies.

The progression of disease and mental health is increasingly studied using hidden Markov models.
Hidden Markov models (Rabiner, 1989; Visser & Speekenbrink, 2022) are suitable for categorical or
metric time-series and longitudinal data governed by an underlying discrete process. In the context of
longitudinal data, these models are also known as latent Markov models (Bartolucci et al., 2012). In these
models, health status is considered a discrete state from a finite set, rather than a continuous variable.
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The focus is on how patients transition between healthy and less healthy states, either naturally or as a
consequence of interventions. For example, Hosenfeld et al. (2015) studied patients transitioning in and
out of major depressive episodes. Other recent applications have focused on patients with diagnosed
depression (Catarino et al., 2020), bipolar disorder (Prisciandaro et al., 2019), and schizophrenia
(Boeker et al., 2021). These applications of hidden Markov models are usually limited to complete
data or otherwise ignore reasons for missing data. Here, we consider data from a randomized control
trial testing the effectiveness of medication in the treatment of schizophrenia. As in many longitudinal
studies, there is substantial missing data in this study. The aim of the present paper is to show how this
missingness can be meaningfully addressed in applications of hidden Markov models to clinical studies
and other data, by allowing missingness to depend on the underlying latent health state as well as other
variables such as measurement occasion and intervention status.

There is relatively little work on dealing with missing data in hidden Markov models. Albert (2000),
Deltour et al. (1999), and Yeh et al. (2010) consider missing data in Markov chains with observed states.
Paroli and Spezia (2002) consider calculation of the likelihood of a Gaussian hidden Markov model
when observations are missing at random (MAR). Yeh et al. (2012) discuss the impact of ignoring
missingness when missing data is, and is not, ignorable. They show that if missingness depends on
the hidden states, i.e., missingness is state-dependent, this results in biased parameter estimates when
this missingness is ignored. However, they offer no solution to this problem. The objective of this paper
is to do so. Our approach is related to the work of Yu and Kobayashi (2003), who allowed for state-
dependent missingness in a hidden semi-Markov model with discrete (categorical) outcomes. Following
Bahl et al. (1983), their solution is to code missingness into a special “null value” of the observed
variable, effectively making the variable fully observed. Here, we instead model missingness with an
additional (fully observed) indicator variable. This, we believe, is conceptually simpler, and makes it
straightforward to add additional covariates to model the probability of missing values. This approach
is also taken by Bartolucci and Farcomeni (2015), who restrict their model to the case of dropout in
longitudinal data (where data is complete up to the point of dropout, after which all data is missing)
rather than missing data more generally (where data can be missing at any time point).

The remainder of this paper is organized as follows: We start with an overview of the data measuring
the severity of schizophrenic symptoms in a clinical trial (Hedeker & Gibbons, 1997) and a brief
discussion about the usefulness of applying hidden Markov models to this type of data. This is followed
by a brief overview of hidden Markov models and the definition of ignorable and non-ignorable missing
data as established by Rubin (1976) and Little and Rubin (2014). We then consider both types of missing
data in the context of hidden Markov models, and address the case of state-dependent missingness.
We then present an inhomogeneous hidden Markov model for longitudinal data with state-dependent
missingness and detail its estimation via expectation-maximization. In a series of simulation studies,
we show how including a submodel for state-dependent missingness provides better estimates of the
model parameters when missingness is state-dependent. When data is in fact MAR, the model with
state-dependent missingness is not fundamentally biased, although care must be taken to include
relevant covariates, such as e.g., time. These models are then applied to the dataset on the severity
of schizophrenic symptoms in a clinical trial (Hedeker & Gibbons, 1997). We end by discussing the
implications of this modeling exercise.

1.1. The National Institute of Mental Health Schizophrenia Collaborative Study
The National Institute of Mental Health Schizophrenia Collaborative Study assesses treatment-related
changes in overall severity of schizophrenia. In the study, 437 patients diagnosed with schizophrenia
were randomly assigned to receive either a placebo (108 patients) or one of three different anti-
psychotic drugs (329 patients). The severity of their illness was rated by a clinician at baseline (week 0),
and at subsequent one week intervals (weeks 1–6), with week 1, 3, and 6 as the intended main
follow-up measurements. Measurements on the non-main measurement weeks (week 2, 4, and 5) are
overwhelmingly missing with some patients having measurements in these weeks instead of the main
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Figure 1. Average ratings of the severity of illness (IMPS item 79) by week and drug type. Bars depict 95% confidence intervals. Note

that for the placebo group, confidence intervals at week 4 and 5 extend beyond the plot due to the small number of observations.

measurement weeks. This data has been made publicly available by Don Hedeker1 and has been analyzed
numerous times. In particular, Hedeker and Gibbons (1997) focused on pattern mixture methods to deal
with missing data. Yeh et al. (2010) and Yeh et al. (2012) applied Markov and hidden Markov models,
respectively, assuming ratings were MAR.

Our analysis focuses on a single item of the Inpatient Multidimensional Psychiatric Scale (Lorr &
Klett, 1966), which rates illness severity on a scale from 1 (“normal”) to 7 (“among the most extremely
ill”).2 The average severity ratings at each week are shown in Figure 1. As can be seen there, ratings
at week 6 appear lower than those in week 0, especially for patients receiving medication. At week
6, patients who received the placebo had more severe illness than those receiving medication, with a
difference in mean IMPS score of ΔM = 1.18, 95% CI [0.80,1.57], t(105.23) = 6.13, p < .001. There is
however substantial missing data. Most participants were measured on week 0 (99.31%) and 1 (97.48%),
whilst the other main measurement points at week 3 (85.58%) and 6 (76.66%) show more missing values.
For a few participants, ratings were instead obtained on week 2 (3.2%), 4 (2.52%), and/or 5 (2.06%).
Even when ignoring these rare deviations from the main measurement points, there is a clear potential
issue with missing data and attrition, with 75.29% being measured the intended four times or more, and
15.1% rated on just three occasions, and 9.61% only twice.

Further insight into the extent of the missingness can be gained by studying the attrition or drop-out
rates and the occurrence of intermittent missingness. First, 312 out of 437 patients have measurements at
all four main measurement occasions. Second, 3 patients dropped out after measurement occasion 1, 45
patients after 2, and 53 patients after 3 measurement occasions. This leaves 24 patients with intermittent
missingness patterns. In particular, 13, 5, and 3 patients have missing data at main measurement

1https://hedeker.people.uic.edu/SCHIZREP.DAT.txt.
2The dataset provided contains some non-integer values for these ratings, presumably given to provide a finer-grained

evaluation by the clinician.
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Figure 2. Improvement in symptoms at the main measurement weeks by missingness pattern and drug status. Note that missingness

pattern concerns solely the main measurement weeks. Improvement are differences in scores between the main measurement weeks.

Dots represent means and ranges 95% confidence intervals.

occasions 1, 2, or 3 respectively. Finally, 2 patients had missing data at main measurement occasions
2 and 3, and 1 patient had missing data at main measurement occasions 2 and 4.

Focusing on the four main measurement weeks, Figure 2 compares the improvement in illness from
week 0 of patients with missing data in both week 3 and week 6, patients with only missing data in
week 6, and patients with complete data. This figure shows some clear differences between patients with
and those without missing data. Differences are particularly evident at week 3, where patients in the
medication group with missing data in week 6 have improved more than patients in the medication
group without missing data. Drop-out of patients who respond well to medication may bias the
assessment of treatment effectiveness, such that the treatment is deemed less effective than it is in reality.
The question is then whether drop-out is random, or related to treatment effectiveness and/or illness
severity. Modeling of these data should answer the question whether the origin of these differences in
improvement is an actual difference in treatment effectiveness or an artifact caused by missingness.

To gain initial insight into patterns underlying the missing data, we modeled whether the IMPS
rating was missing or not with a logistic regression model. Predictors in the model were a dummy-
coded variable drug (0 for placebo, 1 for medication), week (from 0 to 6) as a metric predictor, and a
dummy-coded variable main (1 for main measurement occasion, 0 otherwise) to indicate whether the
rating was at a main measurement occasion (i.e., at week 0, 1, 3, or 6). We also included an interaction
between drug and week, and between drug and main. The results of this analysis (Table 1) show a
positive effect of week (such that missingness increases over time), and a negative effect of main, with
(many) more missing values on weeks which are not the main measurement occasions. The positive
effect of week is a clear sign of attrition. A remaining question is whether this attrition is related to
the severity of the illness, in which case the ratings at week 6 would provide a biased view on the true
severity of illness after six weeks of treatment with a placebo or medicine. There are different methods
to address this, and many have been already applied to this particular dataset. For example, Hedeker
and Gibbons (1997) used a pattern mixture approach with linear mixed-effects models and showed
that improvement depends both on the type of drug and whether patients drop-out or not. Here, we
suggest an alternative approach, incorporating a model of missingness into a hidden Markov model,
thereby allowing missingness to depend on the latent state as well as observable features such as the
measurement week.

1.2. Hidden Markov models (HMM)
Let Y1∶T = (Y1, . . . ,YT) denote a time series of D-variate observations Yt = (Yt,1, . . . ,Yt,D), and let θ
denote a vector of model parameters. A HMM associates observations with a time series of hidden
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Table 1. Results of a logistic regression analysis modeling missingness as a function of drug,
week, and whether the week was a main measurement occasion or not

β̂ SE(β̂) z P(> ∣z∣)

(Intercept) 1.921 0.393 4.884 0.000

Drug 0.433 0.463 0.936 0.349

Week 0.496 0.068 7.353 0.000

Main −5.381 0.382 −14.103 0.000

Drug×week −0.112 0.081 −1.395 0.163

Drug×main −0.596 0.446 −1.335 0.182

(or latent) discrete states S1∶T = (S1, . . . ,ST). In a first-order HMM, it is assumed that each state St ∈
{1, . . . ,K} depends only on the immediately preceding state S1−t , and that, conditional upon the hidden
states, the observations Yt are independent:

p(St ∣S1∶t−1,θ) = p(St ∣St−1,θ), t = 2,3, . . . ,T (1)

p(Yt ∣S1∶t−1,Y1∶t−1,θ) = p(Yt ∣St,θ), t = 1,2, . . . ,T. (2)

With these conditional independencies, the joint distribution of observations and states can be fac-
tored as

p(Y1∶T,S1∶T ∣θ) = p(S1∣θ)p(Y1∣S1,θ)
T
∏
t=2

p(St ∣St−1,θ)p(Yt ∣St,θ), (3)

where p(S1∣θ) is the initial state distribution at time t = 1. The likelihood function (i.e., the marginal
distribution of the observations as a function of the model parameters) can then be written as

L(θ∣Y1∶T) = ∑
s1∶T∈ST

p(Y1∶T,S1∶T = s1∶T ∣θ), (4)

where the summation is over all possible state sequences (i.e., ST is the set of all possible sequences of
states). Rather than actually summing over all possible state sequences, the forward-backward algorithm
(Rabiner, 1989) is used to efficiently calculate this likelihood. For more information on HMMs, see also
Visser and Speekenbrink (2022).

1.3. Missing data
The canonical references for statistical inference with missing data are Rubin (1976) and Little and Rubin
(2014). Here we summarize the main ideas and results from those sources, as relevant to the present
topic. For ease of presentation, we consider the case of a single D-variate time-series Y1∶T,1∶D here.

Let Y1∶T,1∶D, the sequence of all D-variate response variables, be partitioned into a set of observed
values, Yobs ⊆ Y1∶T,1∶D, and a set of missing values, Ymiss ⊆ Y1∶T,1∶D, with Yobs ∪Ymiss = Y1∶T and Yobs ∩
Ymiss = ∅. Let M1∶T,1∶D be a matrix of indicator variables with values Mt,j = 1 if Yt,j ∈Ymiss (the observation
of dimension j at time t is missing), and Mt,j = 0 otherwise.

In addition to θ, the parameters of the hidden Markov model for the observed data Y, let ϕ denote
the parameter vector of the statistical model of missingness (i.e., the model of M1∶T,1∶D). We can define
the “full” likelihood function as

Lfull(θ,ϕ∣Yobs,M1∶T,1∶D) ∝ ∫ p(Yobs,Ymiss∣θ)p(M1∶T,1∶D∣Yobs,Ymiss,ϕ)dYmiss, (5)
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that is, as any function proportional to p(Yobs,M1∶T,1∶D∣θ,ϕ). Note that this is a marginal density, hence
the integration over all possible values of the missing data. In this general case, we allow missingness to
depend on the “complete” data Y1∶T,1∶D, so including the missing values Ymiss (for instance, it might be
the case that missing values occur when the true value of Yt,j is relatively high).

The likelihood for the observed data, ignoring the missing values, can be defined as

Lign(θ∣Yobs) ∝ p(Yobs∣θ), (6)

that is, as any function proportional to p(Yobs∣θ). An important question is when inference for θ based
on (5) and (6) give the same results. Note that both likelihood functions need only be known up to a
constant of proportionality as only relative likelihoods need to be known for maximizing the likelihood
or computing likelihood ratio’s. The question is thus when (6) is proportional to (5).

As shown by Rubin (1976), inference on θ based on (5) and (6) will give identical results when (1) θ
and ϕ are separable (i.e., the joint parameter space is the product of the parameter space for θ and ϕ),
and (2) the following holds:

p(M1∶T,1∶D∣Yobs,Ymiss,ϕ) = p(M1∶T,1∶D∣Yobs,ϕ) for all Ymiss,ϕ, (7)

i.e., whether data is missing does not depend on the missing values. In this case, data is said to be missing
at random (MAR), and the joint density can be factored as

p(Yobs,M1∶T,1∶D∣θ,ϕ) = p(M1∶T,1∶D∣Yobs,ϕ)×∫ p(Yobs,Ymiss∣θ)dYmiss

= p(M1∶T,1∶D∣Yobs,ϕ)×p(Yobs∣θ),

which indicates that, as a function of θ, Lfull(θ,ϕ∣Yobs,M1∶T,1∶D) ∝ Lign(θ∣Yobs). Hence, when data is
MAR, the missing data, and the mechanism leading to it, can be ignored in inference of θ. A special
case of MAR is data which is “missing completely at random” (MCAR), where

p(M1∶T,1∶D∣Yobs,Ymiss,ϕ) = p(M1∶T,1∶D∣ϕ). (8)

When the equality in (7) does not hold, data is said to be missing not at random (MNAR). In this
case, ignoring the missing data will generally lead to biased parameter estimates of θ. Valid inference of
θ requires working with the full likelihood function of (5), so explicitly accounting for missingness.

1.4. Missing data in HMM
A HMM by definition includes missing data, as the hidden states S are unobservable (i.e., always
missing). When there are no missing values for the D-dimensional response variable Y1∶T,1∶D, it
is straightforward to show that inference on θ in HMMs targets the correct likelihood. Let Y′t =
(Yt,1, . . . ,Yt,D,St) define a D+1-dimensional variable, for which Ymiss = S1∶T and Yobs = Y1∶T,1∶D. Then
p(Mt,d∣Yobs,Ymiss,ϕ,θ) = p(Mt,d) = 0, for all t = 1, . . . ,T, d = 1, . . . ,D, and p(Mt,D+1∣Yobs,Ymiss,ϕ,θ) =
p(Mt,D+1) = 1, for all t = 1, . . . ,T. Therefore, the missing states can be considered MCAR.

As the hidden states in a HMM are MCAR, we will ignore them in the missingness models in the
remainder, so that M1∶T,1∶D corresponds solely to the missing values for the observable variables. We will
now focus on the case where the observable response variables Y1∶T,1∶D do have missing values. The full
likelihood, which involves marginalizing over the hidden states, can be defined as

Lfull(θ,ϕ∣Yobs,M1∶T,1∶D) ∝ ∑
s1∶T∈ST

∫ p(Yobs,Ymiss,s1∶T ∣θ)p(M1∶T,1∶D∣Yobs,Ymiss,s1∶T,ϕ)dYmiss, (9)
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while the likelihood ignoring missing values can be defined as

Lign(θ∣Yobs) ∝ ∑
s1∶T∈ST

p(Yobs,s1∶T ∣θ). (10)

1.4.1. MAR
When the data is MAR (7), then

Lfull(θ,ϕ∣Yobs,M1∶T,1∶D) ∝ ∑
s1∶T∈ST

∫ p(Yobs,Ymiss,s1∶T ∣θ)p(M1∶T,1∶D∣Yobs,ϕ)dYmiss

= p(M1∶T,1∶D∣Yobs,ϕ)×
⎛
⎝ ∑

s1∶T∈ST
∫ p(Yobs,Ymiss,s1∶T ∣θ)dYmiss

⎞
⎠

(11)

and hence missingness is ignorable in inference of θ. Assuming that the D-variate responses are
conditionally independent:

p(Yt) = p(Yt,1, . . . ,Yt,D∣St,θ) =
D
∏
j=1

p(Yt,j∣St,θ) (12)

and defining

p∗(Yt ∣St,θ) =
D
∏
j=1

(IYt,j∈Yobs p(Yt,j∣St,θ)+ IYt,j∈Ymiss ∫ p(Yt,j∣St,θ)dYt,j)

=
D
∏
j=1

(IYt,j∈Yobs p(Yt,j∣St,θ)+ IYt,j∈Ymiss ×1), (13)

where the indicator variable Ix = 1 if condition x is true and 0 otherwise, we can write the part of the
full likelihood (11) relevant to inference on θ as

∫ p(Yobs,Ymiss,s1∶T ∣θ)dYmiss = p(S1∣θ)p∗(Y1∣S1,θ)
T
∏
t=2

p(St ∣St−1,θ)p∗(Yt ∣St,θ),

which shows that a principled way to deal with missing observations is to set p(Yt,j∣St,θ) = 1 for all
Yt,j ∈ Ymiss. Note that it is necessary to include time points with missing observations in this way to
allow the state probabilities to be computed properly. While this result is known (e.g., Zucchini et al.,
2017), we have not come across its derivation in the form above.

1.4.2. State-dependent missingness (MNAR)
If data is not MAR, there is some dependence between whether observations are missing or not,
and the true unobserved values. There are many forms this dependence can take, and modeling the
dependence accurately may require substantial knowledge of the domain to which the data applies.
Here, we take a pragmatic approach, and model this dependence via the hidden states. We assume M
and Y are conditionally independent, given the hidden states:

p(Mt,Yt ∣St,θ,ϕ) = p(Mt ∣St,ϕ)p(Yt ∣St,θ),

where Yt = (Yt,1, . . . ,Yt,D) and hence Mt = (Mt,1, . . . ,Mt,D) can be multivariate. Conditional indepen-
dence between responses and missingness is not an overly restrictive assumption, as the number of
hidden states can be chosen to allow for intricate patterns of (marginal) dependence between M and Y
at a single time point, as well as over time. For example, increased probability of missingness for high
values of Y can be captured through a state which is simultaneously associated with high values of Y and
a high probability of M = 1. A high probability of a missing observation at t+1after a high (observed)
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value of Yt can be captured with a state s associated with high values of Y, a state s′ ≠ s associated with
a high probability of M = 1, and a high transition probability P(St+1 = s′∣St = s) between these states.

Under the assumption that missingness depends solely on the hidden states, such that

p(M1∶T ∣Yobs,Ymiss,S1∶T,ϕ) = p(M1∶T ∣S1∶T,ϕ),

the full likelihood can be stated as

Lfull(θ,ϕ∣Yobs,M1∶T) ∝ ∑
s1∶T∈ST

∫ p(Yobs,Ymiss,s1∶T ∣θ)p(M1∶T ∣Yobs,Ymiss,s1∶T,ϕ)dYmiss

= ∑
s1∶T∈ST

p(M1∶T ∣s1∶T,ϕ)×∫ p(Yobs,Ymiss,s1∶T ∣θ)dYmiss

= ∑
s1∶T∈ST

p(M1∶T ∣s1∶T,ϕ)×p(Yobs,s1∶T ∣θ).

This shows that, although M does not directly depend on Ymiss, because both M and Y depend on
the state S, the role of the p(M∣S,ϕ) term is more than a scaling factor in the likelihood, and hence
missingness is not ignorable.

1.5. Overview
When data is MNAR and missingness is not ignorable, valid inference on θ requires including a
submodel for M in the overall model. That is, the HMM should be defined for both Y and M. The
objective of the present paper is to show the potential benefits of including a relatively simple model for
M in HMMs, by assuming missingness is state-dependent. We first provide results from a simulation
study. The simulations assess the accuracy of parameter estimates and state recovery in situations where
missingness is MAR or MNAR and dependent on the hidden state, in situations where the state-
conditional distributions of the observations are relatively well separated or more overlapping. We also
discuss a situation where missingness depends on the true value of Y, and one where missingness is
time-dependent (but not state-dependent). The latter is a situation where missingness is in fact MCAR,
and where a misspecified model which assumes missingness is state-dependent might lead to biased
results. Finally, we apply the models to the real data from a clinical trial comparing the effect of real and
placebo medication on the severity of schizophrenic symptoms.

2. Inhomogeneous HMM for multivariate longitudinal data with state-dependent missingness

In the remainder, we will consider HMMs with K states for longitudinal data consisting of sets
of time-series (e.g., time-series for different patients) which may differ in length. Let Y1∶N,1∶Ti =
(Y1,1∶T1,Y2,1∶T2, . . . ,YN,1∶Tn) denote such a set of N time-series Yi,1∶Ti = (Yi,1, . . . ,Yi,Ti), each of length
Ti. Whilst we will focus on univariate responses in the remainder, the results apply directly to D-variate
responses, Yi,t = (Yi,t,1, . . . ,Yi,t,D), as long as conditional independence (12) holds. We will allow state-
transitions to be inhomogeneous (i.e., time-variant) by including covariates xi,1∶Ti on the initial state
probabilities and state-transition probabilities. Here, we use multinomial logistic regressions:

p(Si,1 = j∣θpr,xi,1) =
exp(β(pr)

j xi,1)

∑K
k=1 exp(β(pr)

k xi,1)
,

and

p(Si,t+1 = k∣Si,t = j,θtr,xi,t) =
exp(β(tr)j,k xi,t)

∑K
l=1 exp(β(tr)j,l xi,t)

.
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Note that for identification, β(pr)
k and β(tr)j,k should be fixed to 0 for one state k ∈ (1, . . . ,K), and that

usually, xi,1∶Ti will include a constant term for the intercept.
We allow responses Yi,t to depend on hidden states Si,t and covariates xi,t . For continuous-valued

variates Yi,t , we can for example use linear regressions:

p(Yi,t ∣θobs,xi,t,St = j) = Normal(β(obs)
j xi,t,σj).

Finally, missingness Mi,t is allowed to depend on the hidden states and covariates. Here, we use logistic
regression

p(Mi,t = 1∣ϕ,xi,t,St = j) =
exp(β(mis)

j xi,t)

1+exp(β(mis)
j xi,t)

.

2.1. Estimation via expectation–maximization

Then the following, let θ = (θpr,θtr,θobs,ϕ) denote all the model parameters, with θpr = (β(pr)
1 , . . . ,β(pr)

K )
denoting the parameters for the initial state probabilities, θtr = (β(tr)1,1 , . . . ,β

(tr)
K,K) the parameters for

the state-transition probabilities, θobs = (β(obs)
1 , . . . ,β(obs)

K ,σ1, . . . ,σK) the parameters for the state-
conditional observation densities, and ϕ = (β(mis)

1 , . . . ,β(mis)
K ) the parameters for the state-conditional

missingness probabilities.
These parameters can be estimated through the expectation–maximization (EM) algorithm, which

in the context of HMM is also known as the Baum–Welch algorithm. The EM algorithm consists of
iteratively maximizing the expected joint log-likelihood

Q(θ,θ′) = E[logp(y1∶N,1∶T,m1∶N,1∶T,s1∶N,1∶T ∣θ)]

where the expectation is taken with respect to p(S1∶N,1∶T ∣y1∶N,1∶T,m1∶N,1∶T,θ′). Note that the expectation
is based on initial parameter values θ′, whilst the joint log likelihood is defined over parameter values θ.

The expected joint log-likelihood can be written as

Q(θ,θ′) =
N
∑
i=1

K
∑
j=1

γi,1(j) logp(Si,1 = j∣θpr,xi,1)

+
N
∑
i=1

Ti

∑
t=2

K
∑
j=1

K
∑
k=1

ξi,t−1(j,k) logp(Si,t = k∣Si,t−1 = j),θtr,xi,t−1)

+
N
∑
i=1

Ti

∑
t=1

K
∑
j=1

γi,1(j) logp(Mi,t = 1∣Si,t = j,xi,t,ϕ)

+
N
∑
i=1

Ti

∑
t=1

K
∑
j=1

γi,1(j) logp∗(yi,t ∣Si,t = j,xi,t,θobs) (14)

where

γi,1(j) def= p(Si,t = j∣mi,1∶Ti,yi,1∶Ti,xi,1∶Ti,ϕ,θ)

is the posterior probability of state Si,t and

ξi,t(j,k) def= p(Si,t+1 = k,Si,t = j∣mi,1∶Ti,yi,1∶Ti,xi,1∶Ti,ϕ,θtr),

is the joint posterior probability of states Si,t and Si,t+1. These probabilities can be efficiently computed
via the forward-backward algorithm (Rabiner, 1989). We define the forward-variable

αi,t(j) def= p(mi,1∶t,yi,1∶t,Si,t = j,θ′),
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which can be computed iteratively as

αi,1(j) = p(Si,1 = j∣θ′pr,xi,1)p(mi,1∣ϕ′,xi,1,Si,1 = j)p∗(yi,1∣xi,1,θ′obs,Si,1 = j) (15)

and for t > 1, as

αi,t(j) =
K
∑
l=1

αi,t−1(l)p(Si,t = j∣Si,t−1 = l,xi,t−1,θ′tr)p(mi,t ∣ϕ′,xi,t)p∗(yi,t ∣xi,t,θ′obs). (16)

We also define the backward-variable

βi,t(j) def= p(mi,(t+1)∶Ti,yi,(t+1)∶Ti ∣Si,t = j,xi,(t+1)∶Ti,θ
′
obs),

which is initialized at t = Ti as

βTi(j) = 1, j = 1, . . . ,K (17)

and then for each time t = Ti −1, . . . ,1 as

βi,t(j) =
K
∑
l=1

p(Si,t+1 = l∣Si,t = j,xi,t,θ′tr)

×p(mi,t+1∣Si,t+1 = l,ϕ′,xi,t+1)p∗(yi,t+1∣Si,t+1 = l,θ′obs,xi,t+1). (18)

Using the forward and backward variables, we can compute the posterior state probabilities as

γi,t(j) = αi,t(j)βi,t(j)
∑K

l=1 αi,t(l)βi,t(l)
(19)

and

ξi,t(j,k) = αi,t(j)p(Si,t+1 = k∣Si,t = j,θ′tr,xi,t)βi,t+1(k)
∑K

j=1∑K
k=1 αi,t(j)p(Si,t+1 = k∣Si,t = j,θ′tr,xi,t)βi,t+1(k)

. (20)

Note that the expected joint log-likelihood (14) is the sum of four weighted log-likelihoods, one
for each set of parameters θpr, θtr, θobs, and ϕ. Maximizing the expected joint log-likelihood therefore
consists of separately maximizing four weighted likelihoods. When the initial states, state transitions,
responses and missingness indicators are modeled with generalized linear models and multinomial
logistic regression models, as we have done here, we can then rely on the standard maximum likelihood
estimation procedures for these models (see McCullagh & Nelder, 1989), using the γi,1(j) and ξi,t(j,k)
values as case-weights (see also Visser & Speekenbrink, 2022).

The full EM algorithm can be specified as

1. Start with initial parameters θ′.
2. Do until convergence:

a. For i = 1, . . . ,N, t = 1, . . . ,Ti, j,k = 1, . . . ,K, compute γi,t(j) (19) and ξi,t(j,k) (20) via the
forward-backward recursions (15, 16, 17, 18).

b. Obtain new estimates

θ̂pr = argmax
θpr

N
∑
i=1

K
∑
j=1

γi,1(j) log(p(Si,1 = j∣θpr,xi,1)),

θ̂tr = argmax
θtr

N
∑
i=1

Ti

∑
t=2

K
∑
j=1

K
∑
k=1

ξi,t−1(j,k) logp(Si,t = k∣Si,t−1 = j),θtr,xi,t−1),

θ̂obs = argmax
θobs

N
∑
i=1

Ti

∑
t=1

K
∑
j=1

γi,1(j) logp∗(yi,t ∣Si,t = j,xi,t,θobs),
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and

ϕ̂ = argmax
θtr

N
∑
i=1

Ti

∑
t=1

K
∑
j=1

γi,1(j) logp(mi,t ∣Si,t = j,xi,t,ϕ).

c. If L(θ̂∣Y)−L(θ′∣Y)
L(θ′∣Y) < ε (e.g., ε = 1×10−8), assume convergence.

d. Set θ′ = (θ̂pr,θ̂tr,θ̂obs,ϕ̂).

The EM algorithm is guaranteed to converge to a local maximum of the likelihood. Assessing whether
the algorithm converged to the global maximum is not possible in general. To increase the chances to
obtain the global maximum likelihood parameters, the algorithm can be run many times, each time
using different starting values θ′. Starting values for θpr and θtr can be derived by assuming uniform
distributions for p(S1) and p(St,St−1), or sampling these from suitable Dirichlet distributions. Starting
values for θobs are less straightforward to choose in general, and arguably more important. One method
is to randomly sample state probabilities γi,t(j) from a suitable Dirichlet distribution, and then set θ′obs
to the maximum likelihood estimates as in step b. This usually provides valid starting values and is the
default option in depmixS4 (Visser & Speekenbrink, 2010).

2.2. Model selection, checking, and standard errors
An important consideration when using HMMs is the number of latent states K. This is generally
determined by estimating models with different values for K and then choosing the best one via
model selection criteria such as the Akaike information criterion (AIC; Akaike, 1998) and the Bayesian
information criterion (BIC; Schwarz, 1978). For present purposes, another consideration is choosing
between a MAR and MNAR model. As our MNAR model contains and additional missingness variable
M, the AIC and BIC measures cannot be used directly, as the models target different likelihoods (one
for the joint distribution of Y and M, and one for the distribution of just Y). A suitable alternative is to
fix the probability of missingness in the MNAR model to be identical over the states, effectively creating
a MAR model. As this MAR model is nested within the MNAR model, a general likelihood ratio test

−2log
L(θMNAR∣Y1∶N,1∶T,M1∶N,1∶T)
L(θMAR∣Y1∶N,1∶T,M1∶N,1∶T)

∼ χ2 (∣θMNAR∣− ∣θMAR∣)

may be used to determine whether the MNAR model outperforms the MAR model (∣θ∣ denotes the
number of free parameters in θ).

Another consideration is whether the distributional assumptions for the state-conditional distribu-
tions p(Yi,t ∣St) are reasonable. Zucchini et al. (2017) propose computing “pseudo-residuals” from the
cumulative probabilities

p(Yt ≤ yt ∣Y1∶(t−1),Y(t+1)∶T),

which are converted to the corresponding quantiles of a standard Normal distribution. If the model fits
the data, then these quantiles will follow a standard Normal distribution. They show that the cumulative
probability can be computed as a weighted sum

K
∑
j=1

wi,t,jp(Yi,t ≤ yi,t ∣Si,t = j)

with

wi,t,j ∝
⎧⎪⎪⎨⎪⎪⎩

p(Si,1 = j)βi,1(j) t = 1
∑K

k=1 αi,t−1(k)p(St+1 = j∣St = k)βi,t(j) t > 1

where the weights are normalized such that ∑j wi,t,j = 1.
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For inference on model parameters, standard errors and confidence intervals are of importance.
There are several methods to compute (approximate) standard errors for maximum likelihood param-
eter estimates of HMM (Visser et al., 2000). The standard approach for obtaining standard errors from
the Hessian matrix of second derivatives of the log-likelihood function is computationally tricky, as
discussed in Visser et al. (2000), although Lystig and Hughes (2002) provide an elegant solution to
overcome this computational challenge. Other methods include likelihood profiles and bootstrapping.
Here we use a finite differences approach to estimate the Hessian matrix, which in turn is used to
compute confidence intervals for the estimated parameters. Note that the method for finite differences
proposed in Visser et al. (2000) was updated in Visser and Speekenbrink (2022) and implemented
in depmixS4 (Visser & Speekenbrink, 2010). This updated finite difference method provides standard
error estimates that are as accurate as those provided by bootstrapping methods (which are much more
computationally expensive).

3. Simulation study

To assess the potential benefits of including a state-dependent missingness model in a HMM, we
conducted a simulation study, focusing on a three-state HMM with a univariate Normal distributed
response variable3. We simulated four scenario’s. In Simulation 1 and 2, the states are reasonably well-
separated with means μ1 = −1, μ2 = 0, μ3 = 1 and standard deviations (SD) σ1 = σ2 = σ3 = 1 (see Figure 3).
Note that there is still considerable overlap in the state-conditional response distributions, as would
be expected in many real applications of HMMs. In Simulation 1, missingness was state-dependent
(i.e., MNAR), with p(Mi,t = 1∣Si,t = 1) = .05, p(Mi,t = 1∣Si,t = 2) = .25, and p(Mi,t = 1∣Si,t = 3) = .5. In
Simulation 2, missingness was independent of the state (MAR), with p(Mi,t = 1∣Si,t = i) = p(Mi,t) = .25.
In Simulation 3 and 4 (Figure 3), the states were less well-separated, with means as for Simulation 1
and 2, but SD σi = 3 (see Figure 3). Here, the overlap of the state-conditional response distributions is
much higher than in Simulation 1 and 2, and identification of the hidden states will be more difficult.
In Simulation 3, missingness was state-dependent (MNAR) in the same manner as Simulation 1, while
in Simulation 4, missingness was state-independent (MAR) as for Simulation 2. In all simulations, the
initial state probabilities were π1 = p(Si,1 = 1) = .8, π2 = π3 = .1, and the state-transition matrix was

A =
⎡⎢⎢⎢⎢⎢⎣

.75 .125 .125
.125 .75 .125
.125 .125 .75

⎤⎥⎥⎥⎥⎥⎦
.

0.0

0.1

0.2

0.3

0.4

−6 −3 0 3 6

p(
Y

|S
)

Simulation 1 and 2

0.00

0.05

0.10

−10 −5 0 5 10

p(
Y

|S
)

Simulation 3 and 4

Figure 3. State-conditional response distributions in the simulation studies. In Simulation 1 and 2, states are reasonably well-

separated, although there is still considerable overlap of the distributions. In Simulation 3 and 4, states are less well-separated.

3All code for the simulations, and the analysis of the application, is available at https://osf.io/7td32/.
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In each simulation, we simulated a total of 1000 data sets, each consisting of N = 100 replications of
a time-series of length T = 50. We denote observations in such replicated time series as Yi,t , with i =
1, . . . ,N and t = 1, . . . ,T. Data was generated according to a 3-state hidden Markov model. For MAR
cases, the non-missing observations are distributed as

p(Yi,t ∣Si,t = j) = Normal(Yi,t ∣μj,σj). (21)

In the MNAR cases, the missingness variable M and the response variable Y were conditionally
independent given the hidden state:

p(Yi,t,Mi,t ∣Si,t = j) = Bernouilli(Mi,t ∣ϕj)×Normal(Yi,t ∣μj,σj). (22)

Data sets were simulated by first generating the hidden state sequences Si,1∶T according to the initial
state and transition probabilities. Then, the observations Yi,1∶T were sampled according to the state-
conditional distributions p(Yi,t ∣Si,t). Finally, random observations were set to missing values according
to the missingness distributions p(Mi,t ∣Si,t).

We fitted two 3-state HMM to each data-set. In the MAR models, observed responses were assumed
to be distributed according to (21), and in the MNAR models, the observed responses and missingness
indicators were assumed to be distributed according to (22). Parameters were estimated by maximum
likelihood, using the EM algorithm, as implemented in depmixS4 (Visser & Speekenbrink, 2010). To
speed up convergence, starting values were set to the true parameter values. Although such initialization
is obviously not possible in real applications, we are interested in the quality of parameter estimates at
the global maximum likelihood solution, and setting starting values to the true parameters makes it
more likely to arrive at the global maximum. In real applications, one would need to use a sufficient
number of randomly generated starting values to find the global maximum.

The results of Simulation 1 (Table 2) show that, when states are relatively well separated, both models
provide parameter estimates which are, on average, reasonably close to the true values. Both models have
the tendency to estimate the means as more dispersed, and the SD as slightly smaller, then they really
are. While wrongly assuming MAR may not lead to overly biased estimates, we see that the MAE for
the MNAR model is always smaller than that of the MAR model, reducing the estimation error to as
much as 58%. Over all parameters, the relative MAE of the models is 0.77 on average, which shows a
clear advantage of the MNAR model. As such, accounting for state-dependent missingness increases
the accuracy of the parameter estimates. We next consider recovery of the hidden states, by comparing
the true hidden state sequences to the maximum a posteriori (MAP) state sequences determined by the
Viterbi algorithm (see Rabiner, 1989; Visser & Speekenbrink, 2022). The MAR model recovers 53.13% of
the states, while the MNAR model recovers 62.86% of the states. The accuracy in recovering the hidden
states is thus higher in the model which correctly accounts for state-dependent missingness. Whilst
the performance of neither model may seem overly impressive, we should note that recovering the
hidden states is a non-trivial task when the state-conditional response distributions have considerable
overlap (see Figure 3) and states do not persist for long periods of time (here, the true self-transitions
probabilities are aii = .75, meaning that states have an average run-length of 4 consecutive time-points).
When ignoring time-dependencies and treating the observed data as coming from a bivariate mixture
distribution over Y and M, the maximum accuracy in classification would be 50.09% for this data. The
theoretical maximum classification accuracy for the hidden Markov model is more difficult to establish,
but simulations show that the MNAR model with the true parameters recovers 66.51% of the true states.
For the MAR model, the approximate maximum classification accuracy is 58.06%.

The results of Simulation 2 (Table 3) show that when data is in fact MAR, both models provide
roughly equally accurate parameter estimates. Whilst the MNAR model does not provide better
parameter estimates, including a model component for state-dependent missingness does not seem
to bias parameter estimates compared to the MAR model. As can be seen, the state-wise missingness
probabilities are, on average, close to the true values of .25. Over all parameters, the relative MAE of the
models is 1.003 on average, which shows the models perform equally well. In terms of recovering the
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Table 2. Results of Simulation 1 (MNAR, low variance)

MAR MNAR

Parameter True value Mean SD MAE Mean SD MAE rel. MAE

μ1 −1.000 −1.010 0.131 0.094 −1.017 0.097 0.072 0.767

μ2 0.000 0.015 0.277 0.223 0.014 0.228 0.180 0.807

μ3 1.000 1.113 0.286 0.231 1.053 0.252 0.186 0.803

σ1 1.000 0.998 0.051 0.033 0.995 0.034 0.026 0.785

σ2 1.000 0.972 0.111 0.079 0.979 0.085 0.064 0.809

σ3 1.000 0.959 0.104 0.077 0.979 0.085 0.061 0.801

π1 0.800 0.834 0.146 0.117 0.776 0.110 0.083 0.715

π2 0.100 0.118 0.152 0.111 0.131 0.130 0.105 0.944

π3 0.100 0.049 0.048 0.062 0.093 0.066 0.055 0.890

a11 0.750 0.774 0.080 0.064 0.743 0.055 0.039 0.613

a12 0.125 0.144 0.094 0.068 0.139 0.077 0.061 0.896

a13 0.125 0.082 0.055 0.057 0.118 0.054 0.044 0.765

a21 0.125 0.144 0.086 0.065 0.124 0.062 0.048 0.729

a22 0.750 0.759 0.116 0.087 0.754 0.096 0.070 0.812

a23 0.125 0.097 0.082 0.068 0.122 0.075 0.058 0.850

a31 0.125 0.146 0.085 0.068 0.118 0.050 0.039 0.579

a32 0.125 0.166 0.128 0.103 0.138 0.092 0.070 0.679

a33 0.750 0.688 0.111 0.090 0.744 0.076 0.056 0.623

p(M = 1∣S = 1) 0.050 – – – 0.048 0.021 0.017 –

p(M = 1∣S = 2) 0.250 – – – 0.247 0.073 0.057 –

p(M = 1∣S = 3) 0.500 – – – 0.507 0.058 0.040 –

Note: Values shown are the true value of each parameter, and the mean (mean), standard deviation (SD), and mean absolute error (MAE) of the
parameter estimates, for both the MAR and MNAR model. The value of “rel. MAE” is the ratio of the mean absolute error of the MNAR over the
MAR model.

hidden states, the MAR model recovers 55.6% of the states, while the MNAR model recovers 55.63% of
the states. The somewhat reduced recovery rate of the MNAR model compared to Simulation 1 is likely
due to the fact that here, missingness provides no information about the identity of the hidden state.
For comparison, the maximum classification accuracy is 42.91% for a mixture model, and approximately
60.45% for the HMM.

In Simulation 3 (Table 4) and 4 (Table 5) the states are less well-separated, making accurate parameter
estimation more difficult. Here, the tendency to estimate the means as more dispersed and the SD as
smaller than they are becomes more pronounced. For both models the estimation error in Simulation
3 (Table 4) is larger than for Simulation 1, but comparing the MAE for both models again shows the
substantial benefits of including a state-dependent missingness model. Over all parameters, the relative
MAE of the models is 0.658 on average, which shows the MNAR model clearly outperforms the MAR
model. In terms of recovering the hidden states, the MAR model recovers 34.97% of the states, whilst the
MNAR model recovers 45.27% of the states. As in Simulation 1, the MNAR model performs better in
state identification. For both models, performance is lower than in Simulation 1, reflecting the increased
difficulty due to increased overlap of the state-conditional response distributions (Figure 3). Indeed,
the performance of the MAR model is close to chance (random assignment of states would give an
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Table 3. Results of Simulation 2 (MAR, low variance)

MAR MNAR

Parameter True value Mean SD MAE Mean SD MAE rel. MAE

μ1 −1.000 −1.061 0.194 0.132 −1.062 0.200 0.134 1.014

μ2 0.000 −0.019 0.287 0.229 −0.022 0.288 0.230 1.005

μ3 1.000 1.048 0.213 0.158 1.038 0.213 0.157 0.991

σ1 1.000 0.978 0.067 0.047 0.978 0.070 0.047 1.000

σ2 1.000 0.969 0.105 0.079 0.969 0.107 0.081 1.021

σ3 1.000 0.981 0.070 0.050 0.982 0.071 0.049 0.993

π1 0.800 0.739 0.177 0.130 0.737 0.178 0.132 1.015

π2 0.100 0.169 0.187 0.144 0.171 0.187 0.145 1.012

π3 0.100 0.092 0.070 0.057 0.092 0.069 0.057 0.995

a11 0.750 0.727 0.102 0.064 0.726 0.102 0.065 1.006

a12 0.125 0.155 0.112 0.082 0.156 0.115 0.083 1.020

a13 0.125 0.118 0.066 0.051 0.118 0.062 0.050 0.975

a21 0.125 0.125 0.080 0.061 0.127 0.083 0.062 1.013

a22 0.750 0.751 0.112 0.084 0.749 0.116 0.086 1.025

a23 0.125 0.125 0.081 0.061 0.125 0.083 0.063 1.034

a31 0.125 0.112 0.063 0.051 0.112 0.062 0.049 0.973

a32 0.125 0.153 0.108 0.082 0.150 0.107 0.081 0.982

a33 0.750 0.735 0.096 0.067 0.738 0.095 0.066 0.984

p(M = 1∣S = 1) 0.250 – – – 0.250 0.046 0.027 –

p(M = 1∣S = 2) 0.250 – – – 0.248 0.056 0.038 –

p(M = 1∣S = 3) 0.250 – – – 0.247 0.046 0.028 –

Note: Values shown are the true value of each parameter, and the mean (mean), standard deviation (SD), and mean absolute error (MAE) of the
parameter estimates, for both the MAR and MNAR model. The value of “rel. MAE” is the ratio of the mean absolute error of the MNAR over the
MAR model.

expected accuracy of 33.33%). The maximum classification accuracy is 44.03% for a mixture model,
and approximately 54.04% for the MNAR and 41.42% for the MAR HMM.

When missingness is ignorable (Simulation 4), like in Simulation 2, inclusion of a state-dependent
missingness component in the HMM does not increase bias in parameter estimates. Over all parameters,
the relative MAE of the models is 0.987 on average, which shows the models perform roughly equally
well. The MAR model recovers 35.51% of the states, whilst the MNAR model recovers 35.5% of the
states. For comparison, the maximum accuracy is 36.64% for a mixture model, and 42.51% for the
HMM.

Taken together, these simulation results show that if missingness is state-dependent, there is a
substantial benefit to including a (relatively simple) model for missingness in the HMM. When
missingness is in fact ignorable, including a missingness model is superfluous, but does not bias the
results. Hence, there appears to be little risk associated with including a missingness submodel in the
HMM.

Four additional simulations were conducted to assess to what extent these results depend on the
persistence of states and the homogeneity of state transition probabilities over the states. In these
simulations, we used the relatively well-separated states of Simulations 1 and 2. In Simulation 5 and
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Table 4. Results of Simulation 3 (MNAR, high variance)

MAR MNAR

Parameter True value Mean SD MAE Mean SD MAE rel. MAE

μ1 −1.000 −1.663 0.932 0.761 −1.198 0.628 0.315 0.414

μ2 0.000 −0.314 0.484 0.461 −0.110 0.470 0.409 0.888

μ3 1.000 1.480 1.214 0.923 1.383 0.956 0.609 0.661

σ1 3.000 2.765 0.459 0.347 2.911 0.330 0.189 0.543

σ2 3.000 2.889 0.455 0.302 2.967 0.333 0.215 0.713

σ3 3.000 2.703 0.512 0.406 2.773 0.479 0.326 0.803

π1 0.800 0.546 0.362 0.355 0.657 0.281 0.217 0.611

π2 0.100 0.346 0.380 0.333 0.253 0.291 0.231 0.694

π3 0.100 0.108 0.174 0.129 0.090 0.091 0.077 0.601

a11 0.750 0.651 0.231 0.183 0.712 0.153 0.099 0.543

a12 0.125 0.190 0.215 0.160 0.144 0.145 0.105 0.660

a13 0.125 0.159 0.186 0.139 0.144 0.124 0.091 0.659

a21 0.125 0.106 0.172 0.124 0.106 0.108 0.085 0.687

a22 0.750 0.787 0.232 0.185 0.784 0.135 0.109 0.590

a23 0.125 0.107 0.158 0.115 0.110 0.105 0.085 0.742

a31 0.125 0.152 0.183 0.136 0.131 0.126 0.096 0.704

a32 0.125 0.166 0.199 0.143 0.145 0.141 0.105 0.738

a33 0.750 0.682 0.234 0.184 0.724 0.151 0.108 0.587

p(M = 1∣S = 1) 0.050 - - - 0.076 0.122 0.059 -

p(M = 1∣S = 2) 0.250 - - - 0.241 0.155 0.126 -

p(M = 1∣S = 3) 0.500 - - - 0.489 0.134 0.092 -

Note: Values shown are the true value of each parameter, and the mean (mean), standard deviation (SD), and mean absolute error (MAE) of the
parameter estimates, for both the MAR and MNAR model. The value of “rel. MAE” is the ratio of the mean absolute error of the MNAR over the
MAR model.

6, we changed the initial state probabilities to a uniform distribution π1 = p(Si,1 = 1) = π2 = π3 = 1/3 and
the state-transition matrix to

A =
⎡⎢⎢⎢⎢⎢⎣

.5 .25 .25
.25 .5 .25
.25 .25 .5

⎤⎥⎥⎥⎥⎥⎦
.

Thus, in these simulations, initial state identification may be more difficult, and the states are (even) less
persistent than in Simulations 1 and 2. Full results are provided in the Appendix. When data is MNAR
(Table A1), we again find a clear advantage of the MNAR model, with an average relative MAE of 0.886.
The MAR model recovers 44.38% of the states, while the MNAR model recovers 51.62% of the states.
When data is MAR (Table A2), both models perform roughly equally well, with an average relative MAE
of 0.971. The MAR model recovers 46.33% of the states, while the MNAR model recovers 46.34% of the
states. In Simulations 7 and 8, we used the same initial state probabilities as in Simulation 1 and 2, but
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Table 5. Results of Simulation 4 (MAR, high variance)

MAR MNAR

Parameter True value Mean SD MAE Mean SD MAE rel. MAE

μ1 −1.000 −1.650 1.002 0.801 −1.658 1.107 0.815 1.018

μ2 0.000 −0.171 0.539 0.432 −0.178 0.542 0.437 1.010

μ3 1.000 1.468 1.063 0.778 1.473 1.070 0.788 1.014

σ1 3.000 2.719 0.468 0.383 2.720 0.473 0.375 0.981

σ2 3.000 2.911 0.441 0.299 2.918 0.412 0.279 0.934

σ3 3.000 2.728 0.504 0.377 2.732 0.478 0.365 0.968

π1 0.800 0.528 0.345 0.352 0.522 0.338 0.357 1.012

π2 0.100 0.330 0.367 0.316 0.344 0.359 0.320 1.014

π3 0.100 0.141 0.199 0.149 0.134 0.192 0.142 0.951

a11 0.750 0.638 0.230 0.183 0.645 0.220 0.177 0.968

a12 0.125 0.188 0.212 0.155 0.182 0.211 0.155 0.998

a13 0.125 0.174 0.188 0.139 0.174 0.178 0.134 0.963

a21 0.125 0.111 0.166 0.121 0.103 0.157 0.119 0.984

a22 0.750 0.774 0.223 0.175 0.787 0.209 0.170 0.972

a23 0.125 0.114 0.152 0.111 0.110 0.139 0.110 0.986

a31 0.125 0.133 0.169 0.125 0.137 0.167 0.124 0.997

a32 0.125 0.167 0.193 0.138 0.162 0.186 0.139 1.007

a33 0.750 0.700 0.232 0.177 0.701 0.224 0.176 0.992

p(M = 1∣S = 1) 0.250 – – – 0.253 0.122 0.080 –

p(M = 1∣S = 2) 0.250 – – – 0.237 0.086 0.056 –

p(M = 1∣S = 3) 0.250 – – – 0.257 0.130 0.082 –

Note: Values shown are the true value of each parameter, and the mean (mean), standard deviation (SD), and mean absolute error (MAE) of the
parameter estimates, for both the MAR and MNAR model. The value of “rel. MAE” is the ratio of the mean absolute error of the MNAR over the
MAR model.

changed the state-transition matrix to

A =
⎡⎢⎢⎢⎢⎢⎣

.8 .15 .05
.0375 .85 .1125
.025 .075 .9

⎤⎥⎥⎥⎥⎥⎦
.

As such, the states persist longer than in Simulation 1 and 2, and persistence is furthermore dependent
on the state. When data is MNAR (Table A3), we again find a clear advantage of the MNAR model, with
an average relative MAE of 0.727. The MAR model recovers 64.52% of the states, while the MNAR model
recovers 73.56% of the states. When data is MAR (Table A4), both models perform roughly equally well,
with an average relative MAE of 1.003. The MAR model recovers 68.09% of the states, while the MNAR
model recovers 68.03% of the states.

In a further simulation, we consider a more traditional case of MNAR data, where missingness
depends on the underlying value of the response variable. More specifically, we model the probability
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Table 6. Results of Simulation 9 (MNAR, related to true value)

MAR MNAR

Parameter True value Mean SD MAE Mean SD MAE rel. MAE

μ1 −1.000 −1.101 0.171 0.120 −1.115 0.130 0.123 1.026

μ2 0.000 −0.256 0.247 0.281 −0.245 0.210 0.265 0.944

μ3 1.000 0.538 0.224 0.473 0.506 0.192 0.499 1.054

σ1 1.000 0.965 0.051 0.044 0.957 0.043 0.047 1.069

σ2 1.000 0.807 0.090 0.193 0.804 0.071 0.196 1.014

σ3 1.000 0.681 0.113 0.321 0.700 0.102 0.302 0.939

π1 0.800 0.836 0.166 0.134 0.777 0.144 0.103 0.770

π2 0.100 0.126 0.169 0.122 0.141 0.155 0.118 0.968

π3 0.100 0.038 0.049 0.072 0.082 0.064 0.055 0.764

a11 0.750 0.760 0.103 0.074 0.728 0.078 0.052 0.708

a12 0.125 0.174 0.107 0.083 0.166 0.089 0.072 0.876

a13 0.125 0.067 0.059 0.073 0.106 0.061 0.051 0.702

a21 0.125 0.178 0.109 0.089 0.156 0.079 0.062 0.695

a22 0.750 0.718 0.147 0.105 0.716 0.115 0.086 0.820

a23 0.125 0.105 0.099 0.079 0.128 0.087 0.066 0.830

a31 0.125 0.140 0.117 0.086 0.119 0.074 0.053 0.619

a32 0.125 0.209 0.167 0.142 0.167 0.114 0.092 0.645

a33 0.750 0.651 0.142 0.120 0.715 0.098 0.071 0.593

p(M = 1∣S = 1) 0.068 - - - 0.070 0.040 0.022 -

p(M = 1∣S = 2) 0.225 - - - 0.235 0.090 0.071 -

p(M = 1∣S = 3) 0.500 - - - 0.525 0.075 0.053 -

Note: Values shown are the true value of each parameter, and the mean (mean), standard deviation (SD), and mean absolute error (MAE) of the
parameter estimates, for both the MAR and MNAR model. The value of “rel. MAE” is the ratio of the mean absolute error of the MNAR over the
MAR model.

of missingness as a function of the true value of the response Yi,t via a logistic regression:

p(Mi,t = 1∣Yi,t) =
1

1+exp(−1×(−2+2×Yi,t))
,

keeping the other parameters the same as in Simulation 1. Whilst missingness does not directly depend
on the hidden state, because the true response values do depend on the states, the probability of
missingness differs between the states, with approximately 6.8%, 22.5%, and 50% expected missing
values in states 1, 2, and 3 respectively. As such, although the relation between the underlying true value
of the response and missingness is not part of the MNAR model, we would expect the model to indicate
state-dependent missingness. The results of this simulation (Table 6) show a clear bias in estimating the
state-dependent means and SD: because the higher the value of the response, the higher the probability
that value is missing, both state dependent means and SD are underestimated, particularly for state 3
where the probability of missingness is highest. Whilst bias in parameter estimates is evident in both
the MAR and MNAR model, the latter performs better on average: over all parameters, the relative
MAE of the models is 0.835 on average, which shows a clear advantage of the MNAR model. State
recovery seems relatively unaffected by the bias in parameter estimates. The MAR model recovers 49.6%
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of the states, and the MNAR model recovers 59.15% of the states. These results are close to those of
Simulation 1. Thus, for this more traditional form of MNAR data, the (misspecified) MNAR model
again outperforms the MAR model, and state recovery seems mostly unaffected by the unavoidable bias
in parameter estimates.

In a final simulation, we assessed the performance of the models when missingness is time-
dependent, rather than state-dependent. Attrition is common in longitudinal studies, meaning that the
probability of missingness often increases with time. In this simulation, the probability of missingness
as a function of time t was modeled through a logistic regression model:

p(Mi,t = 1) = 1
1+exp(−(0.125× t−5)) . (23)

Here, the probability of missing data is very small (0.008) at time 1, but increases substantially to
(0.777) at time 50. The other parameters were the same as in Simulation 1 and 2. In a model that
specifies missingness as state-dependent, but not time-dependent, this could potentially result in biased
parameter estimates. For instance, the increased probability of missingness over time may be accounted
for by estimating states to have a different probability of missingness, and estimating prior and transition
probabilities to allow states with a higher probability of missingness to occur more frequently later in
time. In addition to the two HMMs estimated before, we also estimated a HMM with a state- and time-
dependent model for missingness:

p(Mi,t = 1∣Si,t = j) = 1
1+exp(−(β0,j +βtime,j × t)) . (24)

This model should be able to capture the true pattern of missingness, whilst the MNAR model which
only includes state-dependent missingness would not.

The results (Table 7) show that, compared to the MAR model, the MNAR model which misspecifies
missingness as state-dependent is inferior, resulting in more biased parameter estimates. Over all
parameters, the relative MAE of these two models is 1.353 on average, indicating the MAR model
outperforms the MNAR (state) model. To account for the increase in missing values over time, the
MNAR (state) model estimates the probability of missingness as highest for state 2, which is estimated
to have a mean of close to 0, but an increased SD to incorporate observations from the other two states.
To make state 2 more prevalent over time, transition probabilities to state 2 are relatively low from
state 1 and 3 (parameters a12 and a32 respectively), whilst self-transitions (a22) are close to 1 (meaning
that once in state 2, the hidden state sequence is very likely to remain in that state). The prevalence
of state 2 is thus increasing over time, and as this state has a higher probability of missingness, so is
the prevalence of missing values. The MNAR (time) model, which allows missingness to depend on
both the hidden states and time, performs only slightly worse than the MAR model, with an average
relative MAE over all parameters of this model compared to the MAR of 1.042. However, the MNAR
(time) model is able to capture the pattern of attrition (increased missing data over time), whilst
the MAR model is not. As such, the MNAR (time) model may be deemed preferable to the MAR
model, insofar as one is interested in more than modeling the responses Y. In terms of recovering the
hidden states, the MAR model recovers 55.67% of the states, and the MNAR (time) model recovers
55.42% of the states. The misspecified MNAR (state) model recovers 50% of the states. The maximum
classification accuracy for this data is 42.95% for a mixture model, and approximately 59.91% for the
HMM.

This final simulation shows that when modeling patterns of missing data in HMMs, care should
be taken in how this is done. An increase in missing data over time could be due to an underlying
higher prevalence of states which result in more missing data, and/or a state-independent increase in
missingness over time. In applications where the true reason and pattern of missingness is unknown, it
is then advisable to start by allowing for both state- and time-dependent missing data, selecting simpler
options when this is warranted by the data.
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Table 7. Results of Simulation 10 (time-dependent missingness, low variance)

MAR MNAR (state) MNAR (time)

Parameter True value Mean SD MAE Mean SD MAE mean SD MAE rel. MAE 1 rel. MAE 2

μ1 −1.000 −1.038 0.173 0.116 −0.825 0.076 0.176 −1.031 0.175 0.120 1.520 1.037

μ2 0.000 −0.015 0.272 0.215 −0.040 0.067 0.062 −0.020 0.294 0.233 0.287 1.086

μ3 1.000 1.033 0.195 0.143 0.757 0.084 0.243 1.029 0.207 0.153 1.698 1.068

σ1 1.000 0.985 0.059 0.042 1.026 0.035 0.035 0.987 0.058 0.042 0.832 0.997

σ2 1.000 0.967 0.111 0.082 1.278 0.033 0.278 0.966 0.112 0.083 3.370 1.010

σ3 1.000 0.981 0.072 0.049 1.037 0.037 0.043 0.984 0.067 0.048 0.884 0.990

π1 0.800 0.758 0.151 0.110 0.894 0.066 0.100 0.760 0.152 0.109 0.913 0.993

π2 0.100 0.150 0.161 0.123 0.001 0.032 0.101 0.148 0.162 0.122 0.819 0.990

π3 0.100 0.092 0.061 0.050 0.105 0.059 0.047 0.092 0.062 0.051 0.943 1.023

a11 0.750 0.734 0.087 0.056 0.794 0.025 0.045 0.734 0.090 0.059 0.806 1.050

a12 0.125 0.146 0.099 0.073 0.021 0.008 0.104 0.146 0.106 0.075 1.438 1.036

a13 0.125 0.119 0.058 0.047 0.185 0.024 0.060 0.119 0.059 0.048 1.269 1.021

a21 0.125 0.128 0.088 0.063 0.000 0.001 0.125 0.131 0.097 0.069 1.983 1.091

a22 0.750 0.747 0.114 0.083 1.000 0.001 0.250 0.738 0.131 0.092 2.994 1.104

a23 0.125 0.125 0.082 0.062 0.000 0.000 0.125 0.130 0.091 0.067 2.031 1.082

a31 0.125 0.116 0.062 0.048 0.150 0.027 0.030 0.115 0.063 0.049 0.624 1.032

a32 0.125 0.143 0.101 0.076 0.045 0.008 0.080 0.146 0.106 0.081 1.052 1.056

a33 0.750 0.742 0.087 0.062 0.805 0.025 0.056 0.740 0.093 0.068 0.899 1.095

p(M = 1∣S = 1) – – – – 0.040 0.015 – – – – – –

p(M = 1∣S = 2) – – – – 0.552 0.024 – – – – – –

p(M = 1∣S = 3) – – – – 0.067 0.022 – – – – – –

(Continued)
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Table 7. (Continued)

MAR MNAR (state) MNAR (time)

Parameter True value Mean SD MAE Mean SD MAE mean SD MAE rel. MAE 1 rel. MAE 2

β0,1 −5.000 – – – – – – −6.149 25.490 1.497 – –

β0,2 −5.000 – – – – – – −7.153 40.582 2.739 – –

β0,3 −5.000 – – – – – – −6.472 38.998 1.861 – –

βtime,1 0.125 – – – – – – 0.154 0.605 0.039 – –

βtime,2 0.125 – – – – – – 0.184 1.102 0.075 – –

βtime,3 0.125 – – – – – – 0.188 1.815 0.074 – –

Note: Values shown are the true value of each parameter, and the mean (mean), standard deviation (SD), and mean absolute error (MAE) of the parameter estimates, for the MAR, MNAR (state), and MNAR (time) model.
The value of “rel. MAE 1” is the ratio of the mean absolute error of the MNAR (state) over the MAR model, and the value of “rel. MAE 2” is the ratio of the mean absolute error of the MNAR (time) over the MAR model.
Note that the SDs of β0,j and βtime,j are relatively high. Whilst the estimates are generally accurate, there are rare outlying estimates which inflate these SDs.
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4. Application to the National Institute of Mental Health Schizophrenia Collaborative Study

In applying HMMs to the National Institute of Mental Health Schizophrenia Collaborative Study, we
assume the severity of schizophrenia is characterized by abrupt – rather than continuous—changes. We
fitted HMMs in which we either assumed ratings are MAR, or assume ratings are MNAR and allow
missingness to be both state- and time-dependent. For each type of model (MAR or MNAR), we fit
versions with 2, 3, 4, or 5 states. Both types of model assume imps79, the IMPS Item 79 ratings, follow
a Normal distribution, with a state-dependent mean and SD. No additional covariates were included
on these means, as the states are intended to capture all the important determinants of illness severity.
To model effects of drug, we allow transitions between states, as well as the initial state, to depend on
a dummy-coded covariate drug (1 for medication, 0 for placebo). Whilst the initial measurement at
week 0 was made before administering the drug, we allow the initial state at week 0 to depend on drug
in order to account for any potential pre-existing differences between the conditions. In the MNAR
models, the missingness variable is modeled with a logistic regression, using week (between 0 and 5)
and the dummy-coded main variable (1 for main measurement occasion, 0 for the other occasions) as
predictors, as these were found to be important predictors in the (state-independent) logistic regression
analysis reported earlier (Table 1). All models were estimated by maximum likelihood using the EM
algorithm implemented in depmixS4 (Visser & Speekenbrink, 2010). Table 8 contains the goodness-of-
fit statistics for all the fitted models.

For both the MAR and MNAR models, the BIC indicates a three-state model fits best, whilst the
AIC indicates a five-state model (or higher) fits best. Favouring simplicity, we follow the BIC scores
here, and focus on the three-state models. Considering the absolute fit to the data, the pseudo-residuals
of the three-state MAR and MNAR models (Figure 4) are similar. Whilst there are to-be-expected
deviations due to the mostly discrete nature of the ratings, the distribution of the pseudo-residuals is
close to standard Normal, indicating a satisfactory fit to the data. As such, there is no reason to doubt
the assumption that the IMPS ratings follow a state-conditional Normal distribution.

We first consider the parameter estimates of the MAR model. The estimated means and SD for the
severity of symptoms are

μ = [2.315,4.339,5.7] σ = [0.821,0.619,0.567].

Hence, the states are ordered, with state 1 being the least severe, and state 3 the most severe. The prior
probabilities of the states, for treatment with placebo and medication respectively, are

πplacebo = [0,0.333,0.667] πmedication = [0.005,0.307,0.689],

Table 8. Modeling results for the MAR and MNAR HMM with 2-5 latent states

Model #States Log likelihood #par AIC BIC

MAR 2 −2422.675 16 4865.350 4919.146

3 −2266.603 30 4577.206 4695.558

4 −2225.871 48 4527.742 4732.168

5 −2182.390 70 4480.779 4792.798

MNAR 2 −3074.628 22 6181.256 6267.330

3 −2889.040 39 5840.079 6006.848

4 −2841.111 60 5782.222 6051.203

5 −2800.336 85 5746.671 6139.385

Note: Note that the likelihood and hence the AIC and BIC values cannot be compared between the MAR and
MNAR models, as the latter are based on the additional missingness variable.
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Figure 4. Histograms and QQ plots of the pseudo-residuals for the MAR and MNAR model.

and the transition probability matrices (with initial states in rows and subsequent states in columns) are

Aplacebo =
⎡⎢⎢⎢⎢⎢⎣

0.963 0.005 0.032
0.118 0.878 0.004
0.027 0.046 0.927

⎤⎥⎥⎥⎥⎥⎦
Amedication =

⎡⎢⎢⎢⎢⎢⎣

1 0 0
0.231 0.764 0.005
0.073 0.307 0.62

⎤⎥⎥⎥⎥⎥⎦
.

As expected, the initial state probabilities show little difference between the treatments (as the initial
measurement was conducted before treatment commenced), but the transition probabilities indicate
that for those who received medication, transitions to less severe states are generally more likely,
indicating effectiveness of the drugs. This is particularly marked for the most severe state, where the
probability of remaining in that state is 0.927 with placebo, but 0.62 with medication. Also note the
difference between the transition probabilities for the least severe state: when administered medication,
the probability of remaining in the least severe state equals approximately 1, whereas that is not the case
for the placebo group.

We next consider the three-state MNAR model. The means and SD for the severity of symptoms are

μ = [2.325,4.424,5.757] σ = [0.833,0.669,0.547]
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showing the same ordering of states in terms of severity. The prior probabilities for placebo and
medication conditions are

πplacebo = [0,0.394,0.606] πmedication = [0.004,0.349,0.647],

and the transition probability matrices are

Aplacebo =
⎡⎢⎢⎢⎢⎢⎣

0.93 0.005 0.065
0.123 0.872 0.005
0.026 0.031 0.942

⎤⎥⎥⎥⎥⎥⎦
Amedication =

⎡⎢⎢⎢⎢⎢⎣

1 0 0
0.238 0.761 0.001
0.073 0.331 0.596

⎤⎥⎥⎥⎥⎥⎦
.

These estimates are close to those of the MAR model, indicating little initial difference between the
conditions, but effectiveness of the drugs reflected in the transition probabilities, which are higher
toward the less severe states in the medication compared to the placebo condition.

Results of the state-dependent models for missingness are provided in Table 9. For all three states,
the confidence interval for the effect of main excludes 0, indicating a significantly lower proportion
of missing ratings at the main measurement occasions. In state 1 and 3, the confidence interval for the
effect of week also excludes 0, indicating a higher rate of missing ratings over time, possibly due to
attrition. For state 2, the effect of week is not significant. Figure 5 depicts the predicted probability of
missing ratings for each state and week. This shows that in state 2, the chance of missing data on the main
measurement occasions is small at p(Mi,t ∣Si,t = 2) = 0.003, while it is high at p(Mi,t ∣Si,t = 2) = 0.997 on
the other weeks. In the other states, the probabilities are less extreme, with missing (and non-missing)
data occurring on both the main measurement weeks as well as the other weeks. In the final week 6, those
in the most severe state 3 are the most likely to have missing data with p(Mi,6∣Si,6 = 3) = 0.585. For those
in the least severe state 1, the probability of missingness in week 6 is also substantial at p(Mi,6∣Si,6 = 1) =
0.272.

The intercepts for the state-dependent missingness model are also worth considering, especially
in interaction with the time-dependent effects. The probability of missingness differs between the
states, such that the more extreme states have more missingness. The middle state with medium severe
symptoms shows a particular missingness pattern where all the main measurements are almost certainly
present whereas the non-main measurements are all missing (see also Figure 6). Both in the least
and most severe states, week and main have significant effects. The pattern of correlation between
missingness and severity is however complex. In the least severe state, missingness is relatively high at
the start and increases only minimally during the study’s 6 weeks. In the most severe state, this is very

Table 9. Parameter estimates of the state dependent logistic regression models for missing-

ness, with lower and upper reflecting the lower and upper bounds of the approximate 95%

confidence intervals

state parameter estimate lower upper

1 (Intercept) 2.634 1.996 3.273

week 0.149 0.027 0.270

main −4.511 −5.037 −3.984

2 (Intercept) 7.976 0.971 14.980

week −0.510 −2.050 1.030

main −13.011 −20.222 −5.800

3 (Intercept) 1.107 0.305 1.909

week 0.711 0.537 0.884

main −5.028 −5.831 −4.225
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Figure 5. Predicted probability of missing IMPS Item 79 ratings by week for each state in the three-state MNAR hidden Markov model.

different: early on the probability of missingness is very low but then steeply increases such that by week
6 the probability of missingness is p(Mi,6∣Si,6 = 3) = 0.585.

Disregarding the modeling of missingness, the parameters of the MAR and MNAR model seem
reasonably close. This could be an indication that missingness is independent of the hidden states and
data are possibly MAR. As discussed previously, the likelihood of the MAR is not directly comparable
to that of the MNAR model, as the latter is defined over two variables (the imps79 rating and the
binary missing variable), while the former involves just a single variable (imps79). We therefore
compare the MNAR model to a constrained version where the parameters of the missingness model
are forced to be identical over the states. Unlike the MAR model, this restricted version of the MNAR
model accounts for patterns of missingness, allowing these to depend on week and main, but crucially
not on the hidden state. A likelihood ratio test indicates that this restricted model fits significantly less
well, χ2(6) = 337.66 p < .001. Hence, there is evidence that the MNAR model is preferable to the MAR
model and that missingness is indeed state-dependent.

Whilst the MAR and MNAR model provide roughly equivalent parameters for the severity ratings
in the three states, when comparing the MAP state classifications by the Viterbi algorithm (Figure 6),
we see that state classifications for the MAR model tend toward the more severe states. According to
the MNAR model, during the main measurement occasions, missing values are relatively likely in the
least severe state 1. Hence, those with missing values are more likely to be assigned to the least severe
state. This is in line with the analysis of Hedeker and Gibbons (1997), who found evidence that dropouts
in the medication condition showed more improvement in their symptoms before dropping out than
those participants who completed the study.

It is worthwhile to note that the MAP states are also determined for time points with missing data,
as the transition probabilities make certain states more probable than others, even when there is no
direct measurement available. This provides a potentially meaningful basis to impute missing values
with e.g., the state-conditional mean. Another option is to impute with an expected rating computed as
a weighted sum of all the state-conditional means, weighted by the posterior probability of the states. As
imputation is not the focus of this study, we leave the usefulness of such approaches to be investigated
in future work.

5. Discussion

Previous work on missing data in HMMs has mostly focussed on cases where missing values are
assumed to be MAR. Here, we addressed situations where data is MNAR, and missingness depends
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Figure 6. Proportions of MAP state assignments over weeks for the medication and placebo groups, according to the MAR and MNAR

model.

on the hidden states. Simulations showed that including a submodel for state-dependent missingness
in a HMM is beneficial when missingness is indeed state-dependent, whilst relatively harmless when
data is MAR. However, when the form of state-dependent missingness is misspecified (e.g., the effect
of measurable covariates on missingness is ignored), results may be biased. In practice, it is therefore
advisable to consider the potential effect of covariates in the state-dependent missingness models. A
reasonable strategy is to first model patterns of missingness through e.g., logistic regression, and then
include important predictors from this analysis into the state-dependent missingness models. Applying
this strategy to a real example about severity of schizophrenia in a clinical trial with substantial missing
data, we showed that assuming data is MAR may lead to possible misclassification of patients to states
(toward more severe states in this example).

The application showed a complex pattern of interaction between severity of symptoms and proba-
bility of missingness. For patients with the most severe symptoms the initial probability of missingness is
low whereas it steeply increases over the course of the study. This could be the result of two factors: first,
patients with severe symptoms have stronger motivation to participate and hence to provide data at the
outset of the study. Secondly, when (serious) symptoms persevere throughout the study, the motivation
may drop quickly and this is evidenced by a high drop-out rate at the final measurement occasion of
59%. This pattern is different for patients in the least severe symptom state: their initial probability
of missing data starts at moderate levels, and slowly increases during the study. It may be that their
motivation to participate declines somewhat and drop-out hence increases to 27% toward the end of
the study. Here motivation could be interpreted broadly as any circumstance that prevents the patients
from providing data for the study. Rather than merely internal, motivational factors, these could also be
illness related factors that prevent the patient from providing data. These results provide interesting
directions for future studies on the intricate relationship between patient factors, missing data and
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treatment effectiveness. Interestingly, the group of patients with medium severity of symptoms has the
least drop-out and missingness throughout the study. This group apparently has a strong motivation to
participate; they could expect to gain much from treatment, whilst their symptoms are not so severe
that they are prevented from participating in the measurements. Importantly, these types of patterns
of interaction between missingness and severity are only revealed by studying these data using HMMs
rather than linear models.

Whilst subtle, the MAR and MNAR models showed interesting and potentially clinically meaningful
differences. Although the ground truth is unavailable in such real applications, model comparison
can be used to justify a state-dependent missingness model. Using flexible analysis tools such as the
depmixS4 package (Visser & Speekenbrink, 2010) makes specifying, estimating, and comparing HMM
with missing data specifications straightforward. And, as was shown in the simulations studies, even if
data is MAR, the MNAR model performs as well as the MAR model. There is then little reason to ignore
potentially non-ignorable patterns of missing data in hidden Markov modeling.

Recently, Pandolfi et al. (2023) proposed a different method to deal with MNAR data in HMMs.4
They developed a HMM for multivariate Normal data, where intermittent missing data is assumed
MAR, whilst allowing missing data due to dropout to depend on the hidden state at the previous
time point via an observed and absorbing “dropout state”. In applications where it is important to
distinguish between intermittent missingness and dropout, it could be of interest to combine their
method with ours, allowing intermittent missingness to be MNAR and state-dependent via a state-
dependent missingness model (as done here), and including an absorbing dropout state to distinguish
MNAR dropout from intermittent MNAR data.

Another approach to dealing with non-ignorable missingness (MNAR) is the pattern-mixture
approach of Little (1993, 1994). The main idea of this approach is to group units of observations
(e.g., patients) by the pattern of missing data, and allowing the parameters of a statistical model for
the observations Yi,1∶T to dependent on the missingness pattern Mi,1∶T . There are certain similarities
between this approach and modeling missingness as state-dependent. Rather than conditionalizing on
a pattern of missing values, a hidden Markov model conditionalizes on a pattern (sequence) of hidden
states, si,1∶T , and the marginal distribution of the observations is effectively a multivariate mixture

p(Yi,1∶T ∣θ) = ∑
si,1∶T∈ST

∑
mi,1∶T∈MT

p(Yi,1∶T ∣mi,1∶T,si,1∶T,θ)p(mi,1∶T ∣si,1∶T,θ)p(si,1∶T ∣θ) (25)

(note that θ here includes all parameters, so also ϕ). A pattern-mixture model would instead propose

p(Yi,1∶T ∣θ) = ∑
mi,1∶T∈MT

p(Yi,1∶T ∣mi,1∶T,θ)p(mi,1∶T ∣θ). (26)

Trivially, if we set the number of hidden states to K = 1, both models are the same. Another trivial
equivalence is via a one-to-one mapping between mi,1∶T and si,1∶T , by e.g., setting K = 2, assuming
the Markov process is of order T, and fixing p(Mi,t = 0∣Si,t = 1) = 1 and p(Mi,t = 1∣Si,t = 2) = 1. More
interesting is to investigate cases where the procedures are similar, but not necessarily equivalent. The
general pattern-mixture model is often underidentified (Little, 1993). For univariate time-series of
length T, there are 2T possible missing data patterns. Without further restrictions, estimating the mean
and covariance matrices separately for each pattern of missing data is not possible, due to the structural
missing data in those patterns. The state-dependent MNAR hidden Markov model is identifiable insofar
as the HMM for the observed variable Y is identifiable. It is convenient, but not necessary, to assume
a first-order Markov process. Higher-order Markov processes may allow the model to capture complex
patterns of missingness. Another option is to use the missingness indicator Mi,t as a covariate on initial
and transition probabilities, rather than a dependent variable. We leave investigation of such alternative
models to future work.

4We were made aware of this paper, which appeared after the research reported here was completed, by an anonymous
reviewer.
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Appendix

Table A1. Results of Simulation 5 (MNAR, low variance)

MAR MNAR

Parameter True value Mean SD MAE mean SD MAE rel. MAE

μ1 −1.000 −1.129 0.332 0.247 −1.029 0.286 0.197 0.797

μ2 0.000 −0.132 0.388 0.332 −0.010 0.378 0.308 0.928

μ3 1.000 0.976 0.423 0.320 1.073 0.447 0.326 1.020

σ1 1.000 0.953 0.120 0.087 0.979 0.114 0.072 0.833

σ2 1.000 0.939 0.209 0.167 0.957 0.212 0.160 0.958

σ3 1.000 0.972 0.138 0.100 0.946 0.151 0.111 1.114

π1 0.333 0.355 0.220 0.185 0.324 0.171 0.138 0.747

π2 0.333 0.376 0.273 0.230 0.361 0.252 0.209 0.910

π3 0.333 0.269 0.189 0.166 0.315 0.193 0.160 0.969

a11 0.500 0.524 0.189 0.152 0.517 0.144 0.110 0.728

a12 0.250 0.268 0.199 0.159 0.252 0.180 0.145 0.914

a13 0.250 0.208 0.156 0.130 0.231 0.141 0.115 0.882

a21 0.250 0.263 0.197 0.157 0.225 0.156 0.124 0.793

a22 0.500 0.526 0.244 0.202 0.530 0.213 0.172 0.856

a23 0.250 0.211 0.182 0.149 0.244 0.178 0.143 0.957

a31 0.250 0.270 0.187 0.148 0.242 0.149 0.118 0.797

a32 0.250 0.277 0.220 0.178 0.259 0.195 0.157 0.880

a33 0.500 0.453 0.184 0.148 0.499 0.165 0.128 0.861

p(M = 1∣S = 1) 0.050 – – – 0.071 0.098 0.059 –

p(M = 1∣S = 2) 0.250 – – – 0.257 0.154 0.122 –

p(M = 1∣S = 3) 0.500 – – – 0.492 0.138 0.098 –

Note: Values shown are the true value of each parameter, and the mean (mean), standard deviation (SD), and mean absolute error (MAE) of the
parameter estimates, for both the MAR and MNAR model. The value of “rel. MAE” is the ratio of the mean absolute error of the MNAR over the
MAR model.
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Table A2. Results of Simulation 6 (MAR, low variance)

MAR MNAR

Parameter True value Mean SD MAE Mean SD MAE rel. MAE

μ1 −1.000 −1.090 0.388 0.278 −1.079 0.397 0.277 0.996

μ2 0.000 −0.017 0.397 0.323 −0.026 0.397 0.322 0.997

μ3 1.000 1.079 0.378 0.272 1.052 0.361 0.257 0.945

σ1 1.000 0.956 0.124 0.091 0.959 0.134 0.094 1.035

σ2 1.000 0.938 0.212 0.167 0.948 0.213 0.164 0.983

σ3 1.000 0.955 0.124 0.091 0.961 0.123 0.087 0.955

π1 0.333 0.312 0.203 0.169 0.318 0.199 0.163 0.965

π2 0.333 0.368 0.273 0.229 0.356 0.263 0.220 0.957

π3 0.333 0.320 0.196 0.162 0.326 0.195 0.161 0.991

a11 0.500 0.489 0.181 0.143 0.496 0.170 0.133 0.933

a12 0.250 0.270 0.203 0.161 0.262 0.191 0.153 0.950

a13 0.250 0.240 0.164 0.131 0.243 0.163 0.129 0.989

a21 0.250 0.229 0.177 0.143 0.226 0.168 0.135 0.941

a22 0.500 0.535 0.228 0.185 0.535 0.219 0.178 0.959

a23 0.250 0.236 0.181 0.142 0.238 0.178 0.140 0.985

a31 0.250 0.234 0.166 0.134 0.236 0.162 0.129 0.963

a32 0.250 0.271 0.205 0.166 0.261 0.195 0.159 0.956

a33 0.500 0.495 0.176 0.137 0.503 0.168 0.134 0.974

p(M = 1∣S = 1) 0.250 – – – 0.254 0.129 0.086 –

p(M = 1∣S = 2) 0.250 – – – 0.248 0.132 0.091 –

p(M = 1∣S = 3) 0.250 – – – 0.251 0.119 0.079 –

Note: Values shown are the true value of each parameter, and the mean (mean), standard deviation (SD), and mean absolute error (MAE) of the
parameter estimates, for both the MAR and MNAR model. The value of “rel. MAE” is the ratio of the mean absolute error of the MNAR over the
MAR model.
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Table A3. Results of Simulation 7 (MNAR, low variance)

MAR MNAR

Parameter True value Mean SD MAE Mean SD MAE rel. MAE

μ1 −1.000 −0.983 0.090 0.072 −1.004 0.072 0.056 0.782

μ2 0.000 0.038 0.134 0.112 0.001 0.094 0.074 0.659

μ3 1.000 1.069 0.124 0.107 1.012 0.083 0.065 0.607

σ1 1.000 1.004 0.040 0.031 0.999 0.035 0.028 0.896

σ2 1.000 0.989 0.046 0.035 0.994 0.035 0.028 0.802

σ3 1.000 0.981 0.044 0.037 0.996 0.034 0.028 0.750

π1 0.800 0.858 0.087 0.090 0.794 0.077 0.061 0.677

π2 0.100 0.086 0.094 0.079 0.109 0.092 0.077 0.965

π3 0.100 0.055 0.043 0.053 0.097 0.051 0.041 0.768

a11 0.800 0.816 0.034 0.030 0.798 0.029 0.022 0.741

a12 0.150 0.148 0.047 0.037 0.153 0.043 0.034 0.922

a13 0.050 0.036 0.028 0.026 0.048 0.027 0.022 0.853

a21 0.038 0.043 0.023 0.018 0.038 0.018 0.014 0.788

a22 0.850 0.862 0.042 0.035 0.849 0.032 0.025 0.711

a23 0.112 0.095 0.035 0.032 0.113 0.027 0.021 0.651

a31 0.025 0.032 0.020 0.017 0.025 0.011 0.009 0.557

a32 0.075 0.098 0.050 0.039 0.078 0.025 0.020 0.510

a33 0.900 0.870 0.046 0.037 0.897 0.021 0.017 0.445

p(M = 1∣S = 1) 0.050 – – – 0.050 0.016 0.013 –

p(M = 1∣S = 2) 0.250 – – – 0.251 0.030 0.023 –

p(M = 1∣S = 3) 0.500 – – – 0.501 0.019 0.015 –

Note: Values shown are the true value of each parameter, and the mean (mean), standard deviation (SD), and mean absolute error (MAE) of the
parameter estimates, for both the MAR and MNAR model. The value of “rel. MAE” is the ratio of the mean absolute error of the MNAR over the
MAR model.
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Table A4. Results of Simulation 8 (MAR, low variance)

MAR MNAR

Parameter True value Mean SD MAE Mean SD MAE rel. MAE

μ1 −1.000 −1.015 0.119 0.091 −1.015 0.121 0.091 1.002

μ2 0.000 −0.005 0.133 0.104 −0.005 0.135 0.106 1.013

μ3 1.000 1.006 0.073 0.057 1.006 0.073 0.057 1.001

σ1 1.000 0.995 0.051 0.039 0.995 0.052 0.039 1.003

σ2 1.000 0.989 0.049 0.038 0.988 0.049 0.038 1.004

σ3 1.000 0.998 0.029 0.022 0.998 0.028 0.022 0.996

π1 0.800 0.784 0.110 0.086 0.783 0.111 0.086 1.000

π2 0.100 0.122 0.124 0.100 0.124 0.125 0.100 1.003

π3 0.100 0.094 0.055 0.044 0.093 0.055 0.044 1.002

a11 0.800 0.796 0.042 0.032 0.796 0.042 0.032 0.993

a12 0.150 0.156 0.059 0.046 0.156 0.059 0.046 0.991

a13 0.050 0.048 0.033 0.027 0.048 0.033 0.027 0.994

a21 0.038 0.038 0.025 0.019 0.038 0.025 0.020 1.010

a22 0.850 0.849 0.043 0.033 0.848 0.044 0.034 1.019

a23 0.112 0.114 0.035 0.026 0.114 0.036 0.026 1.030

a31 0.025 0.025 0.015 0.012 0.025 0.015 0.012 1.005

a32 0.075 0.078 0.034 0.026 0.078 0.034 0.025 0.993

a33 0.900 0.897 0.028 0.021 0.897 0.028 0.021 1.001

p(M = 1∣S = 1) 0.250 – – – 0.250 0.024 0.019 –

p(M = 1∣S = 2) 0.250 – – – 0.249 0.021 0.016 –

p(M = 1∣S = 3) 0.250 – – – 0.250 0.015 0.012 –

Note: Values shown are the true value of each parameter, and the mean (mean), standard deviation (SD), and mean absolute error (MAE) of the
parameter estimates, for both the MAR and MNAR model. The value of “‘rel. MAE” is the ratio of the mean absolute error of the MNAR over the
MAR model.

Cite this article: Speekenbrink, M. and Visser, I. (2025). State-Dependent Missingness in Hidden Markov Models, with an
Application to Drop-Out in a Clinical Trial. Psychometrika, 1–32. https://doi.org/10.1017/psy.2024.3

Downloaded from https://www.cambridge.org/core. 19 Jun 2025 at 18:22:04, subject to the Cambridge Core terms of use.

https://doi.org/10.1017/psy.2024.3
https://www.cambridge.org/core

	1 Introduction
	1.1 The National Institute of Mental Health Schizophrenia Collaborative Study
	1.2 Hidden Markov models (HMM)
	1.3 Missing data
	1.4 Missing data in HMM
	1.4.1 MAR
	1.4.2 State-dependent missingness (MNAR)

	1.5 Overview

	2 Inhomogeneous HMM for multivariate longitudinal data with state-dependent missingness
	2.1 Estimation via expectation–maximization
	2.2 Model selection, checking, and standard errors

	3 Simulation study
	4 Application to the National Institute of Mental Health Schizophrenia Collaborative Study
	5 Discussion

