On the Diameter of Unitary Cayley Graphs of Rings

Huadong Su

Abstract

The unitary Cayley graph of a ring R, denoted $\Gamma(R)$, is the simple graph defined on all elements of R, and where two vertices x and y are adjacent if and only if $x-y$ is a unit in R. The largest distance between all pairs of vertices of a graph G is called the diameter of G and is denoted by $\operatorname{diam}(G)$. It is proved that for each integer $n \geq 1$, there exists a ring R such that diam $(\Gamma(R))=n$. We also show that $\operatorname{diam}(\Gamma(R)) \in\{1,2,3, \infty\}$ for a ring R with $R / J(R)$ self-injective and classify all those rings with $\operatorname{diam}(\Gamma(R))=1,2,3$, and ∞, respectively.

1 Introduction

This paper concerns the diameter of unitary Cayley graphs of rings. Let R be a ring with nonzero identity. We use $U(R)$ to denote the group of units of R. The unitary Cayley graph of R, denoted by $\Gamma(R)$, is the simple graph whose vertices are the elements of R, and where two vertices x and y are adjacent if and only if $x-y \in U(R)$.

The earliest work on the unitary Cayley graph of a ring is for the ring \mathbb{Z}_{n} by Dejter and Giudici [8]. Since then, many publications are devoted to this topic. The study of $\Gamma\left(\mathbb{Z}_{n}\right)$ was continued by Berrizbeitia and Giudici [6, 7], Fuchs [10], and Klotz and Sander [17]. The unitary Cayley graph $\Gamma(R)$ was studied for a finite ring R by Akhtar, et al. [2], and for an Artinian ring R by Lucchini and Maróti [19] and Lanski and Maróti [20]. Several other papers are devoted to the spectral properties and the energy of unitary Cayley graphs of \mathbb{Z}_{n} or a finite commutative ring (see [14, 16, 21]). Recently, Kiani and Aghaei [15] investigated the isomorphism problem for unitary Cayley graphs associated with finite (commutative) rings.

Let us recall some needed notions in graph theory. Let G be a simple graph. A walk is a sequence of vertices and edges, where each edge's endpoints are the preceding and following vertices in the sequence. The length of a walk is the number of edges that it uses. A path in a graph is a walk that has all distinct vertices (except the endpoints). We use $x-y$ to denote two vertices x and y in a graph G are adjacent. A graph G is connected if there is a path between each pair of the vertices of G; otherwise, G is disconnected. The distance between two vertices x and y, denoted $d(x, y)$, is the length of the shortest path in G beginning at x and ending at y. The largest distance between

[^0]all pairs of vertices of G is called the diameter of G, and is denoted by diam (G). A complete graph is a graph where each vertex is adjacent to all other vertices. Obviously, G is a complete graph if and only if $\operatorname{diam}(G)=1$. We use $K_{m, n}$ and K_{n} to denote the complete bipartite graph with partitions of size m and n, and the complete graph of n vertices, respectively.

The diameter of graphs associated with rings is an active research subject. For instance, Anderson and Livingston [3] and Anderson and Mulay [4] investigated the diameter of the zero-divisor graph of a commutative ring. It was proved that the zerodivisor graph of a commutative ring is always connected with diameter at most three. A similar version for the zero-divisor graph of a commutative semigroup was shown in [9] by DeMeyer, McKenzie, and Schneider. Anderson and Badawi [1] proved that for each integer $n \geq 1$, there exists a ring R such that its total graph has diameter n. Concerning the diameter of the unitary Cayley graph of a ring, Akhtar et al. [2, Theorem 3.1] proved that $\operatorname{diam}(\Gamma(R)) \in\{1,2,3, \infty\}$ for a left Artinian ring R and classified all left Artinian rings according to diameters of their unitary Cayley graphs. In this paper, we generalize the results to rings R with $R / J(R)$ self-injective (Theorems 3.5 and 3.6). We also prove that for each integer $n \geq 1$, there exists a ring R such that $\operatorname{diam}(\Gamma(R))=n$ (Theorem 2.5). The diameter of some extensions of rings are also investigated.

As usual, \mathbb{Z}_{n} will denote the ring of integers modulo n. We use $J(R)$ to denote the Jacobson radical of R and write $\bar{R}=R / J(R)$ and $\bar{a}=a+J(R) \in \bar{R}$ for $a \in R$. The polynomial ring over a ring R in the indeterminate t is denoted by $R[t]$. The formal power series ring over a ring is denoted by $R[[t]$. Recall that a ring R is called right self-injective if, for any (principal) right ideal I of R, every homomorphism from I_{R} to R_{R} extends to a homomorphism from R_{R} to R_{R}.

2 Unitary Cayley Graphs with Diameter n

As we will shortly see, the connectedness of $\Gamma(R)$ is closely related to whether the ring R is generated additively by its units. So let us first recall the following definitions. Let R be a ring and let k be a positive integer. An element $r \in R$ is said to be k-good if $r=u_{1}+\cdots+u_{k}$ with $u_{i} \in U(R)$ for each $1 \leq i \leq k$. A ring is said to be k-good if every element of R is k-good. The unit sum number of a ring R, denoted by $\mathbf{u}(R)$, is defined to be
(1) $\min \{k \in \mathbb{N} \mid R$ is a k-good $\}$ if R is k-good for some $k \geq 1$;
(2) ω if R is not k-good for every $k \geq 1$, but each element of R is k-good for some k;
(3) ∞ if some element of R is not k-good for any $k \geq 1$.

For example, $\mathbf{u}\left(\mathbb{Z}_{3}\right)=2, \mathbf{u}(\mathbb{Z})=\omega$ and $\mathbf{u}(\mathbb{Z}[t])=\infty$. It is clear that if $2 \in U(R)$, then $r \in R$ being k-good implies that r is l-good for all $l \geq k$. The investigation of rings generated additively by their units started in 1953-1954 when Wolfson [23] and Zelinsky [24] proved independently that every linear transformation of a vector space V over a division ring D is the sum of two nonsingular linear transformations, except when $\operatorname{dim} V=1$ and $D=\mathbb{Z}_{2}$. For the unit sum number of rings, we refer the reader to [11, 18, 22].

We recall another slightly different definition introduced in [13]. Let usn (R) be the smallest number n such that every element can be written as the sum of at most n units. If some element of R is not k-good for any $k \geq 1$, then usn (R) is defined to be ∞. Note that usn (R) and $\mathbf{u}(R)$ are different. For example, $\mathbf{u}\left(\mathbb{Z}_{4}\right)=\omega$ and $\operatorname{usn}\left(\mathbb{Z}_{4}\right)=2$.

Our first lemma characterizes the rings R with $\operatorname{diam}(\Gamma(R))=1$.
Lemma 2.1 Let R be a ring. Then $\operatorname{diam}(\Gamma(R))=1$ if and only if R is a division ring.
Proof If $\operatorname{diam}(\Gamma(R))=1$, then $\Gamma(R)$ is a complete graph. For any nonzero element r in R, the vertex 0 is adjacent to r, so r is a unit, and hence R is a division ring. Conversely, suppose that R is a division ring. Then for any two distinct vertices x and $y, 0 \neq x-y \in R$ is a unit of R. So $d(x, y)=1$, and hence $\operatorname{diam}(\Gamma(R))=1$.

Lemma 2.2 Let R be a ring and $r \in R$. Then the following statements hold:
(i) If r is k-good, then $d(r, 0) \leq k$ in $\Gamma(R)$.
(ii) If $r \neq 0$ and $d(r, 0)=k$ in $\Gamma(R)$, then r is k-good but not l-good for all $l<k$.
(iii) For any $x, y, z \in R, d(x, y)=k$ if and only if $d(x+z, y+z)=k$.

Proof (i) Let $r=u_{1}+u_{2}+\cdots+u_{k}$ with each $u_{i} \in U(R)$ and let $x_{i}=u_{1}+\cdots+u_{i}, i=$ $1, \ldots, k$. Then $0-x_{1}-x_{2}-\cdots-x_{k-1}-x_{k}=r$ is a walk from 0 to r, so $d(r, 0) \leq k$.
(ii) Let $0=x_{0}-x_{1}-x_{2}-\cdots-x_{k}=r$ be a path from 0 to r. Then $u_{i}:=x_{i}-x_{i-1} \in$ $U(R)$ for $1 \leq i \leq k$. It is easy to check that $r=\sum_{i=1}^{k} u_{i}$. So, r is k-good. By part (i), we know that r is not l-good for all $l<k$.
(iii) Let $d(x, y)=k$. Suppose that $x=x_{0}-x_{1}-x_{2}-\cdots-x_{k}=y$ is a path from x to y. Then $x+z=\left(x_{0}+z\right)-\left(x_{1}+z\right)-\left(x_{2}+z\right)-\cdots-\left(x_{k-1}+z\right)-\left(x_{k}+z\right)=y+z$ is a path from $x+z$ to $y+z$. So $d(x+z, y+z) \leq k$. Similarly, $d(x+z, y+z)=k$ implies $d(x, y) \leq k$. Thus, $d(x, y)=k$ if and only if $d(x+z, y+z)=k$.

Lemma 2.3 Let R be a ring. Then $\operatorname{diam}(\Gamma(R))=2$ if and only if $\operatorname{usn}(R)=2$ and R is not a division ring.

Proof Assume that $\operatorname{diam}(\Gamma(R))=2$. Then R is not a division ring by Lemma 2.1. For any nonzero nonunit r in R, as $\operatorname{diam}(\Gamma(R))=2$, we have $d(r, 0)=2$. So r is 2 -good by Lemma 2.2(ii), and thus $\operatorname{usn}(R)=2$. Conversely, it is clear that $\operatorname{diam}(\Gamma(R)) \geq 2$. For any $x, y \in R$, if $x-y \in U(R)$, then $d(x, y)=1$; if $x-y \notin U(R)$, then $x-y$ is 2-good. So $d(x-y, 0)=2$, and hence $d(x, y)=2$ by Lemma 2.2(i)(iii). Thus, $\operatorname{diam}(\Gamma(R))=2$.

Lemma 2.4 Let R be a ring and let $k \geq 3$ be an integer. Then $\operatorname{usn}(R)=k$ if and only if $\operatorname{diam}(\Gamma(R))=k$.

Proof (\Rightarrow) For $x \neq y \in R$, as usn $(R)=k, x-y$ can be expressed as a sum of $m(\leq k)$ units. Let $x-y=u_{1}+u_{2}+\cdots+u_{m}$ with each $u_{i} \in U(R)$. Set $x_{i}=u_{1}+\cdots+u_{i}+y, i=$ $1, \ldots, m$. Then $y-x_{1}-x_{2}-\cdots-x_{m}=x$ is a walk from y to x, so $d(x, y) \leq m \leq k$.

By assumption, there exists an element $r \in R$, such that r is a sum of k units but not a sum of m units for any $m<k$. Then $d(r, 0) \leq k$. We claim that $d(r, 0)=k$. If
$d(r, 0)=l<k$, then, by Lemma 2.2(ii), r is l-good, a contradiction. So $d(r, 0)=k$, hence $\operatorname{diam}(\Gamma(R))=k$.
(\Leftarrow). It is clear that 0 is 2 -good. For any $0 \neq r \in R$, as $\operatorname{diam}(\Gamma(R))=k$, we have $d(r, 0)=l \leq k$. It follows that r is l-good by Lemma 2.2(ii). Again as $\operatorname{diam}(\Gamma(R))=k$, there exist x and y with $d(x, y)=k$. Then $d(x-y, 0)=k$. By Lemma 2.2, $x-y$ is k-good, but not l-good for any $l<k$, so usn $(R)=k$.

Theorem 2.5 For each integer $n \geq 1$, there exists a ring R such that $\operatorname{diam}(\Gamma(R))=n$.
Proof In [13, Corollary 4], the authors proved that there exists a ring R such that $\operatorname{usn}(R)=n$ for each $n \geq 2$. So the theorem holds for $n \geq 3$ by Lemma 2.4. It is clear that $\operatorname{diam}\left(\Gamma\left(\mathbb{Z}_{2}\right)\right)=1$ and $\operatorname{diam}\left(\Gamma\left(\mathbb{Z}_{4}\right)\right)=2$. This completes the proof.

Corollary 2.6 Let R be a ring. Then $\Gamma(R)$ is connected if and only if $\mathbf{u}(R) \leq \omega$.
Proof Suppose that $\Gamma(R)$ is connected. Then for any $0 \neq r \in R, d(r, 0)=k$ for some k. So r is k-good by Lemma 2.2(ii). Thus, $\mathbf{u}(R) \leq \omega$. Conversely, if $\mathbf{u}(R) \leq \omega$, then for any two vertices x and y in R, we have that x is k-good and y is l-good for some k and l. So $d(x, 0) \leq k$ and $d(y, 0) \leq l$ by Lemma 2.2(i). So $d(x, y) \leq d(x, 0)+d(y, 0)=k+l$. Thus, $\Gamma(R)$ is connected.

Note that $\mathbf{u}(R)=n$ implies usn $(R)=n$, but $\operatorname{usn}(R)=n$ cannot imply $\mathbf{u}(R)=n$ in general. For example, $\operatorname{usn}\left(\mathbb{Z}_{4}\right)=2$, but $\mathbf{u}\left(\mathbb{Z}_{4}\right)=\omega$. In fact, we can easily obtain the following proposition.

Proposition 2.7 Let R be a ring and let $n>1$ be an integer. Suppose that $2 \in U(R)$. Then $\mathbf{u}(R)=n$ if and only if $\mathrm{usn}(R)=n$.

3 Self-injective Rings

In [2, Theorem 3.1], the authors proved that $\operatorname{diam}(\Gamma(R)) \in\{1,2,3, \infty\}$ for a left Artinian ring R and classified all left Artinian rings according to the diameter of their unitary Cayley graphs. Next, we generalize the results to the rings R for which $R / J(R)$ is self-injective. To do so, we first study the relationship between $\operatorname{diam}(\Gamma(\bar{R}))$ and $\operatorname{diam}(\Gamma(R))$. Note that r is a unit in R if and only if \bar{r} is a unit in \bar{R}. Using the idea of [12, Remark 1], we have $\operatorname{diam}(\Gamma(\bar{R}) \leq \operatorname{diam}(\Gamma(R))$. Indeed, suppose $\operatorname{diam}(\Gamma(R))=m$. Then for any $\bar{x} \neq \bar{y} \in \bar{R}$, we have $d(x, y) \leq m$. As a path from x to y gives a walk from \bar{x} to $\bar{y}, d(\bar{x}, \bar{y}) \leq d(x, y) \leq m$. Thus, $\operatorname{diam}(\Gamma(\bar{R})) \leq m$.

Lemma 3.1 Let R be a ring. If $\operatorname{diam}(\Gamma(R)) \geq 3$, then $\operatorname{diam}(\Gamma(\bar{R}))=\operatorname{diam}(\Gamma(R))$.
Proof It suffices to show that $\operatorname{diam}(\Gamma(R)) \leq \operatorname{diam}(\Gamma(\bar{R}))$.
Suppose $\operatorname{diam}(\Gamma(R))=\infty$. We show that $\operatorname{diam}(\Gamma(\bar{R}))=\infty$. Assume to the contrary that $\operatorname{diam}(\Gamma(\bar{R}))=m<\infty$. For any $x, y \in R$, if $\bar{x}=\bar{y}$, then $x-y \in J(R)$, and hence $1+x-y \in U(R)$. So we get a path $x-(y-1)-y$ from x to y, so $d(x, y) \leq 2$. If $\bar{x} \neq \bar{y}$, then a path form \bar{x} to \bar{y} deduces a path from x to y. This implies that $d(x, y) \leq d(\bar{x}, \bar{y}) \leq m$. So $\operatorname{diam}(\Gamma(R)) \leq m$, a contradiction.

Assume that $\operatorname{diam}(\Gamma(R))$ is finite and $k:=\operatorname{diam}(\Gamma(R)) \geq 3$. There exist $x, y \in R$, such that $d(x, y)=k$. First, we claim that $\bar{x} \neq \bar{y}$. In fact, if $\bar{x}=\bar{y}$, then $x-y \in J(R)$, and hence $1+x-y \in U(R)$. So $x-(y-1)-y$ is a walk from x to y. Thus, $d(x, y) \leq 2$, a contradiction. Assume that $m:=d(\bar{x}, \bar{y})<k$ and $\bar{x}-\overline{x_{1}}-\overline{x_{2}}-\cdots-\overline{x_{m-1}}-\bar{y}$ is a path from \bar{x} to \bar{y}. Then $x-x_{1}-x_{2}-\cdots-x_{m-1}-y$ is path of length m, so $d(x, y) \leq$ $m<k$, a contradiction. Thus, $d(\bar{x}, \bar{y})=k$. This proves $\operatorname{diam}(\Gamma(\bar{R})) \geq k$. Hence, $\operatorname{diam}(\Gamma(\bar{R}))=\operatorname{diam}(\Gamma(R))$.

Theorem 3.2 Let R be a ring. Then the following are equivalent:
(i) $\operatorname{diam}(\Gamma(\bar{R}))<\operatorname{diam}(\Gamma(R))$.
(ii) R is a local ring with $J(R) \neq 0$.
(iii) $\operatorname{diam}(\Gamma(R))=2$ and $\operatorname{diam}(\Gamma(\bar{R}))=1$.

Proof $(\mathrm{i}) \Rightarrow(\mathrm{ii})$. Suppose that $\operatorname{diam}(\Gamma(\bar{R}))<\operatorname{diam}(\Gamma(R))$. Then by Lemma 3.1, $\operatorname{diam}(\Gamma(R)) \leq 2$. By assumption, $\operatorname{diam}(\Gamma(\bar{R}))=1$. So \bar{R} is a division ring by Lemma 2.1. Therefore, R is a local ring with $J(R) \neq 0$.
(ii) \Rightarrow (iii). Suppose that R is a local ring with $J(R) \neq 0$. Then $\bar{R}=R / J(R)$ is a division ring. So diam $(\Gamma(\bar{R}))=1$ by Lemma 2.1. On the other hand, for any $r \in R$, either $r \in J(R)$ or $r \in U(R)$. For any two distinct elements $a, b \in R$, if $a-b \in U(R)$, then $d(a, b)=1$. Suppose that $a-b \in J(R)$. If $a \in J(R)$, then $b \in J(R)$ as well. So we have a path $a-1-b$, and hence $d(a, b)=2$ (note that since $J(R) \neq 0$, such a, b do exist). If $a \in U(R)$, then $b \in U(R)$, we have a path $a-(a+b)-b$, so $d(a, b)=2$. Hence, $\operatorname{diam}(\Gamma(R))=2$.
$(\mathrm{iii}) \Rightarrow(\mathrm{i})$. It is clear.
Corollary 3.3 Let R be a ring. Then $\operatorname{diam}(\Gamma(\bar{R}))=\operatorname{diam}(\Gamma(R))$ if and only if one of the following holds:
(i) R is not a local ring.
(ii) $\quad R$ is a division ring.

In [18, Theorem 6], Khurana and Srivastava determined the unit sum number $\mathbf{u}(R)$ of a regular right self-injective ring R. We use the notion usn (R) to restate the theorem below.

Lemma 3.4 ([18]) Let R be a regular self-injective ring. Then $\operatorname{usn}(R)=2$, 3 , or ∞. Moreover,
(i) $\operatorname{usn}(R)=2$ if and only if R has no nonzero Boolean ring as a ring direct summand or $R \cong \mathbb{Z}_{2}$;
(ii) $\operatorname{usn}(R)=3$ if and only if $R \nsubseteq \mathbb{Z}_{2}$ and R has \mathbb{Z}_{2}, but no Boolean ring with more than two elements, as a ring direct summand;
(iii) $\operatorname{usn}(R)=\infty$ if and only if R has a Boolean ring with more than two elements as a ring direct summand.

Theorem 3.5 Let R be a ring with $R / J(R)$ right self-injective (in particular, R is right self-injective). Then $\operatorname{diam}(\Gamma(R)) \in\{1,2,3, \infty\}$.

Proof As $\bar{R}=R / J(R)$ is a right (regular) self-injective ring, we have usn $(\bar{R})=2$, 3 or, ∞ by Lemma 3.4. Then $\operatorname{diam}(\bar{R}) \in\{1,2,3, \infty\}$ by Lemmas 2.1, 2.3, and 2.4. Now, by Lemma 3.1, we get $\operatorname{diam}(\Gamma(R)) \in\{1,2,3, \infty\}$.

Theorem 3.6 Let R be a ring with $R / J(R)$ right self-injective. Then the following hold:
(i) $\operatorname{diam}(\Gamma(R))=1$ if and only if R is a division ring.
(ii) $\operatorname{diam}(\Gamma(R))=2$ if and only if R is not a division ring and one of following holds:
(a) \bar{R} has no nonzero Boolean ring as a ring direct summand.
(b) $\bar{R} \cong \mathbb{Z}_{2}$.
(iii) $\operatorname{diam}(\Gamma(R))=3$ if and only if $\bar{R} \not \not \mathbb{Z}_{2}$ and \bar{R} has \mathbb{Z}_{2}, but no Boolean ring with more than two elements, as a ring direct summand.
(iv) $\operatorname{diam}(\Gamma(R))=\infty$ if and only if \bar{R} has a Boolean ring with more than two elements as a ring direct summand.

Proof (i) This follows from Lemma 2.1.
Next, we assume that R is not a division ring and prove (ii), (iii), and (iv) together. Note that \bar{R} is a regular right self-injective ring. So $\mathbf{u}(\bar{R})=2, \omega$ or ∞ by [18, Theorem 6]. To complete the proof, we determine the diameter in each case.

Case 1: $\mathbf{u}(\bar{R})=2$. In this case, \bar{R} has no nonzero Boolean ring as a ring direct summand or $\bar{R} \cong \mathbb{Z}_{2}$ by Lemma 3.4. Note that $\operatorname{diam}(\Gamma(\bar{R})) \in\{1,2\}$. So $\operatorname{diam}(\Gamma(R))=2$ by Lemma 3.1.
Case 2: $\mathbf{u}(\bar{R})=\omega$. If $\bar{R} \cong \mathbb{Z}_{2}$, then $\Gamma(R)$ is a complete bipartite graph. So $\operatorname{diam}(\Gamma(R))=2$. If $\bar{R} \nsubseteq \mathbb{Z}_{2}$, in this case, $\operatorname{usn}(\bar{R})=3$, so $\operatorname{diam}(\Gamma(\bar{R}))=3$ by Lemma 2.4. Thus, $\operatorname{diam}(\Gamma(R))=3$ by Lemma 3.1.
Case 3: $\mathbf{u}(\bar{R})=\infty$. Then $\Gamma(R)$ is disconnected by Corollary 2.6, so $\operatorname{diam}(\Gamma(R))=\infty$. Thus, $\operatorname{diam}(\Gamma(R))=\infty$ by Lemma 3.1.

4 Extensions of Rings

In this section, we consider the diameter of the unitary Cayley graphs of some extensions of rings.

Proposition 4.1 Let R be a commutative ring. Then $\Gamma(R[t])$) is disconnected.
Proof As $\mathbf{u}(R[t])=\infty, \Gamma(R[t]))$ is disconnected by Corollary 2.6.
Proposition 4.2 Let R be a commutative ring. Then the following conditions are equivalent:
(i) $\mathbf{u}(R) \leq \omega$.
(ii) $\Gamma(R)$ is connected.
(iii) $\Gamma(R[[t])$ is connected.

Proof (i) \Rightarrow (ii). This follows from Corollary 2.6.
(ii) \Rightarrow (iii). Let $f(t), g(t) \in R[[t]]$. Since $\Gamma(R)$ is connected, there is a path from $f(0)$ to $g(0)$ in $\Gamma(R)$, say $f(0)-a_{1}-a_{2}-\cdots-a_{k}-g(0)$. Then $f(t)-a_{1}-a_{2}-\cdots-a_{k}-g(t)$ is a path from $f(t)$ to $g(t)$ in $\Gamma(R[[t]])$. So $\Gamma(R[[t])$ is connected.
(iii) \Rightarrow (i). Let $0 \neq a \in R$. As $\Gamma(R \llbracket t])$ is connected, $d(a, 0)=k$ in $\Gamma(R[\llbracket t])$ for some integer $k \geq 1$. Let $f_{0}(t):=a-f_{1}(t)-f_{2}(t)-\cdots-f_{k-1}(t)-f_{k}(t):=0$ be a path from a to 0 in $\Gamma(R \llbracket t]])$. Then $u_{i}:=f_{i}(0)-f_{i+1}(0) \in U(R)$ for $0 \leq i \leq k-1$. So $a=\sum_{i=0}^{k-1} u_{i}$, which is k-good, so $\mathbf{u}(R) \leq \omega$.

Proposition 4.3 Let R be a commutative ring. Then the following statements hold:
(i) If R is a field, then $\operatorname{diam}(\Gamma(R[t]]))=2$.
(ii) If R is not a field, then $\operatorname{diam}(\Gamma(R[\lceil t]))=\operatorname{diam}(\Gamma(R))$.

Proof (i) As $R[[t]$ is not a field, $\operatorname{diam}(\Gamma(R[[t]])) \geq 2$ by Lemma 2.1. For any $f(t), g(t) \in R[[t]$, if $f(0)=g(0)$, taking $a \neq f(0)$, then $f(t)-a-g(t)$ is a path from $f(t)$ to $g(t)$. So $\operatorname{diam}(\Gamma(R[[t]]))=2$.
(ii) Note that in this case, both $\operatorname{diam}(\Gamma(R[[t]]))$ and $\operatorname{diam}(\Gamma(R))$ are at least two. We first prove that $\operatorname{diam}(\Gamma(R)) \leq \operatorname{diam}(\Gamma(R[[t]]))$. If diam $(\Gamma(R[[t]))=\infty$, there is nothing to prove. Suppose that $\operatorname{diam}(\Gamma(R \llbracket t]))=n<\infty$. Let $a, b \in R$. Then we have $k:=d(a, b) \leq n$ in $\Gamma(R[[t]])$. Let

$$
a-f_{1}(t)-f_{2}(t)-\cdots-f_{k}(t)=b
$$

be a path from a to b. Then

$$
a-f_{1}(0)-f_{2}(0)-\cdots-f_{k}(0)=b
$$

is a walk from a to b in $\Gamma(R)$, so $d(a, b) \leq k \leq n$ in $\Gamma(R)$, and hence $\operatorname{diam}(\Gamma(R)) \leq n$.
Now we prove that $\operatorname{diam}(\Gamma(R)) \geq \operatorname{diam}(\Gamma(R \llbracket t]))$. If $\operatorname{diam}(\Gamma(R))=\infty$, there is nothing to prove. Suppose that $\operatorname{diam}(\Gamma(R))=n<\infty$. Let $f(t), g(t) \in R[\llbracket t]$. Then we have $k:=d(f(0), g(0)) \leq n$ in $\Gamma(R)$. Let

$$
f(0)-a_{1}-a_{2}-\cdots-a_{k}-g(0)
$$

be a path from $f(0)$ to $g(0)$ in $\Gamma(R)$. Then

$$
f(t)-a_{1}-a_{2}-\cdots-a_{k}-g(t)
$$

is a path from $f(t)$ to $g(t)$ in $\Gamma(R[[t]])$. So, $d(f(t), g(t))=k \leq n$ in $\Gamma(R[[t]])$, and hence $\operatorname{diam}(\Gamma(R[[t]])) \leq n$.

Proposition 4.4 Let $T:=\mathbb{M}_{n}(R)$ be the $n \times n(n \geq 2)$ matrix ring over a ring R. Then $2 \leq \operatorname{diam}(\Gamma(T)) \leq 3$. Moreover, $\operatorname{diam}(\Gamma(T))=2$ if and only if $u \operatorname{sn}(R)=2$.

Proof We know that $\mathbf{u}(T) \leq 3$ by [11, Theorem 3]. So $u s n(R) \leq 3$. As T is not a division ring, $2 \leq \operatorname{diam}(\Gamma(T)) \leq 3$. If $\operatorname{usn}(R)=2$, then $\operatorname{usn}(T)=2$ as well, so $\operatorname{diam}(\Gamma(T))=2$. Conversely, if $\operatorname{diam}(\Gamma(T))=2$, then $\operatorname{usn}(T)=2$, so $\operatorname{usn}(R)=2$.

The group ring of a group H over ring R is denoted by $R H$.

Proposition 4.5 Let R be a ring and H be a nontrivial group. Then $\Gamma(R H)$ is connected if and only if $\Gamma(R)$ is connected.

Proof This follows from Corollary 2.6 and [5, Proposition 9].
Proposition 4.6 Let F be a field and H be a locally finite group (that is, every finitely generated subgroup of H is finite $)$. Then $\operatorname{diam}\left(\Gamma\left(\mathbb{Z}_{2} H\right)\right)=\infty$ and $\operatorname{diam}(\Gamma(F H))=2$ if $F \nVdash \mathbb{Z}_{2}$.

Proof By [5, Proposition 9(v)], $\operatorname{diam}(\Gamma(F H))=2$ if $F \nsubseteq \mathbb{Z}_{2}$. As $\mathbf{u}\left(\mathbb{Z}_{2} H\right)=\omega$, we have $\operatorname{diam}\left(\Gamma\left(\mathbb{Z}_{2} H\right)\right)=\infty$.

References

[1] D. F. Anderson and A. Badawi, The total graph of a commutative ring. J. Algebra 320(2008), no. 7, 2706-2719. http://dx.doi.org/10.1016/j.jalgebra.2008.06.028
[2] R. Akhtar, T. Jackson-Henderson, R. Karpman, M. Boggess, I. Jiménez, A. Kinzel, and D. Pritikin, On the unitary Cayley graph of a finite ring. Electron. J. Combin. 16(2009), no. 1, no. 117.
[3] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring. J. Algebra 217(1999), no. 2, 434-447. http://dx.doi.org/10.1006/jabr.1998.7840
[4] D. F. Anderson and S. B. Mulay, On the diameter and girth of a zero-divisor graph. J. Pure Appl. Algebra 210(2007), no. 2, 543-550. http://dx.doi.org/10.1016/j.jpaa.2006.10.007
[5] N. Ashrafi and P. Vámos, On the unit sum number of some rings. Q. J. Math. 56(2005), no. 1, 1-12. http://dx.doi.org/10.1093/qmath/hah023
[6] P. Berrizbeitia and R. E. Giudici, Counting pure k-cycles in sequences of Cayley graphs. Discrete Math. 149(1996), no. 1-3, 11-18. http://dx.doi.org/10.1016/0012-365X(94)00295-T
[7] , On cycles in the sequence of unitary Cayley graphs. Discrete Math. 282(2004), no. 1-3, 239-243. http://dx.doi.org/10.1016/j.disc.2003.11.013
[8] I. J. Dejterand and R. E. Giudici, On unitary Cayley graphs. J. Combin. Math. Combin. Comput. 18(1995), 121-124.
[9] F. R. DeMeyer, T. McKenzie, and K. Schneider, The zero-divisor graph of a commutative semigroup. Semigroup Forum 65(2002), no. 2, 206-214. http://dx.doi.org/10.1007/s002330010128
[10] E. D. Fuchs, Longest induced cycles in circulant graphs. Electron. J. Combin. 12(2005), Research Paper 52.
[11] M. Henriksen, Two classes of rings generated by their units. J. Algebra 31(1974), 182-193. http://dx.doi.org/10.1016/0021-8693(74)90013-1
[12] F. Heydari and M.J. Nikmehr, The unit graph of a left Artinian ring. Acta Math. Hungar. 139(2013), no. 1-2, 134-146. http://dx.doi.org/10.1007/s10474-012-0250-3
[13] B. Herwig and M. Ziegler, A remark on sums of units. Arch. Math (Basel) 79(2002), no. 6, 430-431. http://dx.doi.org/10.1007/BF02638379
[14] A. Ilić, The energy of unitary Cayley graphs. Linear Algebra Appl. 431(2009), no. 10, 1881-1889. http://dx.doi.org/10.1016/j.laa.2009.06.025
[15] D. Kiani and M. M. H. Aghaei, On the unitary Cayley graph of a ring. Electron. J. Combin. 19(2012), no. 2, no. 10.
[16] D. Kiani, M. M. H. Aghaei, Y. Meemark, and B. Suntornpoch, Energy of unitary Cayley graphs and gcd-graphs. Linear Algebra Appl. 435(2011), no. 6, 1336-1343. http://dx.doi.org/10.1016/j.laa.2011.03.015
[17] W. Klotz and T. Sander, Some properties of unitary Cayley graphs. Electron. J. Combin. 14(2007), 45.
[18] D. Khurana and A. K. Srivastava, Unit sum numbers of right self-injective rings. Bull. Austral. Math. Soc. 75(2007), no. 3, 355-360. http://dx.doi.org/10.1017/S0004972700039289
[19] A. Lucchini and A. Maróti, Some results and questions related to the generating graph of a finite group. In: Ischia group theory 2008, World Sci. Publ., Hackensack, NJ, 2009, pp. 183-208. http://dx.doi.org/10.1142/9789814277808_0014
[20] C. Lanski and A. Maróti, Ring elements as sums of units. Cent. Eur. J. Math. 7(2009), no. 3, 395-399. http://dx.doi.org/10.2478/s11533-009-0024-5
[21] X. Liu and S. Zhou, Spectral properties of unitary Cayley graphs of finite commutative rings. Electron. J. Combin. 19(2012), no. 13.
[22] P. Vámos, 2-good rings. Q. J. Math. 56(2005), no. 3, 417-430. http://dx.doi.org/10.1093/qmath/hah046
[23] K. G. Wolfson, An ideal theoretic characterization of the ring of all linear transformations. Amer. J. Math. 75(1953), 358-386. http://dx.doi.org/10.2307/2372458
[24] D. Zelinsky, Every linear transformation is sum of nonsingular ones. Proc. Amer. Math. Soc. 5(1954), 627-630. http://dx.doi.org/10.1090/S0002-9939-1954-0062728-7

School of Mathematical and Statistics Sciences, Guangxi Teachers Education University, Nanning,
Guangxi, 530023, P. R. China
and
Department of Mathematics and Statistics, Memorial University of Newfoundland, St.John's, Nfld A1C 5S7
e-mail: huadongsu@sohu.com

[^0]: Received by the editors June 4, 2015; revised October 23, 2015.
 Published electronically June 7, 2016.
 This work was supported by a Discovery Grant from NSERC of Canada. The author was also grateful for the support from the National Natural Science Foundation of China (11161006, 11461010), the Guangxi Natural Sciences Foundation (2015GXNSFAA139009, 2014GXNSFAA118005) and the Scientific Research Foundation of Guangxi Educational Committee (KY2016YB280).

 AMS subject classification: $05 \mathrm{C} 25,16 \mathrm{U} 60,05 \mathrm{C} 12$.
 Keywords: unitary Cayley graph, diameter, k-good, unit sum number, self-injective ring. 652

