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Abstract

Understanding the timing of weed emergence is crucial to effective management. Management
practices implemented too early may fail to completely control late-emerging seedlings,
whereas management practices implemented too late will suffer from low efficacy. Weed
emergence times reflect biological factors, such as seed dormancy and germination
requirements, as well as environmental conditions. We conducted a systematic review of
studies that developedmodels to predict weed emergence temporal patterns.We screened 1,854
studies, 98 of which were included in the final dataset. Most of the studies included were
conducted in North America (51%) or Europe (30%). A wide variety of weed species (102) and
families (21) were included, and many studies modeled several weeds. Grass weeds (Poaceae)
were modeled most frequently (83 instances). Most weeds (40%) had base temperature Tb

values between 0 and 5 C, and 38% had base water potentialcb ranging from−1.0 to−0.5MPa.
Most studies used empirical parametric models, such as Weibull (40%) or Gompertz (30%)
models. Nonparametric and mechanistic models were also represented. Models varied in their
biological and environmental data requirements. In general, empirical parametric models based
on hydrothermal time (i.e., time above base temperature and water potential thresholds)
represented a good balance between ease of use and prediction accuracy. Soft computing
approaches such as artificial neural networks demonstrated substantial potential in situations
with complex emergence patterns and limited data availability, although they (soft computing
approaches) can be susceptible to overfitting. Our study also demonstrated variability in model
performance and limited generalizability across species and regions. This finding underscores
the need for context-specific and well-validated weed emergence models to inform
management, especially in the context of climate change.

Introduction

Agricultural weed management is essential to crop productivity and environmental health. The
timing of management operations is a key determinant of management efficacy (Mohler et al.
2021; Zimdahl 2018). Many control tactics, such as cultivation or herbicide applications, are
most effective against newly germinated or young weeds. Delayed management typically results
in inferior control, allowing more weeds to compete against crops for resources later in the
season (Mohler et al. 2021; Zimdahl 2018). If management is delayed, resource-independent
interference processes may also be set in motion by the time of management (Horvath et al.
2023). However, early management is challenging if field access is limited due to unforeseen
environmental conditions. Another drawback of early management is that late-germinating
weeds may remain as seeds in the soil seedbank, largely unaffected by control measures; these
seeds are likely to survive, emerge, and cause problems later in the season. Thus, there is an
optimal window of action during which weed control tactics are most likely to be effective
(Reinhardt Piskackova et al. 2021). Defining this specific time frame is fundamental to the
framework that we refer to as “Time-Specific WeedManagement” (TSWM). In this framework,
the decision on when to implement control measures is based on a quantitative analysis of the
weed’s temporal dynamics, primarily seedling emergence, using a modeling approach
(Figure 1). TSWM is consistent with the concept of a critical period for weed control
(Knezevic et al. 2002; Nieto et al. 1968). Although weed control opportunities also occur at other
times of the year, early-season control of young weeds may be critical to sustainable
management (Storkey et al. 2021a).
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Amajor challenge in scheduling weedmanagement operations is
that it is difficult to predict when weeds will emerge. Unlike crops,
which have been under selection for uniform germination and are
sown at a consistent depth, weeds have evolved myriad mechanisms
to achieve variability in germination timing (Baskin and Baskin
2014). Weed emergence times reflect biotic factors, such as
differences in seed dormancy and germination requirements, that
vary between and within weed species (Baskin and Baskin 2014;
Grundy 2003; Zimdahl 2018). Requirements for dormancy release
and germination, although not necessarily the same, involve a wide
range of environmental factors, including temperature, moisture,
nitrate, oxygen, light, and the presence of inhibitors or stimulants
(Figure 2). Environmental factors vary with climatic conditions
across large geographic areas and with edaphic conditions or
management practices at small scales. They also show significant
interannual variability. Predicting weed emergence times represents
a major technical challenge due to these factors, with potential
solutions encompassingmathematicalmodels of varying complexity
(Brown et al. 2022; Ghersa and Holt 1995).

Models that predict the timing of weed emergence require
different amounts of biological or environmental data and perform
different operations on these data (Figure 3). Common types of
biological data include threshold parameters such as base temper-
atures (Tb) and water potentials (cb) for germination or emergence.
Germination and emergence do not occur at or below threshold
values that are specific to each species (Bradford 2002) and can

sometimes vary significantly between populations within a species
(Bürger et al. 2020). However, efforts have been made to identify
predictable patterns across species (e.g., Gardarin et al. 2010). Above
the thresholds, increasing temperatures and water availability may
accelerate germination and emergence to a certain limit. Other
biological factors such as seed size (weight) and age affect the
likelihood or timing of seedling emergence (Figure 2), but are less
frequently included in weed emergence models. For example, larger
and less light-sensitive seeds are more capable of emerging from
greater burial depths than smaller light-sensitive seeds (Batlla and
Benech-Arnold 2014; Juroszek and Gerhards 2004; Mohler et al.
2021), but only a few seedling emergencemodels have included seed
size as a model input (Colbach et al. 2006; Vleeshouwers and Kropff
2000). Any abiotic influence on seed germination or emergencemay
interact with other abiotic factors or with seed age (Baskin and
Baskin 2014; Martinkova et al. 2006).

Modeling approaches can be classified as empirical parametric,
empirical nonparametric, or mechanistic, that is, process based
(Figure 3). The distinction between empirical and mechanistic
modeling is better understood as a spectrum than a sharp division.
At the empirical end of the spectrum, models link accessible data
inputs with emergence outcomes but do not represent any
underlying eco-physiological processes. Most empirical models are
parametric and consist of a nonlinear S-shaped function, typically
a logistic, Gompertz, or Weibull function, with up to four
parameters (Gonzalez-Andujar et al. 2016a). Although empirical

Figure 1. Components of time-specific weed management tools may include models that predict temporal trends in weed seedling emergence, early weed growth, the
relationship between weed size and weed control efficacy, crop injury risk, and crop yield loss as function of weed density and duration of competition.
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Figure 2. Seedling emergence is a multistage process involving dormancy release, germination, and preemergent growth. Abiotic and biotic factors, such as those shown,
influence each stage of seedling emergence.

Figure 3. Weed emergencemodels integrate environmental datawith species-specific biological data to produce various outputs. Fromamanagement perspective, the crucial outputs
are the timing and amount of seedling emergence. Modeling approaches may be characterized as empirical parametric, empirical nonparametric, or mechanistic (process based). RGR,
Relative Growth Rate.
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in nature, some parameters of these models may have direct
biological relevance. For example, the lag parameter in theWeibull
model (see “Results and Discussion”) measures the amount of time
to the onset of emergence. The measure of time is most often a
measure of thermal or hydrothermal time (Bradford 2002; Forcella
et al. 2000), but other options are available.

Because emergence data do not always meet the assumptions of
parametric models, semiparametric or nonparametric approaches
have been proposed to increase flexibility (Cao et al. 2013; Chantre
et al. 2014; Gonzalez-Andujar et al. 2016b). Examples of
nonparametric approaches include established statistical methods
as well as emerging soft computing techniques (Onofri et al. 2022;
Royo-Esnal et al. 2020). While nonparametric models can fit
complex patterns of emergence effectively, they are susceptible to
overfitting. This tendency can limit their generalizability to
different contexts, such as varying sites and years.

Contrasting with empirical models, mechanistic or process-
based models may include several modules to represent stages of
dormancy release, germination, and preemergent growth (Figure 3).
Each module may require complex data inputs to characterize
associated biotic and abiotic dynamics. Largely for this reason,
mechanistic models are less common than empirical models and
have been developed for fewer species (Gonzalez-Andujar et al.
2016a; Royo-Esnal et al. 2020). However, mechanistic models have
the potential to generalize across diverse environmental and
temporal conditions and produce deeper insights into weed ecology
and management. For decades, researchers have noted the promise
ofmechanistic or semimechanistic approaches and called for further
development of these approaches (Forcella et al. 2000; Vleeshouwers
and Kropff 2000).

We performed a systematic review of the literature on weed
emergence modeling. Other recent reviews of this topic have been
narrative rather than systematic and focused on the technical details
and statistical limitations of different modeling approaches
(Gonzalez-Andujar et al. 2016a; Royo-Esnal et al. 2020). Our goal
was to complement these existing reviews by providing a
comprehensive and systematic survey of the literature with a focus
on recent advances and their implications for management. In
particular, we were interested in understanding the extent to which
currently available tools can guide farmers’ decisionmaking, and the
practical steps necessary to develop useful guidance for more
cropping systems. From this perspective, we note the advantages and
disadvantages of current approaches and highlight areas for future
research. Finally, we present a consolidated summary of all
mathematical equations employed in prior studies, which can serve
as a valuable reference for researchers engaged in modeling seedling
emergence or other phenological stages of plants.

Materials and Methods

We performed a systematic literature review according to
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines (Page et al. 2021; Tricco et al. 2018),
adapted as needed for the weed science context. On February 19,
2019, we searched for relevant peer-reviewed articles using the
following search query in Scopus:

(TITLE (emerg*) OR TITLE (seedling) AND TITLE-ABS-KEY (weed))
AND (EXCLUDE (SUBJAREA, “IMMU”) OR EXCLUDE (SUBJAREA,
“MEDI”) OR EXCLUDE (SUBJAREA, “PHAR”) OR EXCLUDE
(SUBJAREA, “SOCI”)) AND (EXCLUDE (DOCTYPE, “cp”) OR
EXCLUDE (DOCTYPE, “re”) OR EXCLUDE (DOCTYPE, “ch”) OR
EXCLUDE (DOCTYPE, “no”)) AND (EXCLUDE (DOCTYPE, “bk”) OR

EXCLUDE (DOCTYPE, “cr”) OR EXCLUDE (DOCTYPE, “er”) OR
EXCLUDE (DOCTYPE, “le”))

This query is crafted to retrieve academic articles on topics related to
seedling emergence and weeds. It searches for titles (‘TITLE’) with
“emerg*” or “seedling”, and requires the presence of “weed” in the
title, abstract, or keywords (‘TITLE-ABS-KEY’). The query specifically
excludes publications from certain subject areas: immunology
(IMMU), medicine (MEDI), pharmacology (PHAR), and social
sciences (SOCI), using the parameters ‘EXCLUDE (SUBJAREA,
“IMMU/MEDI/PHAR/SOCI”)’. Additionally, it filters out various
document types like conference papers (cp), reports (re), book
chapters (ch), notes (no), books (bk), conference reviews (cr), errata
(er), and letters (le), indicated by ‘EXCLUDE (DOCTYPE, “cp/re/ch/
no/bk/cr/er/le”)’. This focused strategy ensures that the search results
are highly relevant to specific fields like plant science or agriculture,
avoiding unrelated disciplines and document types. No geographic
limitations were set. The resulting 1,854 papers were imported into
Covidence (Melbourne, Australia), a standard systematic review
platform for Cochrane reviews. Covidence was used to screen studies
for eligibility according to the criteria outlined in Table 1. To
summarize, the criteria for inclusion required that all studies present a
model of weed emergence over time that must be calibrated or
validated using field data. Consequently, studies conducted exclu-
sively in greenhouses or controlled environments were excluded from
consideration.

Titles and abstracts were screened by two independent reviewers,
and disagreements were resolved by a third reviewer. Of the 1,854
papers, 148 studies (8%) passed the initial title and abstract screening
and subsequently underwent full-text review by two or three
reviewers. A total of 98 studies were included in the final dataset
(for a list of studies used and respective weed species, refer to
Supplementary Table S1). For studies excluded at the full-text stage,
the most common reasons were that the paper did not present
emergence over time (e.g., only final emergence was reported) or did
not present a model. Less common reasons were the absence of field
data, emergence data, or peer review. For the studies that were
included, we extracted data including, where available, the year and
location of the study, weed species, soil texture, cropping system, type
of seedbank (e.g., natural or seeded), experimental factors, the
equations used along with their estimated parameters, model
performance metrics (such as Root Mean Squared Error [RMSE]),
and species-specific threshold parameters (like base temperature and
base water potential).

Results and Discussion

Species and Geographic Distributions

Our dataset encompassed 102 plant species, although in some rare
instances, studies identified weeds only at the genus level (such as
Amaranthus spp., Echinochloa spp., and Bromus spp.) or referred
to the entire weed community without providing species

Table 1. Criteria used for title/abstract and full-text screening

Inclusion Exclusion

Peer-reviewed journal article
Presents weed emergence model with
temporal component

Calibrated or validated in the field

Not peer reviewed
Not a modeling paper
Germination modeling
No temporal
component

No field data
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identification (Supplementary Table S1). The species whose
emergence was modeled most frequently (13 instances) was
common lambsquarters (Chenopodium album L.). However, the
family that was modeled most frequently (83 instances) was
Poaceae (grasses; Figure 4). Overall, monocot weeds comprised
36% of the species in the studies, while dicot weeds made up the
remaining 64% (Supplementary Table S1). Nearly all studies
measured the emergence of weed species. A small number of
studies considered volunteer crops such as flax (Linum usitatissi-
mum L.) and canola (Brassica napus L.) (Dexter et al. 2010; Lawson
et al. 2006) or used a crop such as wheat (Triticum aestivum L.) as a
surrogate weed (Bullied et al. 2012). Monitoring and modeling
seedling emergence of crops along with weeds can be useful,
because volunteer crops can be considered weeds in some crops.
Further, understanding crop phenology aids in the implementa-
tion of time-specific weed management strategies, as illustrated in
Figure 1. For example, quantifying the tolerance of crops to
herbicides is crucial when deciding on the timing of application.
Therefore, the timing of control measures is influenced not only by
the temporal pattern of weed emergence but also by the phenology
of the crops.

Most studies were conducted in either North America (51%) or
Europe (30%), but some studies were conducted in South America,
Asia, or Africa (Figure 5A). The climate in which each study site
was located was described using the Köppen-Geiger climate
classification system (Kottek et al. 2006). Some articles used data
from multiple climatic zones. In these cases, each climate type was
recorded once per publication. The two climate types that occurred

most frequently were temperate (54%) and continental (26%)
(Figure 5B).

Existing models largely focus on the spring emergence of
annual weeds in temperate areas of North America and Europe.
Other patterns, for example, seedling emergence at the beginning
of the rainy season in tropical areas, are not well characterized in
the literature. Our analysis revealed clear geographic, climatic, and
taxonomic biases that rendered the task of generalizing weed
emergence models quite challenging.

Empirical Parametric Models

A comprehensive summary of almost all nonlinear models that we
found in modeling weed seedling emergence is presented in
Table 2. Most studies reported one or more empirical parametric
models. Among studies that focused on a single model type,
Weibull functions were the most common (40% studies), followed
by Gompertz functions (30% studies) and logistic functions (17
studies). Many of these studies reported several models of the
indicated type. For example, a single study might fit separate
models for different weed species, sites, or management treat-
ments. Some studies attempted to compare model parameter
values using mixed-effects models, including studies of common
sunflower (Helianthus annuus L.) and giant ragweed (Ambrosia
trifida L.) emergence in relation to hydrothermal time across the
midwestern United States (Clay et al. 2014; Davis et al. 2013).

The widespread use of Weibull, Gompertz, and logistic
functions is primarily attributed to their ease of use and

Figure 4. Distribution of weed families represented in the dataset collated from 98 seedling emergence modeling studies.
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straightforward parameterization. Additionally, when data are
transformed into a cumulative format, they often form an S-shaped
curve, which fits well with these models. These three functions as
well as sigmoidal functions are broadly suitable for predicting
cumulative seedling emergence based on calendar days or thermal
or hydrothermal time. However, notable differences exist between
these models, each with various formulations. For instance, as
detailed in Table 2, eight distinct versions of the Weibull model
have been employed, each differing in versatility and parametric
interpretation. One key difference, often causing confusion, lies in
the interpretation of the inflection point. In logistic and sigmoid
models, this represents themidpoint (e.g., time to 50% emergence).
In contrast, for Gompertz and Weibull models, it indicates 36.78%
[exp �1ð Þ] and 63.21% [1� exp �1ð Þ] of themaximum emergence,
respectively. Another critical consideration is that most S-shaped
functions yield nonzero values at time zero (x ¼ 0), which is
unrealistic. Weibull models are an exception, and even some of
their formulations incorporate a lag parameter l, determining the
onset of emergence (Table 2). While other functions can be
modified to ensure y ¼ 0 at x ¼ 0 or include a lag, such
modifications are not inherent and require additional equation
restructuring and coding. We also observed that the asymptote
parameter a, setting the maximum emergence value (Table 2), is
sometimes incorrectly reported as exceeding 100% (or >1 for
proportional data), which is not feasible and indicative of a
modeling artifact. Researchers should ensure that this parameter
does not surpass 100% (or 1), and if data are normalized, it is
unnecessary to include parameter a in the model, instead fixing it
at 100 (or 1).

As a general guideline, we recommend theWeibull model as the
most suitable option for most modeling practices, especially the
version that incorporates a lag parameter l. While some variations
of this model might appear complex (such as Equation 6 in
Table 2), our experience indicates that these more complex
formulations do not necessarily offer superior results compared
with those with simpler parameterization (like Equation 1).
Furthermore, complex models can pose challenges in estimating
initial values for fitting, potentially leading to issues like
convergence failure. Although the inflection point in the Weibull
model is set at 63.21%, which might not align with the
conventional preference for a 50% midpoint, this can be easily
adjusted. By including ln 2ð Þ in the equation, as demonstrated in
Equation 5 of Weibull in Table 2, the inflection point can be
recalibrated to 50%. This modification provides flexibility for

researchers accustomed to interpreting the midpoint as the time to
50% of an event. Ultimately, the Weibull model was found to be
among the top-performing models along with Gompertz based on
RMSE values (Figure 6), highlighting its suitability based on
relevance to emergence biology but also its statistical robustness.

Occasionally, to depict non-monotonic and potentially biphasic
emergence patterns, two S-shaped functions are combined (see
examples in Table 2). This approach is particularly relevant when
the presence of subpopulations with distinct biological attributes
results in multiple cohorts of emergence, a scenario that cannot be
adequately captured by a single, unimodal model. A notable
example of this is found in the study by Leon et al. (2015), in which
the emergence of itchgrass [Rottboellia cochinchinensis (Lour.)
W.D. Clayton] in Costa Rica exhibited a biphasic pattern. In this
tropical environment, the standard models like Weibull,
Gompertz, or logistic were insufficient for accurately modeling
the observed emergence pattern of R. cochinchinensis. Composite
(two-phase) models, while highly versatile in accommodating
complex emergence patterns, tend to overfit, thereby reducing
their generalizability. It is important to assess whether the
additional complexity is statistically justified by comparing the
error magnitude between simple and complex models. For
example, in Argentina, junglerice [Echinochloa colona (L.) Link]
emergence was suggested to be best explained by a double logistic
model with two inflection points (Picapietra et al. 2021). However,
the RMSE reported for the double-logistic model was only
marginally smaller than that of the other best, simple model: 9.08
versus 9.8, a difference that may not be significant to justify the
selection ofmore complexmodel. Additionally, the performance of
these models should be evaluated using independent data to
confirm their validity beyond the calibration dataset. Furthermore,
interpreting parameters and their derivatives in these composite
models becomes more complex. We observed that the three
composite models outlined in Table 2 yield unrealistic values for
time zero. This highlights the need for careful consideration and
validation when employing these more intricate modeling
approaches.

An alternative method to address multimodal emergence
patterns involves using daily seedling density instead of modeling
cumulative seedling emergence. Shem-Tov and Fennimore (2003)
monitored annual bluegrass (Poa annua L.) continuously for 41
mo and used waveform sine regression to describe the seasonal
(cyclical) patterns in seedling density. In a long-term study, A.
trifida emergence was recorded in terms of growing seasons after

Figure 5. Distribution of (A) continents and (B) Köppen-Geiger climate zones represented in the dataset collated from 98 seedling emergence modeling studies.
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Table 2. Major nonlinear model types used for modeling weed seedling emergence across 98 studies, with the recommended formulation of each model type
highlighted in bold

Function name Function versions Description

Number of
studies
(%)

Weibull 1. y ¼ 1� exp � x�l
� �

c
� �

2. y ¼ a 1� exp �b x � lð Þcð Þð Þ
3. y ¼ a 1� exp � bxð Þcð Þð Þ
4. y ¼ 1� exp � ln 2ð Þ x

b

� �
c

� �
5. y ¼ 1� exp � ln 2ð Þ x�l

b�l

� �
c

� �

6. y ¼ a 1� exp � x�bþk ln 2ð Þ1c
k

� �c� �� �

7. y ¼ a 1� exp � exp bð ÞxcÞð Þð Þ
8. y ¼ a� d exp � exp bð ÞxcÞð Þ

a: The parameter a represents the asymptote or the
maximum achievable value of y, often set at 100%. If a is
not specified in the equation, the default asymptote is 1,
suggesting that the emergence data are expressed as a
proportion rather than a percentage.

l (lag time): The parameter l denotes the lag time, which is
the time until the onset of emergence. In models incorpo-
rating a lag parameter, it is necessary to constrain the
model so that y ¼ 0 for x � l. In Equation 6, the lag dura-
tion is calculated as l ¼ b� k ln 2ð Þ1c . When fitting a model
with l, ensure that b > l for accurate modeling.

b: The parameter b has varying definitions across different
formulations:
In Equation 1, at x ¼ l þ b, y ¼ 63:21% of a.
In Equation 2, at x ¼ l þ 1

b, y= 63.21% of a.
In Equation 3, at x ¼ 1

b, y ¼ 63:21% of a.
In Equations 4, 5, and 6, at x ¼ b, y ¼ 50% of a.
In Equation 7, when x ¼ exp � b

c

� �
, y ¼ 63:21% of a.

In Equation 8, when x ¼ exp � b
c

� �
, ¼ 100� 63:21ð Þ% of

a� dð Þ.
c: In all equations, c functions as a shape parameter, influ-
encing the curve’s form and behavior.

k: The parameter k serves dual purposes. It acts as both a
scaling factor, affecting the rate of change, and a shifting
factor, adjusting the horizontal positioning of the curve.

d: The parameter d determines the range between the mini-
mum and maximum (upper limit a) values of emergence.
This parameter should be used cautiously in modeling
emergence, as it implies an initial emergence of a � dð Þ
percent at time zero.

40 (40.8%)

Gompertz 1. y ¼ a exp �exp �cðx � bð ÞÞð Þ
2. y ¼ a exp � exp � x�ð Þ

c

� �� �

3. y ¼ a exp � exp c ln x þ 0:0000001ð Þ � ln bð Þð Þð Þð Þ
4. y ¼ a exp �c exp �b xð Þð Þ

a: The asymptote or upper limit of y, often set at 100%.
b: This parameter indicates the inflection point in Equations
1, 2, and 3, where at x ¼ b the respective value of y will
be ~36.78% of the asymptote a. In Equation 4, when
x ¼ ln c

b

� �
, then y � 36:78% of asymptote a.

c: This is scale parameter influencing rate of emergence, but
the value and impact of c differs across these equations.

None of the Gompertz model formulations guarantee y ¼ 0
when x ¼ 0.

30 (30.6%)

Logistic (log-
logistic)

1. y ¼ a
1þ x

bð Þc

2. y ¼ 100
1þexp b�ln xð Þð Þ

3. y ¼ a
1þexp �c x�bð Þð Þð Þd

4. y ¼ a
1þexp �c x�bð Þð Þ

5. y ¼ a
1þb exp �cxð Þ

6. y ¼ a
1þexp c log x�log bð Þð Þ

a: The asymptote or upper limit of y, often set at 100%.
b: The parameter b acts as a shifting factor along the hori-
zontal axis and often determines the value of x at which
the inflection point of the curve occurs. In Equation 5, the
parameter b modifies the initial value of the function when
x is close to zero. When x ¼ 0, y ¼ a

1þb; therefore, the size
of b affects the starting point of the curve on the y axis.
In Equations 1, 4, and 6, when x ¼ b, y ¼ 50% of a.
In Equation 2, when x ¼ exp b

c

� �
, y ¼ 50.

In Equation 3, when x ¼ b� 1
c ln 2

1
d � 1

� �
, y ¼ 50% of a.

Also, when x ¼ b, y ¼ a
expðln 2ð ÞdÞ.

In Equation 5, when x ¼ ln bð Þ
c , y ¼ 50% of a.

c: The parameter c mainly controls the emergence rate or the
steepness of the curve.

d: The parameter d modifies the shape of the curve, particu-
larly its curvature as it approaches the asymptote.

None of the logistic model formulations guarantee y ¼ 0
when x ¼ 0.

17 (17.3%)

Sigmoid 1. y ¼ a
1þexp �x�b

cð Þ
2. y ¼ 1

1þexp �x�b
cð Þ

a: The asymptote or upper limit of y, often set at 100%.
b: This parameter indicates the inflection point where at
x ¼ b, the respective value of y ¼ 50% of a (Equation 1)
or y ¼ 0:5 (Equation 2).

c: This is a scale parameter influencing rate of emergence or
the steepness of the curve.

None of the sigmoid model formulations guarantee y ¼ 0
when x ¼ 0.

3 (3.1%)

(Continued)
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Table 2. (Continued )

Function name Function versions Description

Number of
studies
(%)

Composite 1. y ¼ a 1� exp �bxð Þð Þ þ 100�a
1þexp �x�c

dð Þ

2. y ¼ a
1þexp �x�b

cð Þ þ 1� að Þ 1� exp � x�dþlnð21s Þ
k

� �s� �� �

3. y ¼ d þ a
1þk1 exp �c1 x�b1ð Þð Þ � a

1þk2 exp �c2 x�b2ð Þð Þ

Equation 1 is a composite of Weibull (first part) and sigmoid
(second part) models. Parameter a controls the upper limit
for the first model, while the sigmoid function part has an
upper limit of 100� a, making the combined upper limit
of the entire function 100. Parameter b is the emergence
rate constant, c represents the inflection point of the sig-
moid curve, and d controls the steepness of the sigmoid
curve.

Equation 2 combines a sigmoid (first part) with a Weibull
(second part) model. The upper limit of first part is deter-
mined by a, and the second part by 1� a. In the sigmoid
part, parameter b indicates the inflection point, while c is a
scale parameter controlling the rate of emergence. In the
Weibull part, d is the inflection point, s is the shape param-
eter, and k is both a scaling factor and a shifting factor.

Equation 3 is composed of two logistic functions, where the
upper limit is determined by sum of aþ d; k1&2 and d1&2
determine the rate and shape of the logistic growth. Spe-
cifically, k influences the initial steepness of the curve,
while d affects the rate at which the curve approaches its
maximum value; b1 and b2 are inflection points. This
composite model can result in y > 0 or y < 0 at x ¼ 0,
which are not realistic outcomes for seedling emergence.

4 (4.1%)

Chapman y ¼ a 1� exp �bxð Þð Þc a: The asymptote or upper limit of y, often set at 100%.
b: The parameter is a rate constant and also inflection point;

e.g., for c= 1, y= 63.21% of a at x = b, similar to a Weibull
model. The midpoint (i.e., y ¼ a� 0:5) can be obtained
using: x ¼ � 1

b ln 1� 1
2

� �1
c

� �
c : This exponent parameter adjusts the growth rate and cur-

vature of the model. The larger the value of c, the more
gradual is the emergence progress.

1 (1%)

Hyperbola y ¼ ax
bþx a: The asymptote or upper limit of y, often set at 100%.

b: The parameter b essentially acts as a half-maximal con-
stant. It is the value of x at which y reaches half of its
maximum value a.

1 (1%)

Sine y ¼ aþ k sin 2�x 1
b þ c

� �
This function models seasonal (cyclical) changes in seedling

density, not the cumulative emergence. The initial density
is set by parameter a, k is the slope or rate parameter, b is
the cycle length (e.g., 365 d), and c is a constant.

1 (1%)

Figure 6. Comparison of five major model types used for modeling weed seedling emergence, based on their reported Root Mean Squared Error (RMSE) values. The box spans
from the first to the third quartile, encompassing the interquartile range (IQR). Within each box, the solid line indicates the median, whereas the solid circle represents the mean.
Whiskers extend to the smallest and largest values within 1.5 times the IQR. Empty circles represent individual RMSE values extracted from studies. For a detailed description of the
model types, refer to Table 2.
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burial (Harrison et al. 2007). Repeated-measures data from this
experiment were analyzed by jointly fitting a binomial model (to
account for the binary variable, emergence or not) and a geometric
model (to account for the number of seasons before emergence).

Four studies focused on the use of shrub phenology to predict
weed emergence. Two of these studies also reported new Gompertz
models predicting weed emergence in terms of (hydro)thermal
time (Masin et al. 2005; Otto et al. 2007). The other studies focused
more on development of the phenological calendar but compared
their results with those of existing models (Cardina et al. 2007,
2011). Phenological approaches are purely correlative and there-
fore may be limited in their precision or vulnerable to changes in
the phenology of plants used as indicators. Nonetheless, weed
emergence predictions based on phenological cues are widely
accessible to farmers, unlike most of the tools discussed in this
review, and therefore merit increased attention.

Sixteen studies compared multiple functions for use in
empirical parametric models. Although this practice is likely
common during exploratory stages of data analysis, many
published papers focus on the best model rather than describing
the results of all models. As model performance is context specific,
it is best to avoid comparing the performance of different model
types fit in different studies. Therefore, studies that report
comparisons using a single dataset provide helpful insights into
the relative performance of different functions.

Studies comparing multiple empirical parametric functions
did not identify a clear front-runner. Dorado et al. (2009) used
logistic, generalized logistic, Gompertz, and Weibull functions to
predict emergence of 10 weed species in corn (Zea mays L.) in
Spain and Portugal. The Gompertz function provided the best fit
for the greatest number of species–site combinations, but each of
the three other functions provided the best fit for at least one
species–site combination. Gompertz and Weibull models
predicted tall fescue [Schedonorus arundinaceus (Schreb.)
Dumort; syn.: Festuca arundinacea Schreb.] and wheatgrass
[Agropyron desertorum (Fisch. ex Link) Schult.] emergence
timing more successfully than logistic, Verhulst, or Richards
models (Behtari and Luis 2012). A study of sterile oat [Avena
sterilis ssp. ludoviciana (Durieu) Gillet & Magne] found that a
Weibull model outperformed Gompertz and log-logistic alter-
natives (Sousa-Ortega et al. 2021a). Based on a study of velvetleaf
(Abutilon theophrastiMedik.) emergence across 11 site-years and
two continents, Egea-Cobrero et al. (2020) concluded that the
Weibull generally achieved greater prediction accuracy than the
logistic model. This study also demonstrated the value of using
multiple performance indicators rather than relying exclusively
on the coefficient of determination (R2). The use of the R2 for
evaluating the performance of nonlinear models is strongly
discouraged. This is because a model can achieve high R2 values
while its predictions still deviate significantly from the observed
data. Instead, our preferred metric is the RMSE. RMSE is
straightforward to calculate, with most software packages readily
providing it, and it is not prone to the issues associated with R2.
RMSE offers a more reliable measure of model accuracy by
quantifying the average magnitude of the prediction errors, thus
providing a clearer indication of the model’s performance.
Supplementary Figure S1, using hypothetical emergence data,
illustrates that two models with starkly different performances
can yield identical high R2 values (in this case, 0.9946), despite the
clear lack of fit in one. However, when comparing models based
on RMSE, the less effective model registers an RMSE of 37.7%,
whereas the more appropriate model has an RMSE of just 3.3%.

RMSE values compiled from various studies for five major
model types revealed Gompertz and Weibull models as the top
performers, followed by the sigmoid model, albeit with consid-
erable variation within each model type (Figure 6). The average
RMSE for Gompertz and Weibull models was around 13%,
whereas it was approximately 15% for the sigmoid model.
However, several challenges arise with the RMSE data reported
here. First, not all studies used RMSE values; many provided R2 or
other metrics like Akaike information criterion (AIC) instead.
Second, the RMSE data we present amalgamate values from both
the model calibration and validation phases, as it was difficult to
ascertain whether the reported values are from the calibration or
validation phase in many cases. Third, some studies evaluate
different models, model modifications, or methods for calculating
thermal time, leading to the reporting of RMSEs for various
combinations. This variety complicates the task of determining
which RMSE or set of RMSEs most accurately represents the
outcomes of a study. We attempted to compile all reported values
despite these challenges.

Although model parameters are usually estimated using
nonlinear regression, other approaches are possible. For example,
genetic algorithms have been successfully used for parameter
estimation in empirical models (Haj Seyed Hadi and Gonzalez-
Andujar 2009) as well as more mechanistic models (Blanco et al.
2014). Although such approaches to model fitting are not always
necessary andmay be computationally intensive, they can be useful
when regression techniques do not perform well.

Choices about model structure and parameter optimization are
important, but it is also important to recognize that these choices
cannot address drawbacks common to all empirical parametric
models. These drawbacks have been well summarized elsewhere,
especially by Cao et al. (2011) and Royo-Esnal et al. (2020). It is
noteworthy that most of the statistical issues outlined by Onofri
et al. (2018, 2022) in the context of germination modeling are also
applicable to the analysis of emergence data. Briefly, the issues
highlighted may encompass, but are not limited to, the non-
independence of samplings and the challenge of not knowing the
exact moment of emergence between samplings, leading to
censored data. Additionally, the selection of poor initial
parameters or suboptimal optimization algorithms can lead to
inaccurate model solutions. There are also several biological
problems. One biological problem is that weed emergence is not a
single process but rather the result of multiple processes combined.
These processes—dormancy release, germination, and preemer-
gent growth—are influenced by environmental conditions in
different ways. Another problem is that each stage of weed
emergence is influenced by multiple interacting signals; most of
this complexity is not captured by a simple thermal or
hydrothermal time index. In addition, weeds exhibit intraspecific
(interpopulation and even intrapopulation) variation that limits
prediction accuracy.

Empirical Nonparametric Models

Our dataset contained seven studies presenting nonparametric or
semiparametric models. Five of these studies also included
parametric models fit with nonlinear regression for comparison.

Cao et al. (2011, 2013) largely pioneered the use of non-
parametric modeling in this context, drawing on established
nonparametric estimation techniques that had not previously been
applied to weed emergence data. These studies predicted
emergence of ripgut brome (Bromus diandrus Roth) by estimating
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the cumulative distribution function of cumulative hydrothermal
time using nonparametric methods, without presupposing the
shape of the distribution. A few subsequent studies built on this
research. Gonzalez-Andujar et al. (2016b) modeled emergence of
awned canary grass (Phalaris paradoxa L.) using similar methods
in southern Spain. They found that a nonparametric estimator
outperformed parametric models (logistic, Gompertz, or Weibull)
in its ability to describe complex emergence patterns. However,
both nonparametric and parametric methods showed a poor
predictive ability when tested on independent data from different
years, perhaps because factors other than cumulative hydrothermal
time influenced emergence. Sousa-Ortega et al. (2021b) used
nonparametric methods to predict emergence in three canarygrass
species: short-spiked canarygrass (Phalaris brachystachys Link),
little-seed canarygrass (Phalaris minor Retz.), and P. paradoxa.
The performance of nonparametric models was similar to the
performance of parametric Weibull models. Recently, Onofri et al.
(2022) developed a new R package, DRCTE, which offers versatile
options for fitting nonparametric models to germination and
emergence data.

Artificial neural networks (ANNs) represent another alter-
native to conventional nonlinear regression techniques. In the
context of weed emergence, ANNs were first used to model
emergence of wild oat (Avena fatua L.) (Chantre et al. 2012).
Temperature and moisture values were included as separate inputs
to the ANNs, rather than being combined into a hydrothermal
index as in typical nonlinear regressions. This bivariate structure
enabled ANNs to provide better predictions than Weibull or
logistic models on a test dataset (Chantre et al. 2012). In a later
study, a bivariate ANN outperformed a Weibull model in terms of
RMSE of the test set bymore than 70% (Chantre et al. 2014). ANNs
based directly on meteorological data—not soil conditions—have
successfully described the irregular emergence of A. fatua, Italian
ryegrass (Lolium multiflorum Lam.), and hairy vetch (Vicia villosa
Roth) in the semiarid Pampean region of Argentina (Chantre
et al. 2018).

The primary advantages of the approaches developed in these
studies are increased flexibility and alleviation of statistical
concerns. However, these approaches sometimes suffer from
overfitting and are more difficult to implement than nonlinear
regression, largely explaining why they remain uncommon in the
literature (Chantre et al. 2018; Gonzalez-Andujar et al. 2016a). In
addition, empirical models—parametric or not—do not represent
underlying eco-physiological processes contributing to emergence.
Representing these processes requires a more mechanistic
approach.

Mechanistic Models

Only six studies were characterized as mechanistic, and these
studies varied in their complexity. At the simpler end of the
spectrum, some studies used parametric equations to create
separate models of dormancy release, germination, and/or
preemergent growth (Oryokot et al. 1997). For example, pigweed
(Amaranthus spp.) emergence was modeled as the process of
germination (dependent on temperature and moisture) followed
by the process of preemergent shoot elongation (dependent on
temperature; Oryokot et al. 1997). These modules were designed
for incorporation into a crop growth model. Similarly, C. album
germination wasmodeled as a function of hydrothermal time, then
shoot elongation was modeled as a function of thermal time

(Roman et al. 2000). Blanco et al. (2014) modeled A. fatua
dormancy release in terms of afterripening thermal time and
germination in terms of hydrothermal time. Logistic functions
were used for both components, and a genetic algorithm was used
for parameter estimation. The resulting model was more
parsimonious than ANN or regression approaches for the same
system (Blanco et al. 2014).

A more complex model of V. villosa emergence included four
submodels: release of physical dormancy, release of physiological
dormancy and germination thermal requirements, moisture require-
ments, and preemergent growth (Renzi et al. 2018). Environmental
data requirements for this model were typical (i.e., soil temperature
and moisture), but the model did require more biological data than
empirical approaches, because cardinal temperatures were needed for
each submodel (see following section). Other mechanistic models
may require additional environmental data as well. A mechanistic
model parameterized for C. album, ladysthumb (Polygonum
persicaria L.; syn.: Persicaria maculosa Gray), and corn spurry
(Spergula arvensis L.) required data on the date of soil cultivation, soil
temperature, and soil penetration resistance (Vleeshouwers and
Kropff 2000). One of the most complex weed emergence models is
AlomySys, a model of blackgrass (Alopecurus myosuroides Huds.)
emergence that includes submodels focused on the soil environment;
seed distribution after tillage; seed survival, dormancy, and
germination; and preemergent growth (Colbach et al. 2006).
AlomySys demonstrates the potential of mechanistic approaches to
provide detailed representations of weed biology and the effects of
management on weed emergence. This model (as FlorSys) was later
extended to other species using functional traits (Gardarin et al. 2012).

After more than 25 years of development, data requirements for
parameterization and application remain a major limitation of
mechanistic models. Advantages of these models include their
potential for high accuracy and their capacity to yield insights into
processes underlying weed emergence. Mechanistic models are
often favored for their ability to predict the actual number of
seedlings, rather than just a relative number, thus enabling
applications such as forecasting the impact of weeds on crop yields.
However, even with highly accurate emergence models, determin-
ing the absolute number of seedlings necessitates an accurate
estimation of seedbank size, which is inherently variable across
surface and with depth and time.

Species’ Threshold Parameters

Thermal and hydrothermal time are normally calculated according
to the assumption that emergence does not occur below base
temperature Tb or water potential cb values and occurs more
rapidly with increasing temperature above Tb (see later discussion
of why increase in rapidity does not apply to water potential value
above cb). The threshold values vary between weed species and
may be determined in laboratory studies before model develop-
ment (e.g., Dorado et al. 2009) or selected according to which
values produce the best-fitting models of observed field emergence
(e.g., Norsworthy and Oliveira 2007). Temperature and water
potential requirements also vary at population and individual
levels within weed species, but this intraspecific variation is not
easily accounted for in models of seedling emergence. Some
models account for inhibitory effects of high temperatures on
germination, for example, by imposing a ceiling temperature, but
most models do not. The importance of this parameter depends on
climatic context.
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Figure 7. Base temperature (Tb) of 100 weed species compiled from 98 seedling emergence modeling studies along with the histogram displaying the frequency distribution of
this threshold parameter. Horizontal line on a data point (mean), if present, indicates the range of base temperature values found for the given species.
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We compiled Tb data for 100 species (as shown in Figure 7) and
cb for 57 species (Figure 8). Tb values ranged from −3.1 C in
smallseed falseflax (Camelina microcarpaAndrz. ex DC.) to 28.0 C
in tropic ageratum (Ageratum conyzoides L.), with most weeds
(40%) having Tb values between 0 and 5 C. Regarding cb, most
species (38%) fell within the range of −1.0 to −0.5 MPa. However,
cb estimates are less reliable, as evidenced by extreme values, such
as−30MPa inA. trifida or values close to zero (−0.008MPa in wild

radish [Raphanus raphanistrum L.]). Extremely negative cb values
often arise when hydrothermal time is determined by adjusting cb
to best fit field emergence data, potentially indicating that
emergence is not highly sensitive to soil moisture and that a
thermal time model might suffice. The most accurate estimates of
cb are generally obtained through germination assays under
varying water potential levels, followed by fitting hydrotime
models (Bradford 1990). Seedling emergence models typically use

Figure 8. Base water potential (ψb) of 57 weed species compiled from 98 seedling emergence modeling studies along with the histogram displaying the frequency distribution of
this threshold parameter. Horizontal line on a data point (mean), if present, indicates the range of base water potential values found for the given species.
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a single cb value, while it is known this parameter varies from seed
to seed and can be better described by statistical distributions
(Bradford 2002; Mesgaran et al. 2013). Furthermore, water and
temperature can interact to affect these threshold parameters
(Mesgaran et al. 2017), but due to the high variability of field-
collected seedling emergence data, these nuances are often
negligible or difficult to discern. We also observed that for species
with multiple estimates of Tb (Figure 7) or cb (Figure 8), there is
considerable variability in these values. This variation can have
biological origins, stemming from differences among populations,
or it can be methodological, arising from variations in exper-
imental conditions or the statistical models used.

Temperature and Moisture Data

Most models of weed emergence, including nearly all empirical
parametric models, use thermal or hydrothermal time as the
independent variable. Our dataset contained 37 studies that used
thermal time, 27 studies that used hydrothermal time, 23 studies
that compared multiple measures of time (e.g., thermal, hydro-
thermal, photo-hydrothermal, and/or chronological), 2 studies
that compared hydrothermal time with bivariate hydrotime and
thermal time inputs (the bivariate approaches involving ANNs), 5
studies that used only chronological time, and 4 studies with more
complex data inputs. Hydrothermal times used in seedling
emergence models are not calculated in the original manner
devised for modeling seed germination responses to water
(Bradford 2002; Mesgaran et al. 2017). They are more accurately
described as moisture-constrained thermal times. The crucial
difference lies in how these models treat the moisture variable, c.
In seedling emergencemodels,c is converted into a binary variable
HT (HT = 1, if c > cb or HT =,0, if c � cb), and thermal time
is accumulated only during periods when this variable takes the
value 1. In contrast, true hydrothermal timemodels accumulate the
magnitude of the difference c � cb (when c> cb) in a similar
manner to thermal time models. This distinction may explain why
some studies find little difference between thermal time and
hydrothermal time models, as treating moisture as a binary
variable might not significantly alter the accumulation of thermal
time, whether or not moisture is included. Additionally, as
mentioned earlier, unlike thermal time, which is calculated based
on a single Tb, authentic hydrothermal time models developed for
seed germination use a distribution of cb values rather than a
single fixed value.

In general, our review supports the use of hydrothermal time
but does not invalidate the use of thermal time. Models of both
types tend to be successful in the context in which they were
developed, but are difficult to extrapolate to other cropping
systems or locations. Masin et al. (2010) modeled emergence of A.
theophrasti and johnsongrass [Sorghum halepense (L.) Pers.] using
thermal time with a predefined base temperature of 5 C, thermal
time with base temperatures estimated by bootstrapping for each
species and ecotype, or hydrothermal time with estimated base
temperatures and base water potentials. All three models provided
good predictions of emergence dynamics for both species.
However, adding the soil moisture component did slightly improve
model fit by predicting pauses in emergence caused by low soil
moisture. In some cases, model accuracy might be further
improved by the inclusion of photoperiod data (Royo-Esnal
et al. 2015a, 2015b). However, the physiological mechanisms
underlying the influence of photoperiod on seedling emergence
require further investigation.

Including more data does not always improve performance. A
study of American sicklepod [Senna obtusifolia (L.) Irwin &
Barneby] evaluated cumulative seedling emergence as a function of
chronological, thermal, or hydrothermal time (Reinhardt
Piskackova et al. 2020b). Interestingly, the authors found that
chronological data produced the most negative AIC, suggesting
better model performance. This finding likely indicates that
neither temperature nor moisture was strongly limiting during
the period of emergence (Reinhardt Piskackova et al. 2020b; see
also Leon et al. 2015). Sousa-Ortega et al. (2021a) evaluated
A. sterilis ssp. ludoviciana emergence models based on thermal
developed by Leguizamón et al. (2005) on a new test dataset. The
authors also developed and tested new models based on
hydrothermal time. Inclusion of soil moisture did not improve
the performance of models from Leguizamón et al. (2005), but it
did improve the accuracy of the newly developed model (Sousa-
Ortega et al. 2021a).

Our review also highlights several key characteristics of
temperature and moisture data used in weed emergence models.
Amore general source of variation stems from the fact that (hydro)
thermal time is typically measured by calculating degree days. The
degree-day concept does not fully capture plant responses to their
environment, and the choice of calculation method can be
important (Bonhomme 2000; Roltsch et al. 1999). For example,
thermal time is frequently calculated by averaging the maximum
and minimum daily temperatures, then comparing the result to a
base temperature. This method can sometimes be misleading, for
example, if the maximum daily temperature is above the base
temperature but the calculated average is below the base
temperature. Alternatives include triangulation and sine-wave
methods or use of hourly data collected by soil temperature
sensors. Additionally, while most weed seeds germinate in the top
5-cm layer of soil, accurately measuring soil moisture at this depth
is challenging and perhaps not very accurate. Moreover, this layer
is not the only soil stratum from which temperature and moisture
data should be collected as some seeds can germinate from deeper
layers. Determining the appropriate depth or depths for data
collection is not always straightforward, adding to the complexity
of accurately assessing the conditions affecting seed germination
(Cao et al. 2011). Data on soil temperature and moisture are
frequently measured in situ or estimated using software such as the
Soil Temperature and Moisture Model (STM2; https://www.ars.u
sda.gov/research/software/download/?softwareid=209; Spokas
and Forcella 2009). Neither method is infallible or highly accessible
to farmers.

Part of the promise of machine learning approaches is that they
might function using meteorological data (e.g., air temperature,
precipitation) and without the need for users to input biological
parameters like base temperatures (Chantre et al. 2018). However,
there are limits to what can be achieved using meteorological data
alone. Weed emergence is also responsive to site-specific factors
such as landscape position and the presence of crop residue (Page
et al. 2006). Therefore, information about the precise location of a
field and its management may help maximize the accuracy of weed
emergence predictions. Despite these caveats and sources of
variation, models based on either thermal or hydrothermal time
are generally robust.

Management Practices

Several of the studies included in our dataset measured the effects
of weed management on emergence. For example, mechanical
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weed control practices (in-row cultivation and rotary hoeing)
changed the parameters of a Gompertz equation for weed
emergence in dry bean (Phaseolus vulgaris L.) (Amador-Ramirez
et al. 2002). Some studies have found that tillage treatments
influence weed emergence time (Bullied et al. 2003), whereas other
studies have found no effect of tillage (Barnes et al. 2017). Some
forms of tillage may complicate the prediction of weed emergence
by increasing heterogeneity in the soil or weed seedbank
distribution (Roman et al. 2000). Like tillage, application of
preemergence herbicides can alter the timing of Palmer amaranth
(Amaranthus palmeri S. Watson) emergence (Chahal et al. 2021).
Preemergence herbicides may delay A. palmeri emergence through
their residual activity, but farmers should be prepared to perform
additional management if needed once the residual activity
dissipates (Chahal et al. 2021). Cultural factors such as crop
sowing time also affect weed emergence (Goulart et al. 2020;
Shivrain et al. 2009). One study measured the effects of tillage,
herbicide application, and soybean [Glycine max (L.) Merr.]
seeding rate on common purslane (Portulaca oleracea L.)
emergence (Khakzad et al. 2019). All three factors altered
emergence dynamics, demonstrating the value of considering
multiple management practices simultaneously. However, what
may appear as direct causal relationships between cropping system
management and weed emergence can sometimes be coincidental
or mediated through other factors. For instance, the impact of
tillage on seedling emergencemight be attributed to its alteration of
seed placement within the soil profile. This change in position can
affect the hydrothermal conditions surrounding the seed, as well as
the physical resistance the seedling encounters in reaching the soil
surface.

Certainly, the idea that management practices within cropping
systems can influence the timing of weed emergence is well
established in both scientific research and among farmers.

Modeling efforts do have the potential to optimize manage-
ment. This principle is especially true for tactics that rely on
changing weed emergence times. Notably, false and stale seedbank
tactics work by stimulating weed emergence and then killing the
newly emerged, vulnerable weeds. Weed emergence models could
be used to determine the ideal timing and probable efficacy of these
tactics (Travlos et al. 2020). Similarly, models could help farmers
determine whether a practice like delayed crop planting is
worthwhile as a weed control measure (Schutte et al. 2008).

More generally, weed emergence models can identify the best
timing for any mechanical or chemical weed control operation and
thereby reduce the likelihood that a follow-up operation will be
needed. Our review shows that a weed emergencemodel based solely
on hydrothermal time can identify this timing with considerable
accuracy in the cropping system and location for which it was
parameterized. However, generalizing the models to a novel system
may require more information, including information about the
management practices recently applied in the novel system.

Future Directions

Anthropogenic trends such as climate change and cropping system
intensification threaten to increase weed pressure in cropping
systems worldwide (Storkey et al. 2021b). At the same time, weed
control measures have environmental as well as economic costs,
and indiscriminate application of these measures will reduce their
efficacy. Addressing these overlapping challenges requires adop-
tion of an integrated weed management paradigm grounded in
weed ecology (MacLaren et al. 2020; Mortensen et al. 2012).

Weed emergence modeling is a good example of a method in
which ecological data support more sustainable weed management.
This systematic review demonstrates that the irregular patterns of
weed emergence in the field reflect aspects of weed biology and
environmental conditions. These relationships can be understood
and predicted to a degree, enabling farmers to time their weed
management operations for maximum efficacy and efficiency. Our
review also demonstrated that, despite substantial progress in the
field of weed emergencemodeling, these models are not yet assisting
most farmers. Three major barriers are that (1) weed emergence
models are time-consuming to develop, (2) models are difficult to
apply in new contexts, and (3)mostmodels have not been translated
into user-friendly decision support tools.

Both empirical and mechanistic models have traditionally been
produced through time-intensive laboratory and field studies. It is
difficult to perform these tasks (e.g., weekly counting of emerged
seedlings) at a very large scale. Consequently, automating parts of
data collection could accelerate model development. We recom-
mend increased research on image analysis methods to rapidly
produce data on emergence time (Reinhardt Piskackova et al.
2020a). Weed detection methods are advancing rapidly in support
of site-specific weed management programs (Gerhards et al. 2022)
and might be readily tailored to this use. Once data are collected,
machine learning techniques such as ANNs also merit increased
attention, given their flexibility and ability to handle multivariate
inputs and outputs (Gonzalez-Andujar et al. 2016a).

Weed emergence models frequently only work well for the
location, cropping system, and weed population used to train the
model. For example, annual ryegrass (Lolium rigidum Gaudin)
showed different emergence patterns in different regions of Spain,
and no single Weibull model was appropriate for all sites (Sousa-
Ortega et al. 2020). In addition to climatic variability, interpopu-
lation variability can limit prediction accuracy (Loddo et al. 2019).
Most weed emergence models have not been tested in many places
or on many populations of the modeled weed species, so global
analyses of their performance would be valuable (Egea-Cobrero
et al. 2020). Developing a better understanding of when and how
underperforming models might be adjusted in the field would be
valuable. For example, many farmers perform some weed scouting.
Studies on weed emergence tend to describe modeling as a way to
reduce the need for scouting (Reinhardt Piskackova et al. 2020b),
although not a replacement (Martinson et al. 2007). We propose
that scouting data could instead be more actively integrated into
model development or even used to make early-season corrections
to model parameters.

A few online and software tools (e.g., WeedCast, AlertInf,
WEPS-ANN) have made weed emergence predictions accessible to
farmers and other stakeholders (Royo-Esnal et al. 2020; Šoštarčić
et al. 2021). More such tools are needed. Although weed emergence
models are useful on their own, they have even greater value as
components of comprehensive models covering all stages of weed
life cycles (Bagavathiannan et al. 2020; Molinari et al. 2020). Such
comprehensive models provide decision support and demonstrate
the long-term effects of integrative weed management. In this
respect, they differ from most current emergence models, which
are limited by their short-term focus (Royo-Esnal et al. 2020). As
an alternative to this comprehensive vision, a more targeted
decision support tool might include multiple components,
including weed emergence models, that help farmers with time
management operations such as herbicide applications (Figure 1).
The need for time-specific weed management is both well
recognized (Buhler 2002) and increasingly urgent, given worsening
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stressors, including climatic variability, species’ invasions, and
herbicide resistance. Consequently, there is no better time to
translate research on weed emergence into practice.

Supplementary material. For supplementary material accompanying this
paper visit https://doi.org/10.1017/wsc.2024.25
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