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ISOMORPHIC SUBGROUPS OF FINITE »-GROUPS
REVISITED

WILLIAM SPECHT

Several papers of George Glauberman have appeared which analyze the
structure of a finite p-group which contains two isomorphic maximal subgroups.
The usual setting for an application of these results is a finite group, a p-sub-
group, and an isomorphism of this p-group induced by conjugation. In this
paper we prove a stronger version of Glauberman’s Theorem 8.1 [1].

THEOREM A. Suppose that H is a finite group and P is a weakly closed sub-
group of some Sylow p-subgroup of H with respect to H. Assume that for some
heH

(P,P"Y =H and |P:P N P" = p.

Let A be a subgroup of Aut(P) that contains the automorphisms induced by
conjugation by the elements of Ny (P). Suppose that some element of A does not
fix Q = P M P~

Take Q* C Q maximal such that Q* < H and such that there exists an element
a € A that fixes Q* but not Q. Let n be the smallest positive integer such that
o fixes Q. Let P = P/Q* = Py,and P,y = [Py, P). Then Py = 1. Furthermore:

(@) If Py = 1, then |P| < p.

(b) If Py 1, Py = 1 and p = 2, then P is the direct product of E(p) and
an elementary group, and n = 2.

(c) If Py # 1, Py = 1 and p # 2, then n is a divisor of p, p — 1, 0r p + 1,
and either P ~ E(p) or P ~ E(p) X Z,. In the latter case p = 3 and there exists
a € A’ such that o fixes Q but o does not.

(d) If Py 5 1, then p = 3, P ~ E*(p) and n = 2.

Theorem A is exactly Glauberman’'s Theorem [1, 8.1] with the inclusion
of “p = 3" in conclusion (c). E(p) is the non-Abelian group of order p3 which
is generated by two elements of order p. E*(p) is a particular p-group of order
p% defined in [1]. We note that Theorem 2 of Glauberman’s paper [1] is a
consequence of his Theorem 8.1. Thus Theorem A will also improve Glauber-
man’s Theorem 2 [1].

To illustrate the application of Theorem A we include Theorem B, a corol-
lary of Theorem A. In the statement of Theorem B, property & is any property
of a finite group which is inherited from subgroups. For example &’ might be
““the group involves SL(2, p)".
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THEOREM B. Suppose G is a finite group, p is an odd prime, and S is a Sylow
p-subgroup of G. Assume that some p-local subgroup satisfies P and choose a
p-local subgroup G* = N(D) satisfying P with |G*|, maximal. Suppose that
S* = Ng(D) is a Sylow p-subgroup of G*, S* = S, |[S* : D| = p, and that there
exists h € G* such that H = (S*, S**) satisfies 2.

Then S* is elementary abelian, E(p), E(3) X Z3 or E*(3).

Proof. Choose y € Ns(S*) — S* such that y*» € S* and let 4 be the auto-
morphism group induced on S* by (Nyz(S*), ¥). Pick D* C D maximal such
that D* < H and y fixes D*. If D* 3 1 then N(D*) D (H, y) which contra-
dicts the choice of G*. Thus D*¥ = 1 and Theorem B follows from Theorem A.

Before proving Theorem A we need one preliminary lemma.

LEmMA 1. Let P >~ E(p) X Z,, suppose a € Aut(P) is a p-element and 1is
nontrivial on P/Z(P). Then o® = 1if p = 5.

Proof. Choose generators of P/Z(P), a and b, such that
a=ab and b*=0b (modulo Z(P)).

Let ¢ = [a, b] and choose d € Z(P) such that Z(P) = (¢, d). Now (¢) >~ Z,
so « centralizes P’ = (c) as well as Z(P)/P’. Thus @ may be written as:
(1,0,0,0) —» (1,r,s, 1)
- (0,1,0,0) — (0, 1, 0,0)
" (0,0,1,0) — (0,¢1,0)
0,0,0,1) > (0, u,2,1)

where (f, g, &, 1) = a’c?d"b*. An inductive argument shows that for n = 4,

(1,0,0,0)—)(1 nr—l—( )ts—l—( )tv-l—( )u,ns—l— (g)v,n)

.(0,1,0,0)— (0,1,0,0)
" (0,0,1,0) — (0, nt, 1,0)

0,0,0,1) — (0 nu + ( )tv nv, 1)

Therefore if p = 5, p divides p, (P), and (g) and so o centralizes P.
Since @ € Aut(P), o = 1.

Proof of Theorem A. We will adopt the notation of Glauberman [1]. In
particular ¢(x) = (x*)* and the conditions of his Section 7 are satisfied by H
and P.

By induction on |Q| we may assume that Q* = 1. Applying Glauberman’s
Theorem 8.1 [1] (see comment after Theorem A) we see that P ~ E(p) X Z,
and it remains to prove that p = 3. To this end suppose that p = 5.
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By (c) of Glauberman’s 8.1 we may assume that o fixes Q but & does not.
In particular we may assume that a is a p-element. By Lemma 1, o = 1.

Now let M be the semidirect product of P by (d, k) where « is the automor-
phism of P induced by %k from Lemma 7.3 [1]. Furthermore, in the notation
of [1], P = <x1, X2, X3, x4), Z(P) = (xg, x3>, Q = (.’XJz, X3, x4), (x3> = Z(H),
P = ([x1, x4]), and ¢(x) = (x0)" so x441 = (x)" Finally we let T = P{a)
so |T:P| = p.

By construction Z(P) and P’ are normal in M. We claim that P’ = Z(T).
Since a moves Q, T/Z(P) ~ E(p) and Z(T) C P. Thus Z(T) C Z(P). If
Z(T) = Z(P), then (x;) < H and is fixed by «a contrary to assumption. Thus
|Z(T)| = p and Z(T) = P'.

Let C = Cy(P/Z(P)) and C, = Cy(Z(P)). Since P C C,

C = PN ().

Now {a, k)/C1 M {a, k) is isomorphic to a subgroup of GL(2, p) which fixes
a one dimensional subspace. Thus it is isomorphic to a group of order p(p — 1).
Since neither « nor « are in C, we conclude that C M {a, k) & C;. Since P C C;
this means that C € C;.

Now consider M/C. Since M/C is isomorphic to a subgroup of GL(2, p),
if TC/C # T*C/C then M/C contains SL(2, p). By construction M/C, (P) is
isomorphic to a subgroup of 4. Thus any element of M that moves Q must
not fix any subgroup of Q that is normal in H. In particular

CC Ci S Ny({xs)) S Ny (Q) C M.

Since p 2 5 we conclude that [Cy: C| = 1 or 2 by the structure of SL(2, p).
But then M/C; involves SL(2, ) contrary to the fact that 1 C P’ C Z(P)
is fixed by M. We conclude that 7’C = T*C = (T'C)*.

We now study the action of x. By [1, Lemma 7.4] P contains a subgroup S
such that P/Z(P) = S/Z(P) X Q/Z(P) and

x*=x* (modulo Z(P))ifx € S
x* = x1 (modulo Z(P)) if x € Q,

where 7 is a primitive (p — 1)th root of unity in Z,. Since « fixes S [1, 7.6] and
S =S/Z(P) is of order p, S =Z(T) =T'. Pick x € Q — Z(P); then
[%,&] € S. As T is not abelian 1 3 [%, a]. Now a* = o™w for w € C and m a
positive integer. Then

1 [x,a&" = [&a] = [&,a] = [, a"@] = &', a"] = [x,&]"'"™
Thus a* = a®w. Now Z(P) = (x;)P’ and P’ = Z(T') imply that

15 [x;5,a] € P.
Hence

[3, a]* = [x3%, @] = [x3, a®w] = [x3, &®*] = [x3, a] ®.
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However by [1, Lemma 7.3], [x3, a]* = [x3, «]®. Thus
1 = 1% (modulo p).

Since ¢ is a primitive (p — 1)th root of unity this implies that p = 3 contrary
to assumption.
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