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ISOMORPHIC SUBGROUPS OF FINITE ^-GROUPS 
REVISITED 

WILLIAM SPECHT 

Several papers of George Glauberman have appeared which analyze the 
structure of a finite ^>-group which contains two isomorphic maximal subgroups. 
The usual setting for an application of these results is a finite group, a ^-sub­
group, and an isomorphism of this p-group induced by conjugation. In this 
paper we prove a stronger version of Glauberman's Theorem 8.1 [1]. 

THEOREM A. Suppose that H is a finite group and P is a weakly closed sub­
group of some Sylow p-sub group of H with respect to H. Assume that for some 
h e H 

<P, Ph) = H and \P : P C\ Ph\ = p. 

Let A be a subgroup of Aut(P) that contains the automorphisms induced by 
conjugation by the elements of NH(P). Suppose that some element of A does not 
fix Q = P H Ph. 

Take Q* C Q maximal such that Q* < H and such that there exists an element 
a £ A that fixes Q* but not Q. Let n be the smallest positive integer such that 
an fixes Q. Let P = P/Q* = Pi , and Pi+i = [Pi,P]. Then PA = 1. Furthermore: 

(a) If Pj = 1, then \P\ S pn-
(b) If P2 7e 1, Pz = 1 and p = 2, then P is the direct product of E(p) and 

an elementary group, and n = 2. 
(c) If P 2 9^ 1, Pz = 1 and p 9^ 2, then n is a divisor of p, p — 1, or p + 1, 

and either P c^ E(p) or P o^ E(p) X Zp. In the latter case p = 3 and there exists 
a £ A' such that ap fixes Q but a does not. 

(d) If Pz ^ 1, thenp = 3, P ~E*(p) and n = 2. 

Theorem A is exactly Glauberman's Theorem [1, 8.1] with the inclusion 
of "p = 3" in conclusion (c). E(p) is the non-Abelian group of order pz which 
is generated by two elements of order p. E*(p) is a particular p-group of order 
pQ defined in [1]. We note that Theorem 2 of Glauberman's paper [1] is a 
consequence of his Theorem 8.1. Thus Theorem A will also improve Glauber­
man's Theorem 2 [1]. 

To illustrate the application of Theorem A we include Theorem B, a corol­
lary of Theorem A. In the statement of Theorem B, property SP is any property 
of a finite group which is inherited from subgroups. For example SP might be 
"the group involves 5L(2, p)'\ 
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THEOREM B. Suppose G is a finite group, p is an odd prime, and S is a Sylow 
p-subgroup of G. Assume that some p-local subgroup satisfies SP and choose a 
p-local subgroup G* = N(D) satisfying 0* with \G*\P maximal. Suppose that 
5* = NS(D) is a Sylow p-subgroup of G*, £* j* S, \S* : D\ = p, and that there 
exists h G G* such that H = <5*, S*h) satisfies £P. 

Then S* is elementary abelian, E(p), E(S) X Z% or £*(3). 

Proof. Choose y G NS(S*) - S* such that yv G S* and let A be the auto­
morphism group induced on S* by (NH(S*), y). Pick D* (Z D maximal such 
that D* < H and y fixes D*. If D* ^ 1 then N(D*) 2 (H, y) which contra­
dicts the choice of G*. Thus D* = 1 and Theorem B follows from Theorem A. 

Before proving Theorem A we need one preliminary lemma. 

LEMMA 1. Let P c^E(p) X Zp, suppose a G Aut(P) is a p-element and is 
nontrivial on P/Z(P). Then ap = 1 if p ^ 5. 

Proof. Choose generators of P/Z(P), a and b, such that 

aa = ab and ba = b (modulo Z(P)) . 

Let c = [a, b] and choose d G Z(P) such that Z(P) = (c, d). Now (c) o^ Zp 

so a centralizes P' = (c) as well as Z(P)/Pf. Thus a may be written as: 

( l , 0 , 0 , 0 ) - > ( l , r , . î , l ) 
(0, 1, 0, 0) -»• (0, 1, 0, 0) 

01 ' (0,0, 1 ,0)-> (0,^,1,0) 

( 0 , 0 , 0 , 1 ) - » (0 ,« , r , 1) 

where (/, g, h, i) = afc°dhbt. An inductive argument shows that for n ^ 4, 

(1, 0, 0, 0) - ( l , ^r + fyts + ( 3 ) / , + (* )« , ns + (*)*, ») 

„ (0, 1 ,0 ,0) -> (0,1 , 0,0) 
a ' (0, 0 , 1 , 0 ) - > ( 0 , ^ , 1 , 0 ) 

(0, 0, 0, 1) -> (0, nu + ( * W »v, 1 ) . 

Therefore if p ^ 5, £ divides £, I ^ I, and I ^ I and so av centralizes P . 
Since a G Aut(P), a* = 1. V ' X ! 

Proof of Theorem A. We will adopt the notation of Glauberman [1]. In 
particular (t>(x) = (xa)h and the conditions of his Section 7 are satisfied by H 
and P . 

By induction on |Q| we may assume that Ç* = 1. Applying Glauberman's 
Theorem 8.1 [1] (see comment after Theorem A) we see that P ~ E(p) X Zv 

and it remains to prove that p — 3. To this end suppose that p è 5. 
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By (c) of Glauberman's 8.1 we may assume that av fixes Q but a does not. 
In particular we may assume that a is a ^-element. By Lemma 1, ap = 1. 

Now let M be the semidirect product of P by (d, K) where K is the automor­
phism of P induced by k from Lemma 7.3 [1]. Furthermore, in the notation 
of [1], P = (xi, x2, x3, x4>, Z(P) = (x2, x3), Q = (x2, x3, x4), (x3> = Z(H), 
P' = ([xi, x4]), and </>(x) = (xa)h so xi+1 = (xt

a)h. Finally we let T = P{a) 
so \T :P\ = p. 

By construction Z(P) and P ' are normal in M. We claim that P' = Z(T). 
Since a moves Q, T/Z(P)~E(p) and Z(T) Ç P. Thus Z(P) Ç Z(P) . If 
Z(P) = Z(P), then (x3) < # and is fixed by a contrary to assumption. Thus 
\Z(T)\ = £ a n d Z ( P ) = P ' . 

Let C = CM(P/Z(P)) and Ci = CM(Z(P)). Since P Ç C , 

c = ?(cn <a,K». 
Now (a, K) /CI H (a, K) is isomorphic to a subgroup of GL(2, p) which fixes 
a one dimensional subspace. Thus it is isomorphic to a group of order p (p — 1). 
Since neither a nor K are in C, we conclude that C C\ (a, K) Ç CI. Since P C Ci 
this means that C Ç Ci. 

Now consider ikf/C. Since M/C is isomorphic to a subgroup of GP(2, £) , 
if TC/C 5* T'C/C then M/C contains 5L(2, p). By construction M/CM{P) is 
isomorphic to a subgroup of ^4. Thus any element of M that moves Q must 
not fix any subgroup of Q that is normal in H. In particular 

C C Ci C iVM«x3» C JVM (« C M. 

Since p ^ 5 we conclude that |Ci : C| = 1 or 2 by the structure of SL(2, p). 
But then M/Ci involves 5L(2, £) contrary to the fact that 1 C P' C Z(P) 
is fixed by M. We conclude that TC = T*C = (PC)K. 

We now study the action of K. By [1, Lemma 7.4] P contains a subgroup 5 
such that P/Z(P) = S/Z(P) X <2/Z(P) and 

x* = x1'2 (modulo Z{P)) if x G 5 

x" = x'"1 (modulo Z(P)) if x G Q, 

where i is a primitive (£ — l) th root of unity in Zp. Since a fixes 5 [1, 7.6] and 
5 = S/Z(P) is of order £, S = Z(T) = f . Pick x G G - Z ( P ) ; then 
[x, a] G S. As P is not abelian 1 ^ [x, a]. Now aK = amw for w G C and w a 
positive integer. Then 

1 ^ [x, a] ' 2 = [x, a]K = [xK,âK] = [xi~1,âmw'\ = [x*~\ âm] = [x, a]*" lm. 

Thus a* = a * V Now Z(P) = <x3}P' and P ' = Z(T) imply that 

1 5* [x3, a] G P ' . 

Hence 

[x3 ,a] ' c = [x3\o:"] = [ x 8 , a V l = [x3, a1*] = [xz, a]**. 
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However by [1, Lemma 7.3], [x3, a]K = [x3, a\\ Thus 

i = iz (modulo p). 

Since i is a primitive (£ — l) th root of unity this implies that p = 3 contrary 
to assumption. 
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