ISOMORPHIC SUBGROUPS OF FINITE p-GROUPS REVISITED

WILLIAM SPECHT

Several papers of George Glauberman have appeared which analyze the structure of a finite p-group which contains two isomorphic maximal subgroups. The usual setting for an application of these results is a finite group, a p-subgroup, and an isomorphism of this p-group induced by conjugation. In this paper we prove a stronger version of Glauberman's Theorem 8.1 [1].

Theorem A. Suppose that H is a finite group and P is a weakly closed subgroup of some Sylow p-subgroup of H with respect to H. Assume that for some $h \in H$

$$
\left\langle P, P^{h}\right\rangle=H \quad \text { and } \quad\left|P: P \cap P^{h}\right|=p
$$

Let A be a subgroup of $\operatorname{Aut}(P)$ that contains the automorphisms induced by conjugation by the elements of $N_{H}(P)$. Suppose that some element of A does not fix $Q=P \cap P^{h}$.

Take $Q^{*} \subseteq Q$ maximal such that $Q^{*} \unlhd H$ and such that there exists an element $\alpha \in A$ that fixes Q^{*} but not Q. Let n be the smallest positive integer such that α^{n} fixes Q. Let $\bar{P}=P / Q^{*}=\bar{P}_{1}$, and $\bar{P}_{i+1}=\left[\bar{P}_{i}, \bar{P}\right]$. Then $\bar{P}_{4}=1$. Furthermore:
(a) If $\bar{P}_{2}=1$, then $|\bar{P}| \leqq p^{n}$.
(b) If $\bar{P}_{2} \neq 1, \bar{P}_{3}=1$ and $p=2$, then P is the direct product of $E(p)$ and an elementary group, and $n=2$.
(c) If $\bar{P}_{2} \neq 1, \bar{P}_{3}=1$ and $p \neq 2$, then n is a divisor of $p, p-1$, or $p+1$, and either $\bar{P} \simeq E(p)$ or $\bar{P} \simeq E(p) \times Z_{p}$. In the latter case $p=3$ and there exists $\alpha \in A^{\prime}$ such that α^{p} fixes Q but α does not.
(d) If $\bar{P}_{3} \neq 1$, then $p=3, \bar{P} \simeq E^{*}(p)$ and $n=2$.

Theorem A is exactly Glauberman's Theorem [1, 8.1] with the inclusion of " $p=3$ " in conclusion (c). $E(p)$ is the non-Abelian group of order p^{3} which is generated by two elements of order $p \cdot E^{*}(p)$ is a particular p-group of order p^{6} defined in [1]. We note that Theorem 2 of Glauberman's paper [1] is a consequence of his Theorem 8.1. Thus Theorem A will also improve Glauberman's Theorem 2 [1].

To illustrate the application of Theorem A we include Theorem B, a corollary of Theorem A. In the statement of Theorem B, property \mathscr{P} is any property of a finite group which is inherited from subgroups. For example \mathscr{P} might be "the group involves $S L(2, p)$ ".

Received November 9, 1972 and in revised form, March 8, 1973.

Theorem B. Suppose G is a finite group, p is an odd prime, and S is a Sylow p-subgroup of G. Assume that some p-local subgroup satisfies \mathscr{P} and choose a p-local subgroup $G^{*}=N(D)$ satisfying \mathscr{P} with $\left|G^{*}\right|_{p}$ maximal. Suppose that $S^{*}=N_{S}(D)$ is a Sylow p-subgroup of $G^{*}, S^{*} \neq S,\left|S^{*}: D\right|=p$, and that there exists $h \in G^{*}$ such that $H=\left\langle S^{*}, S^{* h}\right\rangle$ satisfies \mathscr{P}.

Then S^{*} is elementary abelian, $E(p), E(3) \times Z_{3}$ or $E^{*}(3)$.
Proof. Choose $y \in N_{S}\left(S^{*}\right)-S^{*}$ such that $y^{p} \in S^{*}$ and let A be the automorphism group induced on S^{*} by $\left\langle N_{H}\left(S^{*}\right), y\right\rangle$. Pick $D^{*} \subseteq D$ maximal such that $D^{*} \unlhd H$ and y fixes D^{*}. If $D^{*} \neq 1$ then $N\left(D^{*}\right) \supseteq\langle H, y\rangle$ which contradicts the choice of G^{*}. Thus $D^{*}=1$ and Theorem B follows from Theorem A.

Before proving Theorem A we need one preliminary lemma.
Lemma 1. Let $P \simeq E(p) \times Z_{p}$, suppose $\alpha \in \operatorname{Aut}(P)$ is a p-element and is nontrivial on $P / Z(P)$. Then $\alpha^{p}=1$ if $p \geqq 5$.

Proof. Choose generators of $P / Z(P), a$ and b, such that

$$
a^{\alpha} \equiv a b \quad \text { and } \quad b^{\alpha} \equiv b \quad(\text { modulo } Z(P))
$$

Let $c=[a, b]$ and choose $d \in Z(P)$ such that $Z(P)=\langle c, d\rangle$. Now $\langle c\rangle \simeq Z_{p}$ so α centralizes $P^{\prime}=\langle c\rangle$ as well as $Z(P) / P^{\prime}$. Thus α may be written as:

$$
\alpha: \begin{aligned}
(1,0,0,0) & \rightarrow(1, r, s, 1) \\
(0,1,0,0) & \rightarrow(0,1,0,0) \\
(0,0,1,0) & \rightarrow(0, t, 1,0) \\
(0,0,0,1) & \rightarrow(0, u, v, 1)
\end{aligned}
$$

where $(f, g, h, i)=a^{f} c^{g} d^{h} b^{i}$. An inductive argument shows that for $n \geqq 4$,

$$
\begin{aligned}
(1,0,0,0) & \rightarrow\left(1, n r+\binom{n}{2} t s+\binom{n}{3} t v+\binom{n}{2} u, n s+\binom{n}{2} v, n\right) \\
\alpha^{n}:(0,1,0,0) & \rightarrow(0,1,0,0) \\
(0,0,1,0) & \rightarrow(0, n t, 1,0) \\
(0,0,0,1) & \rightarrow\left(0, n u+\binom{n}{2} t v, n v, 1\right) .
\end{aligned}
$$

Therefore if $p \geqq 5, p$ divides $p,\binom{p}{2}$, and $\binom{p}{3}$ and so α^{p} centralizes P. Since $\alpha \in \operatorname{Aut}(P), \alpha^{p}=1$.

Proof of Theorem A. We will adopt the notation of Glauberman [1]. In particular $\phi(x)=\left(x^{\alpha}\right)^{h}$ and the conditions of his Section 7 are satisfied by H and P.

By induction on $|Q|$ we may assume that $Q^{*}=1$. Applying Glauberman's Theorem 8.1 [1] (see comment after Theorem A) we see that $P \simeq E(p) \times Z_{p}$ and it remains to prove that $p=3$. To this end suppose that $p \geqq 5$.

By (c) of Glauberman's 8.1 we may assume that α^{p} fixes Q but α does not. In particular we may assume that α is a p-element. By Lemma $1, \alpha^{p}=1$.

Now let M be the semidirect product of P by $\langle d, \kappa\rangle$ where κ is the automorphism of P induced by k from Lemma 7.3 [1]. Furthermore, in the notation of $[\mathbf{1}], P=\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right\rangle, Z(P)=\left\langle x_{2}, x_{3}\right\rangle, Q=\left\langle x_{2}, x_{3}, x_{4}\right\rangle,\left\langle x_{3}\right\rangle=Z(H)$, $P^{\prime}=\left\langle\left[x_{1}, x_{4}\right]\right\rangle$, and $\phi(x)=\left(x^{\alpha}\right)^{h}$ so $x_{i+1}=\left(x_{i}{ }^{\alpha}\right)^{h}$. Finally we let $T=P\langle\alpha\rangle$ so $|T: P|=p$.

By construction $Z(P)$ and P^{\prime} are normal in M. We claim that $P^{\prime}=Z(T)$. Since α moves $Q, T / Z(P) \simeq E(p)$ and $Z(T) \subseteq P$. Thus $Z(T) \subseteq Z(P)$. If $Z(T)=Z(P)$, then $\left\langle x_{3}\right\rangle \unlhd H$ and is fixed by α contrary to assumption. Thus $|Z(T)|=p$ and $Z(T)=P^{\prime}$.

Let $C=C_{M}(P / Z(P))$ and $C_{1}=C_{M}(Z(P))$. Since $P \subseteq C$,

$$
C=P(C \cap\langle\alpha, \kappa\rangle) .
$$

Now $\langle\alpha, \kappa\rangle / C_{1} \cap\langle\alpha, \kappa\rangle$ is isomorphic to a subgroup of $G L(2, p)$ which fixes a one dimensional subspace. Thus it is isomorphic to a group of order $p(p-1)$. Since neither α nor κ are in C, we conclude that $C \cap\langle\alpha, \kappa\rangle \subseteq C_{1}$. Since $P \subseteq C_{1}$ this means that $C \subseteq C_{1}$.

Now consider M / C. Since M / C is isomorphic to a subgroup of $G L(2, p)$, if $T C / C \neq T^{\mathrm{k}} C / C$ then M / C contains $S L(2, \mathrm{p})$. By construction $M / C_{M}(P)$ is isomorphic to a subgroup of A. Thus any element of M that moves Q must not fix any subgroup of Q that is normal in H. In particular

$$
C \subseteq C_{1} \subseteq N_{M}\left(\left\langle x_{3}\right\rangle\right) \subseteq N_{M}(Q) \subset M
$$

Since $p \geqq 5$ we conclude that $\left|C_{1}: C\right|=1$ or 2 by the structure of $S L(2, p)$. But then M / C_{1} involves $S L(2, p)$ contrary to the fact that $1 \subset P^{\prime} \subset Z(P)$ is fixed by M. We conclude that $T C=T^{\kappa} C=(T C)^{\kappa}$.

We now study the action of к. By [1, Lemma 7.4] P contains a subgroup S such that $P / Z(P)=S / Z(P) \times Q / Z(P)$ and

$$
\begin{array}{ll}
x^{\kappa} \equiv x^{i 2} & (\text { modulo } Z(P)) \text { if } x \in S \\
x^{\kappa} \equiv x^{i-1} & \text { (modulo } Z(P)) \text { if } x \in Q,
\end{array}
$$

where i is a primitive $(p-1)$ th root of unity in Z_{p}. Since α fixes $S[1,7.6]$ and $\bar{S}=S / Z(P)$ is of order $p, \bar{S}=Z(\bar{T})=\bar{T}^{\prime}$. Pick $x \in Q-Z(P)$; then $[\bar{x}, \bar{\alpha}] \in \bar{S}$. As \bar{T} is not abelian $1 \neq[\bar{x}, \bar{\alpha}]$. Now $\alpha^{\kappa}=\alpha^{m} w$ for $w \in C$ and m a positive integer. Then

$$
1 \neq[\bar{x}, \bar{\alpha}]^{i 2}=[\bar{x}, \bar{\alpha}]^{\kappa}=\left[\bar{x}^{\kappa}, \bar{\alpha}^{\kappa}\right]=\left[\bar{x}^{i-1}, \bar{\alpha}^{m} \bar{w} \bar{w}\right]=\left[\bar{x}^{i-1}, \bar{\alpha}^{m}\right]=[\bar{x}, \bar{\alpha}]^{i-1 m} .
$$

Thus $\alpha^{\kappa}=\alpha^{i 3} w$. Now $Z(P)=\left\langle x_{3}\right\rangle P^{\prime}$ and $P^{\prime}=Z(T)$ imply that

$$
1 \neq\left[x_{3}, \alpha\right] \in P^{\prime}
$$

Hence

$$
\left[x_{3}, \alpha\right]^{\kappa}=\left[x_{3}{ }^{\kappa}, \alpha^{k}\right]=\left[x_{3}, \alpha^{i 3} w\right]=\left[x_{3}, \alpha^{i 3}\right]=\left[x_{3}, \alpha\right]^{i 3} .
$$

However by [1, Lemma 7.3], $\left[x_{3}, \alpha\right]^{\kappa}=\left[x_{3}, \alpha\right]^{i}$. Thus

$$
i \equiv i^{3} \quad(\operatorname{modulo} p) .
$$

Since i is a primitive $(p-1)$ th root of unity this implies that $p=3$ contrary to assumption.

References

1. G. Glauberman, Isomorphic subgroups of finite p-groups.I, Can. J. Math. 20 (1971), 983-1022.
2. -Isomorphic subgroups of finite p-groups. II, Can. J. Math. 20 (1971), 1023-1039.
3. D. Gorenstein, Finite groups (Harper and Row, New York, 1968).
4. William Specht, The quadratic pairs theorem in local analysis, Ph.D. thesis, University of Chicago, 1972.

Roosevelt University, Chicago, Illinois

