ISOMORPHIC SUBGROUPS OF FINITE *p*-GROUPS REVISITED

WILLIAM SPECHT

Several papers of George Glauberman have appeared which analyze the structure of a finite p-group which contains two isomorphic maximal subgroups. The usual setting for an application of these results is a finite group, a p-subgroup, and an isomorphism of this p-group induced by conjugation. In this paper we prove a stronger version of Glauberman's Theorem 8.1 [1].

THEOREM A. Suppose that H is a finite group and P is a weakly closed subgroup of some Sylow p-subgroup of H with respect to H. Assume that for some $h \in H$

 $\langle P, P^h \rangle = H$ and $|P: P \cap P^h| = p$.

Let A be a subgroup of $\operatorname{Aut}(P)$ that contains the automorphisms induced by conjugation by the elements of $N_H(P)$. Suppose that some element of A does not fix $Q = P \cap P^h$.

Take $Q^* \subseteq Q$ maximal such that $Q^* \trianglelefteq H$ and such that there exists an element $\alpha \in A$ that fixes Q^* but not Q. Let n be the smallest positive integer such that α^n fixes Q. Let $\bar{P} = P/Q^* = \bar{P}_1$, and $\bar{P}_{i+1} = [\bar{P}_i, \bar{P}]$. Then $\bar{P}_4 = 1$. Furthermore: (a) If $\bar{P}_2 = 1$, then $|\bar{P}| \leq p^n$.

(b) If $\overline{P}_2 \neq 1$, $\overline{P}_3 = 1$ and p = 2, then P is the direct product of E(p) and an elementary group, and n = 2.

(c) If $\bar{P}_2 \neq 1$, $\bar{P}_3 = 1$ and $p \neq 2$, then *n* is a divisor of *p*, p - 1, or p + 1, and either $\bar{P} \simeq E(p)$ or $\bar{P} \simeq E(p) \times Z_p$. In the latter case p = 3 and there exists $\alpha \in A'$ such that α^p fixes Q but α does not.

(d) If $\overline{P}_3 \neq 1$, then p = 3, $\overline{P} \simeq E^*(p)$ and n = 2.

Theorem A is exactly Glauberman's Theorem [1, 8.1] with the inclusion of "p = 3" in conclusion (c). E(p) is the non-Abelian group of order p^3 which is generated by two elements of order p. $E^*(p)$ is a particular p-group of order p^6 defined in [1]. We note that Theorem 2 of Glauberman's paper [1] is a consequence of his Theorem 8.1. Thus Theorem A will also improve Glauberman's Theorem 2 [1].

To illustrate the application of Theorem A we include Theorem B, a corollary of Theorem A. In the statement of Theorem B, property \mathscr{P} is any property of a finite group which is inherited from subgroups. For example \mathscr{P} might be "the group involves SL(2, p)".

Received November 9, 1972 and in revised form, March 8, 1973.

THEOREM B. Suppose G is a finite group, p is an odd prime, and S is a Sylow p-subgroup of G. Assume that some p-local subgroup satisfies \mathscr{P} and choose a p-local subgroup $G^* = N(D)$ satisfying \mathscr{P} with $|G^*|_p$ maximal. Suppose that $S^* = N_S(D)$ is a Sylow p-subgroup of G^* , $S^* \neq S$, $|S^* : D| = p$, and that there exists $h \in G^*$ such that $H = \langle S^*, S^{*h} \rangle$ satisfies \mathscr{P} .

Then S^{*} is elementary abelian, E(p), $E(3) \times Z_3$ or $E^*(3)$.

Proof. Choose $y \in N_S(S^*) - S^*$ such that $y^p \in S^*$ and let A be the automorphism group induced on S^* by $\langle N_H(S^*), y \rangle$. Pick $D^* \subseteq D$ maximal such that $D^* \leq H$ and y fixes D^* . If $D^* \neq 1$ then $N(D^*) \supseteq \langle H, y \rangle$ which contradicts the choice of G^* . Thus $D^* = 1$ and Theorem B follows from Theorem A.

Before proving Theorem A we need one preliminary lemma.

LEMMA 1. Let $P \simeq E(p) \times Z_p$, suppose $\alpha \in \operatorname{Aut}(P)$ is a p-element and is nontrivial on P/Z(P). Then $\alpha^p = 1$ if $p \ge 5$.

Proof. Choose generators of P/Z(P), a and b, such that

 $a^{\alpha} \equiv ab$ and $b^{\alpha} \equiv b$ (modulo Z(P)).

Let c = [a, b] and choose $d \in Z(P)$ such that $Z(P) = \langle c, d \rangle$. Now $\langle c \rangle \simeq Z_p$ so α centralizes $P' = \langle c \rangle$ as well as Z(P)/P'. Thus α may be written as:

$$\begin{array}{c}
(1, 0, 0, 0) \to (1, r, s, 1) \\
(0, 1, 0, 0) \to (0, 1, 0, 0) \\
(0, 0, 1, 0) \to (0, t, 1, 0) \\
(0, 0, 0, 1) \to (0, u, v, 1)
\end{array}$$

where $(f, g, h, i) = a^{f}c^{g}d^{h}b^{i}$. An inductive argument shows that for $n \ge 4$,

$$(1, 0, 0, 0) \to \left(1, nr + \binom{n}{2}ts + \binom{n}{3}tv + \binom{n}{2}u, ns + \binom{n}{2}v, n\right)$$

$$\alpha^{n} : \begin{array}{l} (0, 1, 0, 0) \to (0, 1, 0, 0) \\ (0, 0, 1, 0) \to (0, nt, 1, 0) \\ (0, 0, 0, 1) \to \left(0, nu + \binom{n}{2}tv, nv, 1\right). \end{array}$$

Therefore if $p \ge 5$, p divides p, $\binom{p}{2}$, and $\binom{p}{3}$ and so α^p centralizes P. Since $\alpha \in \text{Aut}(P)$, $\alpha^p = 1$.

Proof of Theorem A. We will adopt the notation of Glauberman [1]. In particular $\phi(x) = (x^{\alpha})^{h}$ and the conditions of his Section 7 are satisfied by H and P.

By induction on |Q| we may assume that $Q^* = 1$. Applying Glauberman's Theorem 8.1 [1] (see comment after Theorem A) we see that $P \simeq E(p) \times Z_p$ and it remains to prove that p = 3. To this end suppose that $p \ge 5$.

WILLIAM SPECHT

By (c) of Glauberman's 8.1 we may assume that α^p fixes Q but α does not. In particular we may assume that α is a p-element. By Lemma 1, $\alpha^p = 1$.

Now let *M* be the semidirect product of *P* by $\langle d, \kappa \rangle$ where κ is the automorphism of *P* induced by *k* from Lemma 7.3 [1]. Furthermore, in the notation of [1], $P = \langle x_1, x_2, x_3, x_4 \rangle$, $Z(P) = \langle x_2, x_3 \rangle$, $Q = \langle x_2, x_3, x_4 \rangle$, $\langle x_3 \rangle = Z(H)$, $P' = \langle [x_1, x_4] \rangle$, and $\phi(x) = (x^{\alpha})^h$ so $x_{i+1} = (x_i^{\alpha})^h$. Finally we let $T = P \langle \alpha \rangle$ so |T:P| = p.

By construction Z(P) and P' are normal in M. We claim that P' = Z(T). Since α moves Q, $T/Z(P) \simeq E(p)$ and $Z(T) \subseteq P$. Thus $Z(T) \subseteq Z(P)$. If Z(T) = Z(P), then $\langle x_3 \rangle \leq H$ and is fixed by α contrary to assumption. Thus |Z(T)| = p and Z(T) = P'.

Let
$$C = C_M(P/Z(P))$$
 and $C_1 = C_M(Z(P))$. Since $P \subseteq C$,

$$C = P(C \cap \langle \alpha, \kappa \rangle).$$

Now $\langle \alpha, \kappa \rangle / C_1 \cap \langle \alpha, \kappa \rangle$ is isomorphic to a subgroup of GL(2, p) which fixes a one dimensional subspace. Thus it is isomorphic to a group of order p(p-1). Since neither α nor κ are in C, we conclude that $C \cap \langle \alpha, \kappa \rangle \subseteq C_1$. Since $P \subseteq C_1$ this means that $C \subseteq C_1$.

Now consider M/C. Since M/C is isomorphic to a subgroup of GL(2, p), if $TC/C \neq T^*C/C$ then M/C contains SL(2, p). By construction $M/C_M(P)$ is isomorphic to a subgroup of A. Thus any element of M that moves Q must not fix any subgroup of Q that is normal in H. In particular

$$C \subseteq C_1 \subseteq N_M(\langle x_3 \rangle) \subseteq N_M(Q) \subset M.$$

Since $p \ge 5$ we conclude that $|C_1: C| = 1$ or 2 by the structure of SL(2, p). But then M/C_1 involves SL(2, p) contrary to the fact that $1 \subset P' \subset Z(P)$ is fixed by M. We conclude that $TC = T^*C = (TC)^*$.

We now study the action of κ . By [1, Lemma 7.4] P contains a subgroup S such that $P/Z(P) = S/Z(P) \times Q/Z(P)$ and

$$x^{\kappa} \equiv x^{i^{2}} \quad (\text{modulo } Z(P)) \text{ if } x \in S$$

$$x^{\kappa} \equiv x^{i-1} \quad (\text{modulo } Z(P)) \text{ if } x \in Q,$$

where *i* is a primitive (p - 1)th root of unity in Z_p . Since α fixes $S[\mathbf{1}, 7.6]$ and $\overline{S} = S/Z(P)$ is of order p, $\overline{S} = Z(\overline{T}) = \overline{T}'$. Pick $x \in Q - Z(P)$; then $[\overline{x}, \overline{\alpha}] \in \overline{S}$. As \overline{T} is not abelian $1 \neq [\overline{x}, \overline{\alpha}]$. Now $\alpha^{\kappa} = \alpha^m w$ for $w \in C$ and m a positive integer. Then

$$1 \neq [\bar{x}, \bar{\alpha}]^{i^2} = [\bar{x}, \bar{\alpha}]^{\kappa} = [\bar{x}^{\kappa}, \bar{\alpha}^{\kappa}] = [\bar{x}^{i^{-1}}, \bar{\alpha}^m \bar{w}] = [\bar{x}^{i^{-1}}, \bar{\alpha}^m] = [\bar{x}, \bar{\alpha}]^{i^{-1}m}.$$

Thus $\alpha^{\kappa} = \alpha^{i^3} w$. Now $Z(P) = \langle x_3 \rangle P'$ and P' = Z(T) imply that

$$1 \neq [x_3, \alpha] \in P'.$$

Hence

$$[x_3, \alpha]^{\kappa} = [x_3^{\kappa}, \alpha^{\kappa}] = [x_3, \alpha^{i^3}w] = [x_3, \alpha^{i^3}] = [x_3, \alpha]^{i^3}$$

However by [1, Lemma 7.3], $[x_3, \alpha]^{\kappa} = [x_3, \alpha]^i$. Thus

$$i \equiv i^3 \pmod{p}$$
.

Since *i* is a primitive (p - 1)th root of unity this implies that p = 3 contrary to assumption.

References

1. G. Glauberman, Isomorphic subgroups of finite p-groups. I, Can. J. Math. 20 (1971), 983-1022.

- Isomorphic subgroups of finite p-groups. II, Can. J. Math. 20 (1971), 1023-1039.
 D. Gorenstein, Finite groups (Harper and Row, New York, 1968).
- 4. William Specht, The quadratic pairs theorem in local analysis, Ph.D. thesis, University of Chicago, 1972.

Roosevelt University, Chicago, Illinois