
Compositio Math. 143 (2007) 423–475
doi:10.1112/S0010437X06002636

Non-commutative tori and Fourier–Mukai duality

O. Ben-Bassat, J. Block and T. Pantev

Abstract

The classical Fourier–Mukai duality establishes an equivalence of categories between the
derived categories of sheaves on dual complex tori. In this article we show that this equiv-
alence extends to an equivalence between two dual objects. Both of these are generalized
deformations of the complex tori. In one case, a complex torus is deformed formally in
a non-commutative direction specified by a holomorphic Poisson structure. In the other,
the dual complex torus is deformed in a B-field direction to a formal gerbe. We show that
these two deformations are Fourier–Mukai equivalent.
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1. Introduction

It is commonly believed that the most general deformations of a complex algebraic space X are
captured by the deformations of some version of the category of coherent sheaves on X. Among the
popular choices are the abelian category of coherent sheaves Coh(X), its derived category Db(X)
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(see [Bon92, Kon91, Kon03]), or a dg-enhancement of the latter. In this paper we look at the
deformations of the derived categories and the equivalences between them.

A particular family of infinitesimal deformations of Db(X) comes from deforming the identity
functor on Db(X). This family is naturally parameterized by the second Hochschild cohomology
HH2(X) of X (see [Bon92, Kel99]). By definition HH i(X) is the cohomology of the complex
RHomX×X(∆∗OX ,∆∗OX). If X is a manifold, the geometric version of the Hochschild–Kostant–
Rosenberg theorem [GS87, Swa96, Kon03] identifies HH i(X) with the coherent cohomology of the
holomorphic polyvector fields on X. In particular,

HH2(X) ∼= H0
(
X,
∧2

TX

)
⊕H1(X,TX )⊕H2(X,OX ). (1.1)

Viewing HH2(X) as infinitesimal deformations of Db(X) we can interpret the pieces in (1.1) as
follows. Elements in H1(X,TX ) correspond to deformations of X as a complex manifold. Elements
in H0(X,

∧2 TX) correspond to deforming the multiplication on OX to a �-product. Finally,
elements in H2(X,OX ) correspond to deforming the trivial O×-gerbe on X.

Given two complex manifolds X and Y and an equivalence ϕ : Db(X) → Db(Y ) one ob-
tains a natural isomorphism ϕ̃ : HH2(X)→̃HH2(Y ). In particular, to every deformation direction
ξ ∈ HH2(X) for Db(X) we can associate a deformation direction ϕ̃(ξ) ∈ HH2(Y ) for Db(Y ).
The problem we would like to investigate in general is whether the equivalence ϕ̃ deforms along
with Db(X) and Db(Y ) in the directions ξ and ϕ̃(ξ).

In this paper we concentrate on the special case when X is a complex torus, Y = X∨ is the
dual torus, and ϕ is the classical Fourier–Mukai equivalence. An interesting feature of this case is
that ϕ̃ exchanges the non-commutative deformations of X with the gerby deformations of Y and
vice versa. Thus, the corresponding deformation of ϕ, if it exists, will have to exchange sheaves of
different geometric origin. We carry out this program to show that ϕ deforms to an equivalence
of the derived category of a formal non-commutative deformation of X and the derived category of
a formal gerby deformation of X∨. Along the way we have to extend some of the classical theory
of complex tori to non-commutative tori. In an attempt to make the exposition less cumbersome
we have collected the required technical results and some generalizations in the appendices.

The fact that a gerby complex torus should be Fourier–Mukai equivalent to a non-commutative
torus was originally conjectured by Orlov based on the behavior of the map ϕ̃ and on physical
considerations. Independently, Kapustin [Kap04] analyzed this setup as a duality transformation
between D-branes in type II string theory. He studied branes on a complex manifold X in the
presence of a B-field B which is a ∂-closed (0, 2) form. In this case the branes admit two different
interpretations. On the one hand they can be viewed as complexes of C∞ complex vector bundles
equipped with Hermitian connections D satisfying F 0,2

D = B · id and, on the other hand, they can be
viewed as complexes of coherent sheaves on the topologically trivial holomorphic gerbe classified by
exp(B) ∈ H2(X,O×). On a complex torus Kapustin investigated how such branes will transform
under T -duality. It is natural in this case to look for a Fourier transform that uses the Poincaré line
bundle on the product of the torus and its dual. In order to set up such a transform for the first
interpretation of B-twisted branes, one needs to exhibit a Hermitian connection on the Poincaré
line bundle whose (0, 2) curvature is −B. Kapustin searched for conditions that would ensure the
existence of such a connection. His calculations showed that if a connection exists, then the variables
on the dual torus can no longer commute. He then gave a physical identification of the bundles on
the B-twisted torus and the bundles on the dual non-commutative torus. This led him to conjecture
that the Fourier–Mukai transform deforms to a full equivalence of derived categories.

We are carrying out one interpretation of this conjecture. While Kapustin works in a differential
geometric context, involving vector bundles and connections, we use the second interpretation of
B-twisted branes and hence work in an algebraic/complex geometric context, where our tools are
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sheaves of algebras and modules. In order to do this we are forced to work formally, that is, our non-
commutative torus is a formal deformation quantization of a classical complex torus, and our gerbe
is a formal deformation of the trivial O×-gerbe. The reason we are forced to work formally is that
by a theorem of Kontsevich [Kon01], the complex torus has no algebraic, or even semi-algebraic
deformations. In order to obtain a duality statement which is not only formal but analytic, one needs
a different point of view on the category of coherent sheaves on a torus. An appropriate formalism
was recently developed by Block [Blo05, Blo06]. He gave an interpretation of the categories of
coherent sheaves and their deformations as categories of twisted complexes over differential graded
algebras. Using this formalism, he proved a duality statement compatible with both Kapustin’s
analysis and our formal duality.

As far as we know, ours is the first work on the derived categories of modules over a deformation
quantization. This is one reason for the length of this article. We have to make sure that much of
the standard yoga of O-modules extends to deformations quantizations.

Relation to other works
Traditionally non-commutative tori are the fundamental testing ground for phenomena in non-
commutative geometry. Their differential geometry and instanton theory has been studied exten-
sively by Connes and Rieffel [Con94, CR87, Rie88].

Căldăraru [Căl02], Donagi and Pantev [DP03], and more recently Ben-Bassat [Ben06] extended
the classical Fourier Mukai equivalence to families of tori (including some singular fibers). Gerbes
also arise naturally here. In the case when the family has a section, the Fourier–Mukai duality
is easily extended. When there are no sections, the natural dual family must be interpreted as a
gerbe. Our situation is much the same. Our non-commutative torus can be viewed as a family over
the formal disk. The well-known fact that the non-commutative torus has no points (that is, no
quasi-coherent sheaves supported at points) manifests itself in the appearance of a gerbe on the
dual side. In fact, by Gabber’s theorem [Gab81], the support of a coherent sheaf of modules on
the non-commutative torus must be coisotropic for the complex Poisson structure (and thus has a
lower bound on the dimension of its support). On the dual side, the support of a coherent sheaf on
the gerbe must be isotropic and thus has an upper bound on the dimension of its support.

Polishchuk and Schwarz investigated the geometry of holomorphic structures on non-
commutative real two tori [PS03, Pol04, Pol05]. They also studied the categories of sheaves on
the resulting non-commutative complex spaces. Our setup differs from theirs in that our Poisson
structures are holomorphic whereas theirs are of type (1, 1). In particular, in their case the de-
rived category does not deform in the non-commutative direction (the abelian category of sheaves
does deform, however). A unifying approach to the most general holomorphic structures on non-
commutative deformations is provided by [Blo05, Blo06].

Ours is not the first paper where non-commutative tori appear as duals of gerbes. In [MR05a,
MR05b], Mathai and Rosenberg find that in some cases families of non-commutative tori appear as
the duals of families of tori with a gerbe on the total space. Their context is topological and their
main result is an isomorphism of topological K-theories of the two dual objects. In contrast, we
work holomorphically and our result is an equivalence of the full derived categories of the two dual
objects.

Recently, in a beautiful paper [Tod05], Toda proved a very general result, related to our work.
He constructed for any smooth projective variety X and a Hochschild class as above, a first-order
deformation of the derived category of coherent sheaves on X. He then showed that if there is an
equivalence of derived categories between X and Y , then it deforms to the corresponding first-order
deformations. It is not at all clear how to extend his results to infinite-order deformations in general.
The main result of this paper can be viewed as such an extension in the case of complex tori.
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Notation and terminology
We use the following notation and terminology in this article.

• AX , a sheaf of associative flat �[[�]] algebras on X satisfying A /� ∼= OX .
• �[[�]], the complete local algebra of formal power series in �.
• D∗, the derived category of ∗-complexes of O-modules. The decoration ∗ is in the set {∅,−, b} =
{unbounded,bounded above,bounded}.

• D∗c , D∗qc, the derived categories of complexes having coherent and respectively quasi-coherent
cohomologies, respectively.

• �, the one-dimensional formal disk.
• �, the Heisenberg group scheme 1→ �m → �→ �∨ → 0 given by B.
• Λ ⊂ V , a free abelian subgroup of rank 2g.
• Λ∨ ⊂ V , the lattice of all ξ ∈ V ∨ satisfying Im(〈ξ, λ〉) ∈ � for all λ ∈ Λ.
• �, �∨, the constant group schemes Λ× � and Λ∨ × � over �.
• P, the normalized Poincaré line bundle on X ×X∨.
• P|X×{α}, the degree zero line bundle P|X×α on X.
• Π, a holomorphic Poisson structure on a complex manifold.

• φ[X→Y ]
K , the integral transform D∗(X)→ D∗(Y ) corresponding to a kernel object
K ∈ D∗(X × Y ).

• SX , SX∨ , the Fourier–Mukai transforms Db(X)→ Db(X∨) and Db(X∨)→ Db(X), respectively.
• V , a complex vector space of dimension g.
• V ∨, the complex space of conjugate linear homomorphisms from V to �.
• �, �∨, the formal spaces V × � and V ∨ × �.
• X, a complex torus of dimension g, typically X = V/Λ

• X∨, the dual complex torus of X, i.e. X∨ = Pic0(X) = V
∨
/Λ∨.

• �, �op, a formal non-commutative space � = (X,AX) and its opposite �op = (X,A op
X )

• �Π, the Moyal quantization of the Poisson torus (X,Π).
• �∨, the formal space X∨ × �.

2. The classical situation

First let us recall the basic properties of complex tori that we will need. For a more detailed
discussion of the properties of complex tori the reader may consult [Mum70, BL99, Pol03].

A complex torus is a compact complex manifold X which is isomorphic to a quotient V/Λ,
where V is a g-dimensional complex vector space and Λ ⊂ V is a free abelian subgroup of rank 2g.
Note that by construction X has a natural structure of an analytic group induced from the addition
law on the vector space V .

To any complex torus X one can associate a dual complex torus X∨. If X is realized as V/Λ,
the dual torus is defined to be X∨ = V

∨
/Λ∨. Here V

∨ denotes the space of conjugate linear
homomorphisms from V to � and Λ∨ ⊂ V ∨ is the lattice defined by

Λ∨ = {ξ ∈ V ∨ | Im(ξ(λ)) ∈ �, for all λ ∈ Λ}.
In fact, the dual torus X∨ is intrinsically attached to X and does not depend on the realization of
X as a quotient. Namely, one can define X∨ as the torus Pic0(X) parameterizing all holomorphic
line bundles L→ X which are invariant for the translation action of X on itself. Equivalently, these
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are the holomorphic line bundles with the property c1(L) = 0 ∈ H2(X,�). It is known (see, e.g.,
[Mum70, Pol03]) that X∨ is a fine moduli space in the sense that we can find a line bundle

P → X ×X∨
with the property that for any α ∈ X∨, the restriction P|X×{α} is isomorphic to the degree zero line
bundle corresponding to α. We write Pα for the line bundle P|X×{α}. Such a P is called a Poincaré
line bundle. If we further normalize P so that P|{o}×X∨ is isomorphic to the trivial line bundle OX∨ ,
then P is uniquely determined. Furthermore, the assignment α 	→ Pα for the normalized Poincaré
line bundle is compatible with group structures, e.g.

Pα+β
∼= Pα ⊗Pβ .

Also, note that the normalized Poincaré sheaf gives rise to a canonical isomorphism X∨∨→̃X (see
[BL99]).

The main interest of this paper is a generalization of a powerful duality theorem of Mukai
[Muk81, HV07]. First we need to set things up. For a complex manifold M , let Db(M) be the
bounded derived category of sheaves of OM -modules [Ver96]. An object in Db(M) is a bounded
complex

· · · → Fi−1 → Fi → Fi+1 → · · ·
of analytic sheaves of OM -modules. The morphisms are more complicated to define; see, e.g., [Ver96,
GM96].

Given two compact complex manifolds M and N and an element K ∈ Db(M × N), define the
integral transform

φ
[M→N ]
K : Db(M)→ Db(N)

by

φ
[M→N ]
K (G) = RpN∗(p∗MG⊗� K).

The integral transform has the following convolution property (see [Muk81] or [Pol03, Proposi-
tion 11.1]). IfM , N , and P are compact complex manifolds and K ∈ Db(M×N) and L ∈ Db(N×P ),
then one has a natural isomorphism of functors

φ
[N→P ]
L ◦ φ[M→N ]

K
∼= φ

[M→P ]
K∗L ,

where
K ∗ L = RpM×P∗(p∗M×NK ⊗� p∗N×PL) ∈ Db(M × P ),

and pM×N , pM×P , pN×P are the natural projections M ×N × P →M ×N , etc.
For a complex torus X, the Poincaré sheaf on X ×X∨ provides natural integral transforms

SX := φ
[X→X∨]
P : Db(X)→ Db(X∨)

SX∨ := φ
[X∨→X]
P : Db(X∨)→ Db(X).

Now we are ready to state Mukai’s duality theorem. Since we were unable to find a reference treating
this duality in the analytic context, we have sketched below the necessary modifications of Mukai’s
original proof [Muk81, Pol03].

Theorem 2.1. The integral transform S : Db(X∨) → Db(X) is an equivalence of triangulated
categories.

Proof. The theorem follows from the existence of natural isomorphisms of functors:

SX∨ ◦ SX
∼= (−1)∗X [−g]

SX ◦ SX∨ ∼= (−1)∗X∨ [−g], (2.1)

where g = dim�X.
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The existence of (2.1) follows from the identification X ∼= X∨∨ and the fact that the canonical
adjunction morphism

Id→ φ
[X→X∨]
P−1[g]

◦ φ[X∨→X]
P (2.2)

is an isomorphism. This is a formal consequence [Pol03, Theorem 11.4] of the cohomology and base
change theorem for proper morphisms and of the fact that for a non-trivial holomorphic line bundle
L ∈ Pic0(X) one has H•(X,L) = 0. The cohomology and base change theorem for pushing forward
a flat coherent sheaf under a proper analytic morphism can be found in [Sch72]. To show that
H•(X,L) = 0 for a non-trivial L ∈ Pic0(X) we first note that a degree zero holomorphic line bundle
on X corresponds to a complex rank one local system � on X (see [Ati57]). Since every complex
torus is Kähler, it follows that the natural map

Hk(X,�)→ Hk(X,L)

is surjective for each k. If L is non-trivial, then so is � and so it corresponds to a non-trivial character
�2g → �×. Now by using the isomorphism X ∼= (S1)2g, the Künneth formula, and the vanishing of
the cohomology of � with coefficients in a non-trivial character, we conclude that Hk(X,�) = 0 for
all k.

3. Non-commutative complex tori and B-fields

In this section we introduce the relevant non-commutative and gerby deformations of the two sides
of the Fourier–Mukai equivalence. The deformation of the equivalence itself is studied in the next
section.

3.1 Non-commutative complex tori
Before we can extend the formalism of integral transforms to the realm of non-commutative geometry
we need to make precise the notion of non-commutative space that we will be using. In the next
section we introduce the first main player in our correspondence, the deformation quantization of a
complex torus.

3.1.1 Deformation quantization in the holomorphic setting. Recall that a deformation quanti-
zation (see, e.g., [BFFLS77, NT01, Vai02]) of a complex analytic space X is a formal one-parameter
deformation of the structure sheaf OX . Explicitly this means that we are given a sheaf AX of
associative unital �[[�]]-algebras, flat over �[[�]], together with an algebra isomorphism

AX ⊗�[[�]]
� ∼= OX .

Note that usually one requires that AX is not only flat but is moreover topologically free. We prefer
the more relaxed flatness condition because it is better suited to the understanding of the category
of quantizations, in particular for studying fiber products. This is a minor point which has only
conceptual value and does not affect our considerations. In fact, all of the deformation quantizations
we encounter in this paper will automatically be topologically free, because they are �-quantizations
(see Definition 3.1).

Geometrically one thinks of the data (X,AX) as a non-commutative formal deformation of
X over the one-dimensional formal disk � := ({o},�[[�]]) = Spf(�[[�]]). In other words the data
(X,AX) should be viewed as defining a non-commutative formal space � which is equipped with a
morphism 	 : �→ � and which specializes to X over the closed point o ∈ �:

X

��

⊂ �

�

��
o ∈ �
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Observe also that every formal non-commutative space � = (X,AX) has a natural companion
�op := (X,A op

X ) which has the same underlying analytic space but is equipped with the opposite
sheaf of algebras.

A morphism 
 : �→ � of deformation quantizations is defined to be a morphism between ringed
spaces (f, f �) : (X,AX)→ (Y,AY ), so that f � : f−1AY → AX is continuous in the �-adic topology
and the induced morphism (f, f �/�) : (X,OX)→ (Y,OY ) is a morphism of complex analytic spaces.
Note that the category FS /� of formal analytic spaces over � is equivalent to the category of all
commutative deformation quantizations.

A particularly tractable class of deformation quantizations � are the so-called �-quantizations
(see, e.g., [NT01], [BK04], and [Yek03, Definition 8.6]).

Definition 3.1. A �-quantization (X,AX ) of a complex manifoldX is a sheaf AX of �[[�]]-algebras,
which is flat over �[[�]] and for which the following hold.

(a) There is an isomorphism ϕ : AX/�→̃OX of �[[�]]-algebras.

(b) Locally on X we have isomorphisms ψU : AX |U→̃OX |U [[�]] of sheaves of �[[�]]-modules, so
that:

• the ψU are all compatible with ϕ;
• under this isomorphism ψU , 1AX

maps to 1OX
and the product on AX |U becomes a product

� on OX |U [[�]] so that for all a, b ∈ OX |U we have

a � b = ab+
∞∑
i=1

βi(a, b)�i

with βi : OX |U ⊗� OX |U → OX |U being bidifferential operators;
• the composition maps ψU ◦ ψV

−1 are given by a series in � of differential operators
OX |U∩V → OX |U∩V .

Remark 3.2. It is a consequence of the definition that for all a, b ∈ OX |U [[�]] we have a�b ≡ abmod �

and βi(1, a) = βi(a, 1) = 0. Also, the term of order zero in � of the series of differential operators
which give the transition isomorphisms is the identity map on the sheaf OX |U∩V .

A morphism between �-quantizations 
 : �→ � is defined to be a morphism between ringed spaces
(f, f �) : (X,AX ) → (Y,AY ) for which f � : f−1AY → AX is continuous in the �-adic topology and
such that the induced morphism (f, f �/�) : (X,OX )→ (Y,OY ) is a morphism of complex analytic
spaces. Furthermore, we assume that f � is given by differential operators with respect to (f, f �/�)
in the following sense.

Suppose that (g, g�) : (X,OX ) → (Y,OY ) is a complex analytic morphism. Then a differential
operator of order 0 with respect to (g, g�) is defined to be a map g−1OY → OX given locally
by a 	→ k · (a ◦ g) for some function k ∈ OX . A differential operator of order j with respect to
(g, g�) is defined inductively to be a �-linear map D : g−1OY → OX for which the assignment
a 	→ D(g−1(q) · a)− q ·D(h) is a differential operator of order j − 1.

Consider, for any structure maps ψU : AX |U→̃OX,U [[�]] and ψW : AY |W →̃OY,W [[�]], the com-
ponents of the composition

ψU ◦ f � ◦ f−1(ψW
−1)|f−1(W )∩U : f−1OY,W [[�]]|f−1(W )∩U → OX,U [[�]]|f−1(W )∩U

as maps from f−1OY,W |f−1(W )∩U to OX,U |f−1(W )∩U . The degree 0 part is just given by f �/�, the
pullback of functions, so it is a differential operator of order zero with respect to (f, f �/�). We say
that 
 is given by differential operators when all of these components are differential operators with
respect to (f, f �/�).
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Remark 3.3. Every �-quantization (X,AX ) induces a holomorphic Poisson structure Π onX defined
by the formula

(df ∧ dg) � Π =
1
2�

(f̃ � g̃ − g̃ � f̃)mod �,

for local sections f and g in OX and lifts f̃ , g̃ ∈ AX of f and g. A morphism of �-quantizations
automatically induces a Poisson morphism. This remark remains true in the more general context
of deformation quantizations.

Example 3.4. The basic example of a �-quantization is the standard Moyal product on the holo-
morphic functions on a complex vector space V equipped with a constant Poisson structure Π (see
[Moy49, BFFLS78]). By the constancy assumption, there are complex coordinates

(q1, . . . , qn, p1, . . . , pn, c1, . . . , cl)

on V so that the Poisson structure is diagonal, that is

Π =
n∑

i=1

∂

∂qi
∧ ∂

∂pi
.

Recall that a bidifferential operator on complex manifold X is a �-linear map ϕ : OX ⊗�OX → OX

which is a differential operator in each factor, i.e. for all g ∈ OX we have ϕ(• ⊗ g) ∈ DX and
ϕ(g⊗•) ∈ DX . Given a differential operator D ∈ DX we can promote it to a bidifferential operator
in two ways with D acting on the first and the second factor, respectively. As usual we write

←−
D

for the bidifferential operator D ⊗ id and
−→
D for the bidifferential operator id⊗D. Note that the

assignment D → −→D is an algebra homomorphism, whereas the assignment D → ←−D is an algebra
antihomomorphism.

With this notation we can now use Π to define the bidifferential operator P by

P =
∑

i

(←−−
∂

∂qi

−−→
∂

∂pi
−
←−−
∂

∂pi

−−→
∂

∂qi

)
. (3.1)

Consider the sheaf OV [[�]] on V . For any open set U ⊂ V and any f, g ∈ OU [[�]] we define their
Moyal product

f � g =
∑

k

�
k

k!
f · P k · g = f · exp(�P ) · g = fg + �{f, g}+ · · · .

Since the �-product is defined by holomorphic bidifferential operators it maps holomorphic functions
to holomorphic functions. Moreover, since bidifferential operators are local, the product sheafifies.
We denote the resulting sheaf of �[[�]]-algebras on V by AV,Π.

3.1.2 Functional-analytic considerations. For future reference we note that for a quantization,
the sheaf AX → X is naturally a sheaf of multiplicatively convex nuclear Frechet algebras. Indeed,
for a small enough open U ⊂ X we can topologize AX(U) by identifying it as a sheaf of vector spaces
with O(U)[[�]] and using the uniform topology on O(U) over compact subsets K ⊂ U and the �-adic
topology on �[[�]]. It is well known [Trè67] that both the uniform topology on holomorphic functions
and the �-adic topology on �[[�]] are nuclear Frechet and so their completed tensor product is also
nuclear Frechet. To check that a Frechet algebra is multiplicatively convex, we also need to show the
existence of a countable family of semi-norms pn, satisfying pn(a�b) � pn(a)pn(b). Choose an exhaus-
tion {Kn}∞n=0 of U by nested compact subsets. Given a local section f =

∑
n fn�

n ∈ AU
∼= O(U)[[�]]
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we define

pn(f) := cn

n∑
i=0

sup
x∈Ki

|fi(x)|,

where cn ∈ �>0 is an appropriately chosen normalization constant. With this definition one checks
immediately that the pn are multiplicatively convex seminorms.

Caution. The standard example of a nuclear Frechet algebra which is not multiplicatively convex
is the Weyl algebra of a symplectic vector space. This is because the Weyl relation [x, y] = 1 can
never hold in a Banach algebra. In the formal setting, however, we are saved by the fact that the
relations are of the form [x, y] = � and � is a quasi-nilpotent element in our algebra.

The multiplicative convexity property of AU is a key ingredient in the analogue of Grauert’s di-
rect image theorem in the context of formal deformation quantization. This theorem is instrumental
in setting up integral transforms between the coherent derived categories.

3.1.3 Formal Moyal products on the non-commutative torus. Let X = V/Λ be a complex torus,
with a holomorphic Poisson structure Π. Since the holomorphic tangent bundle of a complex torus is
trivial, the bitensor Π ∈ H0(X,

∧2 TX) will necessarily be translation invariant and hence will be
of constant rank on X. The formal �-quantizations of a complex manifold equipped with a Poisson
structure of constant rank are known to be parameterized [NT01, BK04, Yek03] by an affine space.
This affine space is modeled on F 2[[�]], where F 2 is the second step of the Hodge filtration on the
second de Rham cohomology of the symplectic Lie algebroid given by the sheaf of holomorphic
vector fields tangent to the leaves of the Poisson foliation. In the case of a Poisson complex torus
(X,Π) the picture simplifies since one can use the Moyal product to construct a canonical point in
the moduli space of quantizations of (X,Π). We call this point the Moyal quantization of (X,Π).
The Moyal quantization is very concrete and easier to work with than the general constructions
found, for example, in [Kon01, NT01, BK04, Yek03]. Since all of the essential features of the Fourier–
Mukai duality are already present in the context of Moyal deformations, we chose to work mainly
in this context.

To define the Moyal quantization (X,AX,Π) of a holomorphic Poisson torus (X,Π) we use the
realization of X as a quotient X = V/Λ. Let π : V → X be the covering projection. Define the sheaf
AX,Π of �[[�]]-algebras on X as follows. As a sheaf of �X [[�]]-modules it will just be OX [[�]]. To
put a �-product on this sheaf one only has to use the natural identification OX [[�]] := (π∗OV )Λ

and note that the Π-Moyal product on V is translation invariant by construction. Explicitly, the
sections of AX,Π over U ⊂ X can be described as the invariant sections

AX,Π(U) = AV,Π(π−1(U))Λ (3.2)

on the universal cover V . This is well defined since the Poisson structure Π is constant and thus
the operator P is translation invariant.

3.1.4 The group structure on non-commutative tori. For understanding the convolution of shea-
ves on �Π it will be useful to have a lift of the group structure on X to a group law on �Π. In
contrast with the commutative case, we can not hope for the multiplication to live on a single non-
commutative torus. This is because the multiplication on the commutative torus is not a Poisson
map. However, this problem can be easily rectified if we replace the torus by X by X ×� equipped
with the Poisson structure which on the component X × {k} is kΠ.

In this approach we view �Π as a connected component of a non-commutative space

ℵΠ =
∐
k∈�

�kΠ.
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This is a deformation quantization of the complex Poisson manifold(
X × �,

∐
k∈�

kΠ
)
.

The group structure on the space ℵΠ is given by a map  : ℵΠ ×� ℵΠ → ℵΠ. Viewed as a
map of ringed spaces  is a pair  = (m,m�) where m is the product group law on X × � and
m� = {m�

(a,b)}(a,b)∈�×� where

m�
(a,b) : m−1

(a,b)A(a+b)Π → p−1
1 AaΠ ⊗̂�[[�]] p

−1
2 AbΠ,

where m(a,b) is the natural addition map from (X × {a})× (X × {b})→ (X × {a+ b}). For future
reference we will write (a,b) for the component (m(a,b),m

�
(a,b)). To define the group structure, we

have to define the map m� and verify that it gives a Hopf algebra structure on the structure sheaf
of ℵΠ. Since the structure sheaf of ℵΠ descends from the cover V × � it suffices to define the map
m� there.

Recall that on V the sheaf AkΠ is simply the sheaf OV [[�]] equipped with the Moyal product �kΠ.
Let f ∈ A(a+b)Π, that is, f is a locally defined holomorphic function on V with values in �[[�]].
Now define

m�
(a,b)(m

−1f)(v1, v2) = f(v1 + v2).

Here m� is thought of as a map m�
(a,b) : m−1

(a,b)OV [[�]] → p−1
1 OV [[�]] ⊗̂�[[�]] p

−1
2 OV [[�]], and we use

the fact that our completed tensor product p−1
1 OV [[�]] ⊗̂�[[�]] p

−1
2 OV [[�]] is naturally identified with

OV×V [[�]]. Note that this product descends to the torus since the addition on V intertwines with the
covering actions. Note that with this definition m� is a coassociative and cocommutative coproduct.
We now verify that m� is a map of algebras.

Proposition 3.5. The coproduct

m� : m−1AℵΠ → p−1
1 AℵΠ ⊗̂�[[�]] p

−1
2 AℵΠ

is a morphism of sheaves of rings.

Proof. To check this, we need that for any f = {fa} and g = {gb} with fa, gb ∈ OV [[�]] we have

m�(m−1f � m−1g)(a,b)(v1, v2) = (fa+b �(a+b)Π ga+b)(v1 + v2). (3.3)

To check the property (3.3) we use the fact that the �-products on the different components of
ℵΠ are all Moyal products built out of Poisson structures that are proportional to Π. Since Π
is a constant Poisson structure we can choose a system {p1, . . . , pn, q1, . . . qn, c1, . . . , cl} of linear
coordinates on the vector space V so that

Π =
n∑

i=1

∂

∂pi
∧ ∂

∂qi
.

Let

P =
n∑

i=1

(←−−
∂

∂qi

−−→
∂

∂pi
−
←−−
∂

∂pi

−−→
∂

∂qi

)
.

The Moyal product �kΠ is given by

f �kΠ g = f exp(k�P )g

for any two local sections f and g in OV [[�]]. Now, viewing m�(f) and m�(g) as local sections in
OV [[�]] we have m�(f)(v1, v2) = f(v1 + v2) and m�(g)(v1, v2) = g(v1 + v2). In these terms (3.3)
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becomes
m�(f exp((a+ b)�P )g) = m�(f) exp(�(aP ⊗ 1 + 1⊗ bP ))m�(g).

This relation is a simple consequence of the chain rule as follows.
Consider a bi-differential operator L with constant coefficients on a vector space V . Denote the

addition map on V by a : V × V → V . Applying the chain rule to differentiation of the functions
m�(f) = f ◦a, and m�(g) = g ◦a with respect to coordinates on the first or second copy of V we get

m�(f) · (L⊗ 1) ·m�(g) = m�(f · L · g) = m�(f) · (1⊗ L) ·m�(g).

Thus, we have established a group structure on ℵΠ, which completes the proof of the proposition.

The usual definition of the antipode map of a (not necessarily commutative) Hopf algebra allows
us to define the inversion on the group space ℵΠ. It is given by a morphism of ringed spaces ℵΠ → ℵop

Π

represented by a pair ��� = (inv, inv�). Here inv : X × � → X × � is the group inversion and the
antipode inv� = {inv�

a}a∈� where inva is the algebra isomorphism

inva : inv−1 AaΠ → A op
−aΠ.

Similarly to the definition of m�, it suffices to define inv�
a on V . Again we identify the sheaves AaΠ

and A op
−aΠ with O[[�]] and define

inv�
a(inv−1 f)(v) := f(−v)

for any local section f ∈ AaΠ viewed as a �[[�]]-valued locally defined holomorphic function on V .
The same reasoning as in the proof of Proposition 3.5 now implies that inv�

a is a ring homomorphism.
This concludes our general discussion on the properties of the formal non-commutative torus �Π.

The Moyal quantization �Π := (X,AX,Π) of the torus X is the first geometric input in the non-
commutative Fourier–Mukai duality. As we mentioned above, it is instructive to view the ringed
space �Π as a formal deformation of the complex manifold X:

X

��

⊂ �Π

�Π

��
o ∈ �

which is parameterized by the one-dimensional formal disk � = Spf(�[[�]]). Now this suggests that
the non-commutative duality we seek should be thought of as a formal deformation of the usual
Mukai equivalence (see Theorem 2.1) between the derived categories of the dual complex tori X
and X∨. Thus, we need to identify a dual object for �Π which is again defined over � and which
specializes to X∨ at the closed point o ∈ �.

3.2 Gerby complex tori
The first clue for what the dual object should be comes from the fact that to first order in the
formal parameter � this dual object should again be determined by the Poisson structure Π. It
turns out that the correct dual object is an O×-gerbe on the formal space X∨ × � which restricts
to the trivial O×-gerbe on the reduced space X∨ × {o}.

On the infinitesimal level this can be motivated as follows. As explained in § 3.1.1, the tangent
space to the moduli of �-deformations of X is H0(X,

∧2 TX). However, since X is a complex torus,
its holomorphic tangent bundle is trivial and so we have an identification

H0
(
X,
∧2

TX

)
=
∧2

TX,0 =
∧2

V. (3.4)

On the other hand, recall (see [GH94]) that if Y is a complex torus with universal cover W , then
the Dolbeault cohomology group Hp,q

∂̄
(Y ) = Hq(Y,Ωp

Y ) can be naturally identified with the vector
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space
∧pW∨ ⊗ ∧q W

∨. In particular, the cohomology space H0,2
∂̄

(Y ) = H2(Y,OY ) is naturally
identified with

∧2W
∨. Applying this comment to the torus X∨ = V

∨
/Λ∨ gives an identification

H2(X∨,O) =
∧2

V. (3.5)

Thus, we get an identification of the tangent space to the moduli of �-deformations of X and the
space H2(X∨,O), which in turn can be viewed as the tangent space to deformations of X∨ as an
O×-gerbe. One can check that the identification

H0
(
X,
∧2

TX

)
= H2(X∨,O) (3.6)

coming from (3.4) and (3.5) is precisely the identification between the pieces of the Hochschild
cohomology ofX andX∨ given by the cohomological Fourier–Mukai transform S̃X that we discussed
in the introduction. To see this one simply has to note that on the level of cohomology of polyvector
fields, the map S̃X is given by the cohomological Fourier–Mukai transform α 	→ pX∨∗(exp(c1(P)) ∪
p∗Xα).

Let B ∈ H2(X∨,O) be the element corresponding to Π ∈ H0(X,
∧2 TX) via the isomorphism

(3.6). The class B determines an O×-gerbe B�∨ over �∨ := X∨ × �. In fact, this gerbe can be
defined explicitly as a quotient gerbe. To streamline the discussion we introduce special notation
for the formal analytic spaces we need. We write

�
∨ := V

∨ × �

�∨ := X∨ × �

for the formal analytic spaces which are constant bundles over � with fibers V ∨ andX∨, respectively.
We also write

�∨ := Λ∨ × �

for the constant group space over � with fiber Λ∨.
We can think of the formal analytic space �∨ as a quotient of the formal analytic space �∨ by

the free action of the group space Λ∨, with Λ∨ acting trivially on �. Similarly, viewing �∨ → � as
a relative space over � we can realize it as the quotient of the relative space �∨ → � by the relative
action of the trivial bundle of commutative groups �∨ → �. For the construction of B�∨ we first
define a bundle �→ � of non-commutative groups on �, which is a Heisenberg extension:

1→ �m → �→ �∨ → 1, (3.7)

where �m is the multiplicative group scheme over �. As a formal space � = �m ×� �∨. Given a
formal space S → � and sections ξ, ξ′ ∈ �∨(S), z, z′ ∈ �m(S) the multiplication on � is given by
the formula

(ξ, z) · (ξ′, z′) = (ξ + ξ′, zz′c(ξ, ξ′)) (3.8)
where we define c(ξ, ξ′) by

c(ξ, ξ′) = exp (�π2B(ξ′, ξ)). (3.9)
In this formula B is interpreted as a group cocycle of Λ∨ with values in �. This involves two steps.
First we use the canonical splitting

H2(X∨,�) ��H2(X∨,O)��

of the Hodge filtration on H2(X∨,�) to interpret B ∈ H2(X∨,O) as an element in H2(X∨,�),
and then we us the fact that X∨ is a K(Λ∨, 1) to identify H2(X∨,�) with the group cohomology
H2(Λ∨,�). Explicitly, in these terms, B is viewed as a skew-symmetric biadditive map

B : Λ∨ × Λ∨ → � (3.10)
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which can be defined explicitly as follows. Recall that

V
∨ =

{
l : V → �

∣∣∣∣ l(v1 + v2) = l(v1) + l(v2)
l(c · v) = c̄ · l(v)

}
,

and

Λ∨ = {ξ ∈ V ∨ | Im(ξ(λ)) ∈ �, for all λ ∈ Λ}.
Now, to every l ∈ V

∨ we can associate a natural complex linear map l̄ : V ∨ → �, given by
l̄(v) := l(v), and the alternating map (3.10) is given explicitly by

B(ξ1, ξ2) = Π � (ξ̄1 ∧ ξ̄2).

The group space � still acts on �
∨ by its image in �∨. Every section x : S → �

∨ has a
stabilizer equal to �m(S). The quotient [�∨/�] is therefore a O×-gerbe. We denote this gerbe by
B	
∨ : B�∨ → �. Since B�∨ is constructed as a quotient, we can compute the classifying element

of B�∨ in H2(�∨,O×) as the image of the �∨-torsor �∨ ∈ H1(�∨,�∨) under the boundary map
H1(�∨,�∨) → H2(�∨,O×) associated with (3.7). From the definition of (3.7) it follows that B�∨

is classified by c ∈ H2(�∨,O×). More simply, if we ignore the map to �, we can think of the gerbe
B�
∨ as the quotient of the formal space �∨ by the group Γ = H0(�,�). Explicitly, Γ is given as the

central extension

1→ �[[�]]× → Γ→ Λ∨ → 0

classified again by c which is now viewed as an element in the group cohomology H2(Λ∨,�[[�]]×).

In § 6 we will show that the stack B�
∨ can be identified with the relative Picard stack

Pic0(�Π/�) of the formal non-commutative space �Π → �.

4. Non-commutative line bundles and their moduli

In this section we investigate the family of translation invariant line bundles on the non-commutative
torus �Π. In particular, we exhibit a complete (Poincaré) family of such line bundles parameterized
by the stack B�∨.

4.1 Line bundles and factors of automorphy

Recall the classical picture for line bundles on complex tori in terms of factors of automorphy.
We will describe this in a sufficiently general context so that it applies to all of the situations we
need. Suppose that W is a locally compact space on which a discrete (not necessarily commutative)
group Υ acts freely and properly discontinuously by homeomorphisms, (on the left). Denote by
Y the quotient and let τ : W → Y be the covering projection. Let AW be a sheaf of unital not
necessarily commutative algebras on W which is equivariant with respect to the action of Υ. This
means that for every υ ∈ Υ we are given an isomorphism aυ : AW → υ∗AW of sheaf of algebras
on W and that these isomorphisms satisfy (υ′)∗(aυ) ◦ aυ′ = aυυ′ . Our convention is that Υ acts on
sections on the right. For any open set U ⊂W and any υ ∈ Υ we write

AW (υ(U))
∼= �� AW (U)

s � �� s · υ
for the action of υ on AW (υ(U)), i.e. s · υ := υ∗(aυ−1)(s).

We denote the product in AW by a � b. The sheaf AW descends to a sheaf AY of algebras on Y
defined by

AY := (τ∗AW )Υ.
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Explicitly, given an open set U ⊂ Y we have

Γ(U,AY ) = {s ∈ Γ(τ−1(U),AW ) | s · υ = s}.
We are interested in describing sheaves of left (respectively right) AY modules that are locally free
of rank one. In the usual way, the isomorphism classes of such modules are described by elements
in the non-abelian cohomology set H1(Y,A ×Y ). Note that a Čech cocycle [γ] ∈ Z1(U,A ×Y )) for some
open covering U of Y gives a left (respectively right) rank one AY -module if we let γ multiply
elements in AY on the right (respectively left).

Alternatively we can describe sheaves of locally free rank one left (respectively right) AY modules
in terms of factors of automorphy. The non-commutative factors of automorphy associated with Υ
and W are just degree one group cocycles of Υ with values in the global sections of the sheaf A ×W .
Given such a cocycle e ∈ Z1(Υ,H0(W,A ×W )) we can define a sheaf L(e) of left AW modules of
rank one (respectively a sheaf R(e) of right AW modules of rank one) as follows. By definition, a
non-commutative factor of automorphy e is a map e : Υ→ H0(W,A ×W )) satisfying the (left) cocycle
condition

e(υ1 · υ2) = e(υ2) � (e(υ1) · υ2). (4.1)

Now define the sheaves L(e) and R(e) by

Γ(U,L(e)) = {s ∈ Γ(τ−1(U),AW ) | s · υ = s � e(υ)}
Γ(U,R(e)) = {s ∈ Γ(τ−1(U),AW ) | s · υ = (e(υ−1) · υ) � s} (4.2)

for an open U ⊂ Y . The fact that these formulas define sheaves easily follows from the cocycle
condition (4.1). Clearly L(e) and R(e) have respectively left and right AY -module structure since
in the definition (4.2) the non-commutative factor of automorphy e multiplies on the right and left,
respectively. Modulo the obvious equivalences the assignment e 	→ L(e) (respectively e 	→ R(e))
gives the well-known map

H1(Υ,H0(W,A ×W ))→ H1(Y,A ×Y )

from cohomology classes of factors of automorphy to isomorphisms classes of rank one locally free
left (respectively right) AY -modules.

Remark 4.1. (i) It is instructive to point out that the sheaves L(e) and R(e) can be written as the
invariants of appropriately defined actions of Υ on τ∗AW . More precisely, given a non-commutative
factor of automorphy e ∈ Z1(Υ,H0(W,AW )) we can define two new Υ-equivariant structures on
the sheaf AW by the formulas

s♦υ := (s � e(υ−1)) · υ,
s�υ := e(υ) � (s · υ),

for all υ ∈ Υ and all sections s of AW over Υ-invariant open sets on W . Now the automorphicity
conditions in (4.2) become simply the condition of invariance with respect to these actions and so
can describe L(e) and R(e) as the sheaves (τ∗AW )Υ,♦ and (τ∗AW )Υ,�, respectively.

(ii) The somewhat mysterious formulas defining the automorphicity condition for R(e) and
the �-action are forced on us by the non-commutative nature of AW . Indeed, the fact that the
sheaf of groups A ×W is in general non-commutative implies that there are two natural notions
of a factor of automorphy. First we have the left factors of automorphy e : Υ → H0(W,A ×W )
satisfying the left cocycle condition (4.1). By the same token we have the right factors of automorphy
f : Υ→ H0(W,A ×W ) satisfying the right cocycle condition

f(υ1υ2) = (f(υ1) · υ2) � f(υ2).
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Clearly, given a right factor of automorphy we can write a right automorphicity condition on s,
namely s · υ = (υ) � s, and a new action of Υ on AW . However, the assignment e(υ) 	→ f(υ) :=
e(υ−1) · υ transforms bijectively left factors of automorphy to right ones. Plugging this into the
formulas defining R(e) we obtain exactly the formulas in (i).

It is well known [Mum70] that in the case of a complex torus X = V/Λ the map

H1(Λ,H0(V,O×V ))→ H1(X,O×) (4.3)

is an isomorphism and thus gives a group cohomology description of the Picard group of X. Our
goal is to obtain an analogous description for the non-commutative tori �Π. To set this up, note
that the relative spaces �Π → � fit with the discussion of modules in the previous paragraph.
Indeed, by definition the non-commutative torus �Π is the ringed space (X,AX ), which is the
Moyal quantization of the Poisson torus (X,Π). In § 3.1.3 this ringed space was constructed as
the quotient of the Moyal ringed space (V,AV ) by the translation action of the lattice Λ ⊂ V . In
particular, A ×V -valued factors of automorphy for Λ will describe certain left (or right) locally free
rank one modules on �Π and we will have a map of cohomology sets:

H1(Λ,H0(V,A ×V ))→ H1(X,A ×X ). (4.4)

In fact, the map (4.4) is an isomorphism of pointed sets and so every left (or right) locally free rank
one module admits a description via a factor of automorphy. The fact that (4.4) is an isomorphism
will follow by the standard reasoning of [Mum70] from the fact that every AV locally free left
module of rank one is trivial. The latter statement can be proven by an order-by-order analysis of
the non-commutative cocycles in Ž1(V,A ×V ) or more generally in Ž1(V,AutAV -mod(A ⊕n

V )). Since
this argument is somewhat technical we have included it in Appendix B.

In contrast with the commutative case, in the non-commutative context the properties of be-
ing rank one and invertible no longer coincide. Therefore, it is important to differentiate between
locally free rank one left modules and invertible bimodules, both of which can lay claim to be non-
commutative line bundles. An invertible bimodule is often taken as the definition of a line bundle
on a non-commutative space. However, we have found that on our non-commutative tori, bimodules
do not behave flexibly enough when one looks at families. More precisely, it turns out that for a
non-degenerate Poisson structure, non-constant holomorphic families of degree zero line bundles on
X do not in general admit a consistent quantization.

Proposition 4.2. Let X be a complex torus and suppose that Π ∈ H0(X,
∧2 TX) is a non-

degenerate holomorphic Poisson structure. Let S be a compact complex space and suppose that
L→ S×X is a holomorphic line bundle whose restriction to each slice {s}×X has first Chern class
zero. Suppose that we can find a holomorphic family L → S×�Π of invertible bimodules with the
property L /� ∼= L. Then the classifying map κL : S → X∨ corresponding to L is constant.

Proof. An invertible bimodule on �Π is a sheaf of AX,Π bimodules on X which is locally free and
of rank one when considered both as a left and a right module.

Note that for any bimodule V on �Π the sheaf V /�V is a Poisson module in the sense of
[GK04, Appendix A.5]. Furthermore, since Π is non-degenerate the category of Poisson modules on
(X,Π) is equivalent to the category of D-modules on X (see [GK04, Appendix A.6] and [Kal04])
and so we get a well-defined functor from the category of finitely generated bimodules on the formal
non-commutative space �Π to the category of finite rank complex local systems on X. Conversely,
given a complex local system V on X we have an obvious AX,Π bimodule structure on the sheaf
V ⊗� AX,Π. These functors are easily seen to be inverse equivalences of each other.

In particular, given a holomorphic family L → S × �Π of invertible bimodules we get a holo-
morphic family L→ S ×X of rank one complex local systems on X which is parameterized by S.
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By assumption, the family of holomorphic line bundles underlying these local systems is precisely
L→ S ×X. In other words, the existence of L implies that the map κL : S → X∨ lifts to a holo-
morphic map κL : S → Loc(X, 1) from S to the moduli of rank one local systems on X. In other
words, we have a commutative diagram of complex spaces

Loc(X, 1)

p

��
S

κL

������������
κL

�� X∨

with p being the natural projection and κL, κL being the classifying maps for L and L. On the
other hand the moduli space Loc(X, 1) is Stein (in fact, isomorphic to (�×)2g) and so the map κL
must be constant. Hence, κL is constant and the proposition is proved.

Our aim is to deform the Picard variety X∨ = Pic0(X) along with the non-commutative defor-
mation �Π of X so that the Fourier–Mukai transform deforms as well. A natural choice will be to
try and deform X∨ to the moduli of quantum line bundles on �Π → �. If we attempt to do this with
the interpretation of a quantum line bundle as an invertible bimodule, then we will end up with an
obstructed moduli problem as explained in Lemma 4.2. As we will see below, this problem does not
occur if we work with rank one locally free left AX,Π-modules. This motivates the following.

Definition 4.3. A line bundle on a formal non-commutative space (X,AX ) is a sheaf L → X of
left-AX -modules which is locally isomorphic as a left module to AX .

The bimodule properties of a line bundle are not completely lost however.

Proposition 4.4. Let (X,AX ) be a deformation quantization of (X,O) and let L be a line bundle
on (X,AX ). Then (X,E ndAX

(L)) is again a deformation quantization of (X,O) and thus L is a
left-(X,AX ) and a right-E ndAX

(L) module. Furthermore these two actions commute with each
other and L is a Morita equivalence bimodule.

Proof. The algebra E ndAX
(L) is naturally a �[[�]]-algebra. Since flatness is a local condition and

E ndA|U (L|U ) ∼= A op
X |U we see that E ndAL is a flat �[[�]]-module. Also

E ndAX
(L)/� ∼= E ndAX/�(L/�) ∼= O

and hence E ndAX
(L) is a deformation quantization of X. The Morita equivalence statement is

straightforward.

Remark 4.5. The previous proposition shows that with our definition, a non-commutative line
bundle L implements an equivalence between the category of AX modules and the category of
E ndAX

(L)op modules. In the commutative case this reduces to the standard interpretation of a line
bundle as an autoequivalence of the category of sheaves. This idea of a line bundle is very nat-
ural physically and was exploited before in [JSW02]. Mathematically, it can be motivated by the
natural expectation that a non-commutative space should not just be taken to be a ringed space
(X,AX) but should be a Morita equivalence class of such spaces (perhaps only locally defined).
There is other evidence for this as well and we will hopefully pursue this in a future paper.

For future reference we record some simple properties of the deformation quantizations arising
from non-commutative line bundles.

Proposition 4.6. Let (X,AX) be a deformation quantization of (X,O). If H0(X,O) = �, then for
any line bundle L, the natural sheaf map Z(AX) → E ndAX

(L) given by the center of the algebra
acting by left multiplication induces an isomorphism

H0(X;Z(AX ))→ H0(X,E ndAX
(L)).
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Proof. We will prove that the composition

�[[�]]→ H0(X,Z(AX )) ↪→ H0(X,E ndAX
(L)) (4.5)

is an isomorphism.

Suppose that (X,O) is a complex manifold with H0(X;O) = � and let (X,B) be a deforma-
tion quantization of (X,O). Then the map �[[�]] → B induces an isomorphism H0(X;�[[�]]) →
H0(X,B).

Indeed, both �[[�]] and H0(X;B) are complete filtered algebras where the filtrations are given
by

H0(X;B)k = �
k ·H0(X;B)

and similarly for �[[�]]. The map �[[�]]→ H0(X;B) is a filtered map and induces a map

gr(f) : gr�[[�]] ∼= �[�]→ grH0(X;B).

Now,

grk H
0(X;B) = H0(X,B)k/H0(X,B)k+1

= H0(X, �kB)/H0(X, �k+1B)
∼= H0(X,B/�B) ∼= H0(X,O) ∼= � (4.6)

because H0(�kB) surjects onto H0(B/�B), and because λ ∈ � is covered by �
kλ. However, if

f : A → B is a filtered map of complete filtered algebras and gr(f) is an isomorphism, then f is
also an isomorphism. Indeed, recall that a complete filtered algebra A is a �-algebra equipped with
a decreasing filtration by two-sided ideals Ai, A = A0 ⊇ A1 ⊇ · · · which satisfy AiAj ⊆ Ai+j, and
completeness: A = limk→∞A/Ak.

Now by completeness, it is enough to show that the maps fk : A/Ak → B/Bk induced by f are
isomorphisms for all k. Since by assumption grk(f) : grk(A) → grk(B) is an isomorphism for all k
and since

A/A1 = gr1(A)→ gr1(B) = B/B1

is an isomorphism, the claim follows by induction using the following commutative diagram of short
exact sequences.

0 �� A/Ak−1

��

��

��

A/Ak
��

��

grk A ��

��

0

0 �� B/Bk−1
�� B/Bk

�� grk B �� 0

This shows that (4.5) is an isomorphism and completes the proof of the lemma.

We now begin to develop the necessary tools to analyze families of line bundles. We have the
following statement, which parallels the classical see-saw lemma [Mum70].

Proposition 4.7. Let � = (X,AX) be a deformation quantization of (X,OX ) and let � = (Y,O�)
be a complex manifold over �. Also, assume that H0(X,O) ∼= �. Consider the deformation quan-
tization � ×� � = (X × Y,AX×Y ) = (X × Y, p−1

1 AX ⊗̂�[[�]] p
−1
2 O�). Let L1 and L2 be two line

bundles on �×� � such that for all y ∈ Y , there is an isomorphism

φy ∈ Isom(L1|X×{y}, L2|X×{y}).
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Then:

(a) there is a global isomorphism of sheaves of algebras

E ndAX×Y
(L1) ∼= E ndAX×Y

(L2)

which on each fiber X × {y} restricts to the isomorphism φy ◦ (−) ◦ φ−1
y ;

(b) there exists a line bundle M on � and an isomorphism �∗�M ⊗AX×Y
L2→̃L1.

Proof. Part (a) of this proposition is a new element of the see-saw principle, specific to the de-
formation quantization situation. To prove part (a), chose a cover U of Y and elements φU ∈
IsomAX×Y

(L1, L2)(X×U) for all U ∈ U. Denote by ψU : E ndAX×Y
(L1)|X×U → E ndAX×Y

(L2)|X×U

the induced local isomorphisms of algebras ψU (f) = φU ◦ f ◦φ−1
U . Using Proposition 4.6 we see that

the elements

φ−1
V ◦ φU ∈ H0(X × (U ∩ V ),IsomAX×Y

(L1))

are in fact in H0(X × (U ∩ V ), p−1
1 Z(AX) ⊗̂�[[�]] p

−1
2 OU∩V ). Therefore, the ψU patch to a global

isomorphism E ndAX×Y
(L1) ∼= E ndAX×Y

(L2) of sheaves of algebras.
The proof of (b) is essentially the same as the see-saw proof found in [Mum70, § II.5]. We

only discuss the modifications of the argument needed in the non-commutative setting. Set E :=
E ndAX×Y

(L1) ∼= E ndAX×Y
(L2). Then L1 and L2 are sheaves on X × Y which are locally free rank

one right modules over the sheaf of algebras E . Hence, the sheaf L∨2 := H omAX×Y
(L2,AX×Y ) has

a natural structure of a left E -module and a right AX×Y -module. Consider now the tensor product
L1 ⊗E L∨2 . This is a sheaf on X × Y which is a AX×Y -bimodule and for every y ∈ Y satisfies

(L1 ⊗E L
∨
2 )|X×{y} ∼= AX

as an AX -bimodule. By Proposition 4.6 applied to the trivial line bundle onX we haveH0(X,AX) =
�[[�]] and thereforeM := pY ∗(L1⊗EL

∨
2 ) is a rank one locally free left module over O�. By adjunction

the identity endomorphism

idM ∈ Hom�(M,M) = Hom�(pY ∗(L1 ⊗E L
∨
2 ), pY ∗(L1 ⊗E L∨2 ))

corresponds to a map

�∗�M ⊗AX×Y
L2 → L1.

The check that this map is an isomorphism is exactly the same as in the commutative situation.

4.2 The Poincaré sheaf
We now describe the factor of automorphy that defines the Poincaré sheaf in our context. Let Π
be a holomorphic Poisson structure on X and let B denote the corresponding B-field on X∨. The
Poisson structure Π lifts to a Poisson structure on V which will be denoted by the same letter.
Consider the Poisson structure on V × V ∨ which is Π on V and 0 on V

∨. We can then form the
corresponding Moyal quantizations (V ×V ∨,A

V×V
∨

,(Π,0)
) and (X×X∨,AX×X∨,(Π,0)) (see § 3.1.1).

In what follows we drop the labels (Π, 0) from our algebras since they will be clear from the context.
Note that (X×X∨,AX×X∨,(Π,0)) is just the non-commutative space �Π×��∨ which is the moduli
space of the stack �Π ×� (B�∨).

Our goal is to construct a deformation of the Poincaré line bundle P → X × X∨ to a line
bundle on the non-commutative stack �Π ×� (B�∨). Why a stack? Even classically the moduli
problem of topologically trivial line bundles on a space Z leads most naturally to an analytic stack
Pic0(Z) which is an O×-gerbe over the usual Picard variety Pic0(Z). This is rarely discussed since
the gerbe Pic0(Z) → Pic0(Z) is trivial. Indeed, we can construct a trivialization of this gerbe by
looking at the moduli problem of framed line bundles on Z with the framing specified at a fixed
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point z ∈ Z. This feature of the moduli of line bundles does not persist in families. If we look at
the relative Picard problem for a smooth family Z → B, then the moduli stack is not necessarily
a trivial gerbe since now a trivialization depends on a framing along a section B → Z, which may
not exist. In our case, �∨ → � should be thought of as the relative Picard variety Pic0(�Π/�)
and B�∨ → � should be thought of as the stack of relative line bundles Pic0(�Π/�) (this will be
justified in § 6). By construction the gerbe B�∨ → �∨ is non-trivial, and indeed we do not expect
Pic0(�Π/�)→ Pic0(�Π/�) to be trivial since �Π → � has no sections.

To define the deformation P → �Π ×� (B�∨) of P → X ×X∨ we use the description of line
bundles via factors of automorphy. Since the �Π is the Λ-quotient of the non-commutative space
(V,AV,Π) and B�∨ is the Γ quotient of (V ∨,O[[�]]) we need a Λ× Γ-factor of automorphy:

φ : Λ× Γ→ H0(V × V ∨,A ut(A
V×V

∨)) = A ×
V×V

∨(V × V ∨).
Here Aut(A

V×V
∨) denotes the automorphisms of A

V×V
∨ considered as a left module over itself.

We define φ by the formula

φ(λ, (ξ, z))(v, l) = z exp(π
√−1 Im(〈ξ, λ〉)) exp(π(〈l, λ〉 + 〈ξ, v〉)) exp

(
π

2
(〈ξ, λ〉 + 〈ξ, λ〉)

)
= z exp(π(〈l + ξ, λ〉+ 〈ξ, v〉))

(4.7)

where λ ∈ Λ, (ξ, z) ∈ Γ and (v, l) ∈ V × V
∨, and 〈l, v〉 = l(v). In particular, 〈l, v〉 is complex

anti-linear as a function of v and complex linear as a function of l. We note that the only term in
this product that involves � is z. The exponentials and the products of terms in this formula can be
viewed either as �-exponentials and products, or as ordinary exponentials and products of functions
on V × V ∨. This is unambiguous as we will see in the proof of the next proposition.

Proposition 4.8. The factor φ is a factor of automorphy.

Proof. To see that φ is a factor of automorphy, we have to check the condition (4.1), which says

φ(λ1 + λ2, ξ1 + ξ2, z1z2c(ξ1, ξ2)) = φ(λ2, ξ2, z2) � ([φ(λ1, ξ1, z1)] · (λ2, ξ2, z2)).

The computation which establishes the factor of automorphy condition for the classical Poincaré
cochain [Pol03] immediately reduces us in this case to showing the equality

c(ξ1, ξ2) exp(π〈ξ1 + ξ2, v〉) = exp(π〈ξ2, v〉) � exp(π〈ξ1, v〉). (4.8)

To that end consider two points f and g in V ∨ viewed as linear functions on V . If P is the
bidifferential operator associated with Π, then using the formula (3.1) we compute (directly, or by
the Campbell–Baker–Hausdorff formula)

(exp f) · P · (exp g) = {f, g} exp (f + g).

Therefore,
(exp f) � (exp g) = exp (�{f, g}) exp (f + g). (4.9)

Given ξ ∈ V ∨ let fξ := π〈ξ, •〉 denote the corresponding linear function on V . Then (4.9) implies
that the �-inverse of exp(fξ) is exp(f−ξ).

Using (4.9) in the right-hand side of (4.8) and canceling exp(fξ1 +fξ2) from both sides, it remains
only to show that

c(ξ1, ξ2) = exp(�{fξ2 , fξ1}). (4.10)
However,

{fξ2 , fξ1} = Π � (dfξ2 ∧ dfξ1) = π2Π � (ξ̄2 ∧ ξ̄1) = π2B(ξ2, ξ1). (4.11)

Now we simply recall that we defined c in (3.9) by c(ξ, ξ′) = exp(�π2B(ξ′, ξ)) to see that (4.10)
is satisfied so we are done.
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5. The equivalence of categories

We are now ready to compare the sheaf theories of the non-commutative torus �Π and the
gerbe B�∨. Just as in the commutative case the equivalence question can be posed for different
derived categories of sheaves.

5.1 Categories of sheaves
The basic categories we need for �Π will be:

• Mod(�Π), the category of all sheaves of left AΠ-modules on X;

• Coh(�Π), the category of all sheaves of coherent left AΠ-modules on X; by definition, these
are sheaves in Mod(�Π) which locally in X admit a finite presentation by free modules.

We will write D∗(�Π) for the derived category of Mod(�Π) and D∗c(�Π) for the derived version of
Coh(�Π). Here the decoration ∗ can be anything in the set {∅,−, b}.

It is important to note that AX,Π is a coherent and Noetherian sheaf of rings, see [Bjö93,
§§A.II.6.27 and A.III.3.24] for the definitions. This implies that Coh(�Π) is a full abelian subcate-
gory in Mod(�Π) and also that D∗c(�Π) is equivalent to the full subcategory of D∗(�Π) consisting of
complexes with coherent cohomology. To check that AX,Π is coherent and Noetherian we use a very
general criterion due to Björk [Bjö79, Lemma 8.2 and Theorem 9.6]. Even though the �-filtration on
AX,Π is decreasing, we can still apply the technology of [Bjö79] since his setup allows for filtrations
infinite in both directions and we can simply relabel the filtration to make it increasing. To check
the hypotheses of [Bjö79, Lemma 8.2] we need to make sure that the stalks of gr AX,Π are left
and right Noetherian. This is clear since (stalks of gr AX,Π) = (stalks of OX [[�]]). To check the
hypotheses of [Bjö79, Theorem 9.6] we need to show that given a left ideal L in a stalk of AX,Π

and elements a1, . . . , as ∈ L, such that σ(a1), . . . , σ(as) generate σ(L), then

Σν ∩ L = Σν−ν1a1 + · · ·+ Σν−νsas (5.1)

holds for all ν. Here Σν is the νth step of the increasing filtration on the stalk of AX,Π, i.e.

Σν =

{
�
−νA ν � 0,

A ν > 0,

σ : AX,Π → gr AX,Π is the symbol map, and νi is the order of ai, i.e. ai ∈ Σνi \ Σνi−1.
In fact the condition (5.1) holds for any deformation quantization. Indeed given a1, . . . , as as

above and � ∈ Σν∩L, we can choose α1, . . . , αs in the stalk of AX,Π so that ν(αi) = ν−νi satisfying

�− (α1 � a1 + · · ·αs � as) ∈ Σν−1 ∩ L.
Now induction and the �-adic completeness of AX,Π finish the verification of (5.1).

For the gerbe B�∨ the relevant categories are:

• Mod(B�∨), the category of sheaves of O
B�

∨-modules;

• Coh(B�∨), the category of coherent O
B�

∨-modules.

Since the gerbe B�∨ admits a presentation B�
∨ = [�∨/�] as a global quotient we can explic-

itly describe Mod(B�∨) and Coh(B�∨), the categories of �-equivariant O
�
∨-modules and coherent

�-equivariant O
�
∨-modules, respectively. Since B�∨ is an O×-gerbe, these categories decompose

into orthogonal direct sums Mod(B�∨) =
∐

k∈� Mod(B�∨, k) and Coh(B�∨) =
∐

k∈� Coh(B�∨, k),
labeled by the character k of the stabilizer �×. Explicitly, Modk(B�∨) and Cohk(B�∨) are, respec-
tively, the categories of �-equivariant sheaves and coherent, �-equivariant sheaves for which the
action of the center O×� is the kth power of the tautological action. These also admit an alternative

442

https://doi.org/10.1112/S0010437X06002636 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06002636


Non-commutative tori and Fourier–Mukai duality

interpretation as categories of kB-twisted sheaves and coherent, kB-twisted sheaves on �∨ (see
[Gir71, Căl02]). Finally, we write D∗(B�∨, k) for the corresponding derived categories.

Digression on quasi-coherent sheaves. An unpleasant phenomenon of the sheaf theory in ana-
lytic geometry is the fact that for generic analytic spaces the categories of analytic coherent sheaves
tend to be fairly small and boring [Ver04]. In particular, the category of analytic coherent sheaves is
not a good invariant in the analytic world. This contrasts with the algebraic category where a
Noetherian scheme can be reconstructed from its category of coherent sheaves [Gab62]. Therefore,
the common wisdom is that for an analytic space X the geometry is captured better by more general
categories of OX -modules, e.g. quasi-coherent ones or all OX -modules.

Unfortunately the notion of a quasi-coherent analytic sheaf is a bit murky and there are several
competing definitions (see [RR74], [EP96], [Tay02, ch. 11.9], and [Orl99]) in the literature. The
relationships among these definitions are not clear in general. We adopt the definition of [Tay02,
ch. 11.9] which is best suited to our setup and we comment on how this definition compares to the
others in our specific case.

Definition 5.1. Suppose that X is an analytic space and let F be an analytic sheaf of OX -
modules. The sheaf F is called quasi-coherent if for every point x ∈ X we can find a compact Stein
neighborhood x ∈ K ⊂ X having the Noether property, and a module M over Γ(K,OK), so that

F|K ∼= M̃ := OK ⊗Γ(K,OK) M.

As usual, in this formula, Γ(K,OK) and M are viewed as constant sheaves on K.
Similarly, if �Π = (X,AX,Π) is a holomorphic deformation quantization of X, we will say that

a sheaf F ∈ Mod(�Π) of left AX,Π-modules is quasi-coherent if for every x ∈ X we can find a
compact Stein neighborhood x ∈ K ⊂ X having the Noether property, and a left module M over
Γ(K,AX,Π), so that

F|K ∼= M̃ := (AX,Π|K)⊗Γ(K,AX,Π)M.

Recall that a compact Stein set is a compact analytic subspace in some �n which can be realized
as the intersection of a nested sequence of Stein neighborhoods. The Noether property of a compact
Stein space K is that Γ(K,OK) is a Noetherian Stein algebra. It is known [Fri67, Lan77] that
compact analytic polyhedra (i.e. subsets of a Stein space defined by finitely many inequalities of
the form |f | � 1, for f holomorphic) are compact Stein sets that have the Noether property. In
particular, polydisks are compact Stein and Noether. More generally every point in an analytic
space has a basis of compact Stein Noether neighborhoods (see also [GR04]).

The above notion of quasi-coherence is somewhat unconventional from the point of view of
Grothendieck sheaf theory on complex spaces. We chose to work with it, since it is compatible with
the more standard points of view on quasi-coherence and, in addition, turns out to have a very good
behavior with respect to pullbacks and pushforwards.

It is instructive to compare the quasi-coherence in the sense of Definition 5.1 to the quasi-
coherence of [RR74], [EP96], and [Orl99].

The most general notion of quasi-coherence is that given by Orlov in [Orl99, Definition 2.6].
Orlov’s definition works on an arbitrary ringed site and is conceptually the closest to the usual notion
of quasi-coherence in algebraic geometry. In fact, Definition 5.1 is a special case of
[Orl99, Definition 2.6]. For any complex space X we can consider the site cSt/X of compact Stein
spaces, taken with the analytic topology and ringed by the sheaf of analytic functions. Any analytic
sheaf F of OX-modules is a sheaf on St/X, gives rise to a sheaf cF on cSt/X, and the quasi-coherence
of F in the sense of Definition 5.1 is simply the quasi-coherence of cF → cSt/X in the sense of
[Orl99, Definition 2.6].
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The other definition is the Ramis–Ruget definition of quasi-coherence [RR74, EP96] which is
historically the first. In their definition, a sheaf F of OX is called quasi-coherent if locally on X we
can realize F as a transversal localization of a module. More precisely, F is algebraically Ramis–
Ruget quasi-coherent if for every two Stein opens V ⊂ U we have:

• Γ(U,F ) and Γ(V,O) are Verdier transversal over Γ(U,O), that is

Γ(V,O)
L⊗Γ(U,O) Γ(U,F ) = Γ(V,O)⊗Γ(U,O) Γ(U,F );

• the natural map Γ(V,O)
L⊗Γ(U,O) Γ(U,F )→ Γ(V, F ) is an isomorphism.

In fact, the Ramis–Ruget notion of quasi-coherence requires that the sheaf F is an analytic sheaf
of nuclear Frechet O-modules, and all of the tensor products are completed. This is necessary
in their setup since they are concerned with the Grothendieck duality theory and, in particular,
need the double dual of the space of sections of a sheaf to be isomorphic to itself. For our purposes,
the nuclear Frechet condition is irrelevant, and so we talk only about the algebraic Ramis–Ruget
quasi-coherence.

Note that the transversality condition in the Ramis–Ruget definition implies that any sheaf
F ∈ Mod(X) which is algebraically Ramis–Ruget quasi-coherent is also quasi-coherent in the sense of
Definition 5.1. So our notion of quasi-coherence is sandwiched between the Ramis–Ruget’s function
theoretic notion and Orlov’s general categorical notion.

The main advantage of Definition 5.1 is that the localization functor on compact Stein spaces
having the Noether property is an exact functor [Tay02, ch. 11.9]. In particular, given an analytic
morphism f : X → Y the pushforward f∗ : Mod(X) → Mod(Y ) preserves quasi-coherence. In the
terminology of [Orl99] this means that the natural map from F to its coherator is an isomorphism.
We write Qcoh(X) and Qcoh(Y ) for the categories of quasi-coherent sheaves and f∗ and f∗ for the
corresponding pullback and pushforward functors.

Finally, observe that the exactness of compact Stein localization of [Tay02, ch. 11.9] also holds for
the sheaves in the category Qcoh(�Π). This is an immediate consequence of the exactness in [Tay02,
ch. 11.9] and the fact that AX,Π is a coherent and Noetherian sheaf of complete �[[�]]-algebras.

For future reference we write D∗qc(�Π) and D∗qc(B�∨, k) for the derived categories of analytic
sheaves with quasi-coherent cohomologies.

5.2 The main theorem

In § 4.2 we defined a Poincaré sheaf P on �Π×�B�∨ deforming the classical Poincaré line bundle.
By definition P is a sheaf on X×(B�∨) which is a left p−1

1 AΠ-module and a right p−1
2 OB�∨-module,

i.e. P ∈ p−1
1 AΠ

Modp−1
2 OB�∨

. We also need the (algebraic) dual sheaf Q of P. For our purposes it

will be convenient to define Q on the product of X and B�∨ in which the order of the factors is
transposed. In other words we define Q as the sheaf on (B�∨)×X given by

Q = P∨ := Hom
p−1
2 AΠ

Mod
p−1
1 O

B�
∨
(t∗P, p−1

2 AΠ ⊗̂�[[�]] p
−1
1 OB�∨).

Here t : (B�∨) × X → X × (B�∨) is the isomorphism transposing the factors. The sheaf Q is in

p−1
1 OB�∨

Modp−1
2 AΠ

by definition. The left–right modules P and Q can be used as kernels of integral
transforms between derived categories. More precisely we have functors

φ
[B�

∨→�Π]
P : D∗(B�∨,−1) �� D∗(�Π)

F �� Rp1∗(P ⊗�p−1
2 OB�∨

p−1
2 F )

(5.2)
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and

φ
[�Π→B�∨]
Q : D∗(�Π) �� D∗(B�∨,−1)

F �� Rp1∗(Q ⊗�p−1
2 AΠ

p−1
2 F ).

(5.3)

Here p1 and p2 denote the projections on the first and second factors of the product X × (B�∨).
Alternatively, they can be thought of as the projections onto the two factors in the fiber product
�Π ×� B�∨, but from that point of view we have to use the fact that O

B�
∨ is commutative and

regard P as a left O�Π×�B�∨ = p−1
1 AΠ ⊗̂�[[�]] p

−1
2 OB�∨-module. The two points of view are

equivalent but the second introduces a certain asymmetry in the treatment of P and Q and so
we chose to consistently work with left–right modules rather than left modules over tensor product
algebras.

The integral transform functors (5.2) and (5.3) are well-defined functors between all flavors
of derived categories that we consider. Indeed these integral transforms are compositions of
sheaf-theoretic pullbacks, tensor products over sheaves of rings, and derived direct images. The sheaf-
theoretic pullbacks are always exact so they do not cause any trouble in the definition. The ten-
soring with the Poincaré sheaves P (or with Q) is also exact since by definition P is a flat
p−1
1 AΠ ⊗̂�[[�]] p

−1
2 OB�∨ module and both AΠ and O

B�
∨ are flat over �[[�]]. Finally, since the

derived pushforward is defined by means of injective resolutions, it always makes sense as a functor
between bounded derived categories. In fact, the pushforward makes sense as a functor between
unbounded or bounded above derived categories since our maps are proper maps of finite homologi-
cal dimension and thus satisfy the sufficient condition [Har66, § II.2]. Alternatively, one can use the
technique of Spaltenstein which allows us to define all functors on the unbounded derived category
by means of K-injective and K-flat resolutions [Spa88].

Note also that, by the discussion in the quasi-coherent digression above, all of these functors
preserve quasi-coherence. To see that the integral transforms restrict to functors between the cor-
responding coherent categories D∗c we have to argue that the analogue of Grauert’s direct image
theorem holds in our case. By now there is plenty of technology in the literature to handle this;
see, for example, [Sch94]. The details are routine so to keep down the size of the paper we do not
include them. The essential hypotheses to check in order to apply [Sch94] is that AΠ is a sheaf of
nuclear Frechet, multiplicatively convex algebras. We have noted all of these conditions above.

Now we are ready to state our main equivalence result.

Theorem 5.2. Suppose that X is a g-dimensional complex torus equipped with a holomorphic
Poisson structure Π. Let �Π → � be the corresponding Moyal quantization, and let B�

∨ → � be
the dual O×-gerbe on �∨. Then we have isomorphisms of functors

φ
[�Π→B�∨]
Q ◦ φ[B�

∨→�Π]
P

∼= idD∗(B�∨,−1)[−g]
φ

[B�
∨→�Π]

P ◦ φ[�Π→B�∨]
Q

∼= idD∗(�Π)[−g].
In particular, D∗(�Π) and D∗(B�∨) are triangulated equivalent. Similarly, D∗c(�Π) (respectively
D∗qc(�Π)) and D∗c(B�∨,−1) (respectively D∗qc(B�∨,−1)) are triangulated equivalent, and so �Π

and B�
∨ are Fourier–Mukai partners.

Proof. Similarly to the classical case discussed in § 2, the theorem will follow from the convolution
property of the integral transform functors. Specifically, we have natural isomorphisms of functors:

φ
[�Π→B�∨]
Q ◦ φ[B�

∨→�Π]
P

∼= φ
[B�

∨→B�∨]
Q∗P

φ
[B�

∨→�Π]
P ◦ φ[�Π→B�∨]

Q
∼= φ

[�Π→�Π]
P∗Q .

(5.4)
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Our strategy will be to first compute the convolution P ∗Q of the kernel objects P and Q and
use the result to show that

φ
[B�

∨→�Π]
P ◦ φ[�Π→B�∨]

Q
∼= idD∗(�Π)[−g].

After that we finish the proof of the theorem by using the Bondal–Orlov criterion to check that
φ

[B�
∨→�Π]

P is fully faithful.
To compute P ∗Q consider the triple product �Π ×� B�∨ ×� �op

Π , which for the purposes of
handling left–right modules we view as the product X×B�∨×X equipped with the structure sheaf

O�Π×�B�∨×��Π
= p−1

1 AΠ ⊗̂�[[�]] p
−1
2 OB�∨ ⊗̂�[[�]] p

−1
3 A op

Π

where we write p1 : X × B�∨ ×X → X, p12 : X × B�∨ ×X → X × B�∨, etc., for the projections
onto the corresponding spaces or stacks. We also write �1 : �Π ×� B�∨ ×� �

op
Π → �Π, �12 :

�Π ×� B�∨ ×� �op
Π → �Π ×� B�∨ for the corresponding maps of ringed objects.

Now, according to § 3.1.4 the difference map d : X ×X → X, d(x, y) = x − y for the additive
structure on the complex torus X, induces a natural map of ringed spaces

�Π : �Π ×� �op
Π → �.

After inserting B�∨ as a middle factor in the triple product �Π×� B�∨×� �op
Π we write �1−3,2 for

the composition map

�Π ×� B�∨ ×� �op
Π

(�Π(	1(•),	3(•)),	2(•))��

	1−3,2
������������������������
�×� B�∨

	1×

��

�×� �∨

where � : B�∨ → � is the natural structure map. Being a morphism of ringed objects, the map
�1−3,2 : �Π ×� B�∨ ×� �op

Π → � ×� �∨ is given as a pair �1−3,2 = (p1−3,2, p
�
1−3,2) where p1−3,2 :

X × B�∨ ×X → X ×X∨ and a morphism of sheaves of algebras

p�
1−3,2 : p−1

1−3,2OX×X∨ �� p−1
1 AΠ ⊗̂�[[�]] p

−1
2 OB�∨ ⊗̂�[[�]] p

−1
3 A op

Π .

As usual, given a coherent sheafM on X ×X∨ we define its pullback via �1−3,2 to be the sheaf on
X × B�∨ ×X given by

�∗1−3,2M := (p−1
1−3,2M)⊗p−1

1−3,2OX×X∨ (p−1
1 AΠ ⊗̂�[[�]] p

−1
2 OB�∨ ⊗̂�[[�]] p

−1
3 A op

Π ).

Since OX×X∨ is commutative, the sheaf �∗1−3,2M will have a natural structure of a left
p−1
1 AΠ-module and a right p−1

3 AΠ module.
With this notation we have the following.

Lemma 5.3. Let P → X × X∨ be the classical Poincaré bundle for the pair of dual complex tori
(X,X∨). On the triple product X × (B�∨)×X, there is a natural isomorphism of sheaves

p−1
12 P ⊗p−1

2 O
B�

∨ p
−1
23 Q ∼= �∗1−3,2P[[�]], (5.5)

which is also an isomorphism in p−1
1 AΠ

Modp−1
3 AΠ

.

Proof. First observe that the sheaves appearing in the two sides of the identity (5.5) can all be
specified via factors of automorphy. Thus, the question of proving the lemma reduces to computing
and comparing the factors of automorphy of the left-hand side and the right-hand side of (5.5).

446

https://doi.org/10.1112/S0010437X06002636 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06002636


Non-commutative tori and Fourier–Mukai duality

As explained in § 4.2 the Poincaré sheaf P is defined by a Λ × Γ factor of automorphy φP

on the vector space V × V ∨ taking values in the invertible global sections of the sheaf of algebras
p−1
1 AΠ ⊗̂� p−1

2 OV
∨ . Explicitly,

φP : Λ× Γ �� Γ(V × V ∨, (p−1
1 AΠ ⊗̂� p−1

2 OV
∨)×)

(λ; (ξ, z)) �� ((v, l) 	→ zeπ〈ξ,λ〉eπ〈ξ,v〉eπ〈l,λ〉).
(5.6)

Similarly,

φQ : Γ× Λ �� Γ(V ∨ × V, (p−1
1 OV

∨ ⊗̂� p−1
2 AΠ)×)

(λ; (ξ, z)) �� ((l, v) 	→ z−1e−π〈ξ,λ〉e−π〈l,λ〉eπ〈ξ,v〉).
(5.7)

Let

φ : Λ× Γ× Λ→ Γ(V × V ∨ × V, Aut(p−1
1 AΠ ⊗̂�[[�]] p

−1
2 OV

∨ [[�]] ⊗̂�[[�]] p
−1
3 A op

Π ))

denote the factor of automorphy for the left–right module p−1
12 P ⊗p−1

2 O
B�

∨ p−1
23 Q. The

formulas (5.6) and (5.7) now combine in an explicit expression for φ. If f is a local section of
p−1
1 AΠ ⊗�[[�]] p

−1
2 OV

∨ [[�]]⊗�[[�]] p
−1
3 AΠ, then

[φ(λ, (ξ, z), µ)(f)](v, x,w) = [p−1
2 (eπ〈•+ξ,λ−µ〉)p−1

3 (e−π〈ξ,•〉) � f � p−1
1 (eπ〈ξ,•〉)](v, x,w).

We now compute the factor of automorphy for �∗1−3,2P[[�]]. Let φP denote the factor of automorphy
for the classical Poincaré sheaf P → X ×X∨

φP : Λ× Λ∨ �� Γ(V × V ∨, (p−1
1 OV ⊗̂� p−1

2 OV
∨)×)

(λ, ξ) �� ((v, l) 	→ eπ〈l+ξ,λ〉eπ〈ξ,v〉).
(5.8)

Consider the map

diff : V × V ∨ × V → V × V ∨
(v, x,w) 	→ (v −w, x). (5.9)

The factor of automorphy ψ for �∗1−3,2P[[�]] is a map

ψ : Λ× Γ× Λ→ Γ(V × V ∨ × V, A ut(p−1
1 AΠ ⊗̂�[[�]] p

−1
2 OV

∨[[�]] ⊗̂�[[�]] p
−1
3 A op

Π )),

where the automorphism ψ(λ; (ξ, z);µ) is given by right–left multiplication by the invertible section

p�
1−3,2(p

−1
1−3,2φP ◦ diff)(λ; (ξ, z);µ)

of the sheaf of algebras p−1
1 AΠ ⊗̂�[[�]] p

−1
2 OV

∨ [[�]] ⊗̂�[[�]] p
−1
3 AΠ. Since the map p�

1−3,2 is defined
in terms of the coproduct structure of § 4.2 we compute explicitly:

[p�
1−3,2(p

−1
1−3,2φP ◦ diff)(λ; (ξ, z);µ)](v, l, w)

= (1⊗ eπ〈l+ξ,λ−µ〉 ⊗ 1) � (eπ〈ξ,v〉 ⊗ 1⊗ 1) � (1⊗ 1⊗ e−π〈ξ,w〉)

= eπ〈ξ,v〉 ⊗ eπ〈l+ξ,λ−µ〉 ⊗ e−π〈ξ,w〉.

(5.10)

Thus, ψ(λ; (ξ, z);µ) is the automorphism of p−1
1 AΠ ⊗̂�[[�]] p

−1
2 OV

∨ [[�]] ⊗̂�[[�]] p
−1
3 A op

Π given by

p−1
1 eπ〈ξ,•〉 acting by a right multiplication, p−1

3 e−π〈ξ,•〉 acting by a left multiplication, and the
function p−1

2 eπ〈•+ξ,λ−µ〉 acting in the unambiguous, obvious way. Since this agrees precisely with
the description of φ, we are done.
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To finish the computation of the convolution P ∗Q we use the fiber-product diagram:

�Π ×� B�∨ ×� �Π

	1−3,2 ��

p13

��

�0 ×� 0�
∨

p1

��
�Π ×� �Π 	1−2

�� �0

where �0 = X×� denotes the trivial formal deformation of X and 0�
∨ denotes the trivial O×-gerbe

on the space �∨ = X∨ × �.
Alternatively, viewing the maps �1−3,2 = (p1−3,2, p

�
1−3,2), etc., as morphisms of ringed spaces we

can apply the base change property and Lemma 5.3 to conclude that

P ∗Q := Rp13∗(p−1
12 P ⊗p−1

2 OB�∨
p−1
23 Q)

= Rp13∗�∗1−3,2P[[�]]

= �∗1−2(Rp1∗P[[�]])
= �∗1−2(O0[[�]])[−g],

where O0 denotes the skyscraper sheaf on X supported at the origin 0 ∈ X. In particular, the
identity

φ
[B�

∨→�Π]
P ◦ φ[�Π→B�∨]

Q
∼= idD∗(�Π)[−g]

will follow immediately from the convolution property (5.4) and the following.

Lemma 5.4. We have

φ
[�Π→�Π]
	∗

1−2O0[[�]] = idD∗(�Π).

Proof. Consider the sheaf �∗1−2O0[[�]] on the topological space X×X. By construction it is naturally
a left p−1

1 AΠ-module and a right p−1
2 AΠ-module. The element �∗1−2O0[[�]] ∈ p−1

1 AΠ
Modp−1

2 AΠ
is

easy to compute. Recall that the sheaf �∗1−2O0[[�]] is defined as the tensor product

�∗1−2O0[[�]] = (p−1
1 AΠ ⊗̂�[[�]] p

−1
2 A op

Π )⊗p−1
1−2OX [[�]] (p

−1
1−2O0[[�]])

of p−1
1−2O0[[�]] with the sheaf of algebras p−1

1 AΠ ⊗�[[�]] p
−1
2 A op

Π , where the tensor product is taken
over the algebra p−1

1−2O[[�]] via the coproduct homomorphism

p�
1−2 : p−1

1−2OX [[�]]→ p−1
1 AΠ ⊗̂�[[�]] p

−1
2 A op

Π

defined in § 3.1.4. In these terms the left–right module structure on �∗1−2O0[[�]] arises from the left
multiplication of p−1

1 AΠ ⊗̂�[[�]] p
−1
2 A op

Π on itself.
Consider the following commutative diagram of topological spaces.

X
∆ ��

��

X ×X
p1−2

��
0 �� X

From this diagram, we deduce p−1
1−2O0[[�]] ∼= ∆∗�[[�]]. Below we use this identification to argue that

the element �∗1−2O0[[�]] ∈ p−1
1 AΠ

Modp−1
2 AΠ

is given as

�∗1−2O0[[�]] ∼= ∆∗AΠ. (5.11)

Here we view ∆∗AΠ as a sheaf on X × X supported on the diagonal and equipped with nat-
ural left–right module structure. Namely the left p−1

1 AΠ-module structure corresponding to left
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multiplication by elements in ∆−1p−1
1 AΠ = AΠ and the right p−1

2 AΠ-module structure correspond-
ing to right multiplication by elements in ∆−1p−1

2 AΠ = AΠ.
The isomorphism claimed in (5.11) is given by the following mutually inverse maps in

p−1
1 AΠ

Modp−1
2 AΠ

(p−1
1 AΠ ⊗̂�[[�]] p

−1
2 A op

Π )⊗p−1
1−2OX [[�]] (∆∗�[[�]]) �� ∆∗AΠ

a⊗ b⊗ (∆∗c)
� �� ∆∗((∆−1(b)) � (∆−1(a)) � c)

(5.12)

and

∆∗AΠ
�� (p−1

1 AΠ ⊗̂�[[�]] p
−1
2 A op

Π )⊗p−1
1−2OX [[�]] (∆∗�[[�]])

∆∗f
� �� 1⊗ p−1

1 (f)⊗ 1.
(5.13)

The composition of (5.13) followed by (5.12) tautologically gives the identity. Composing in the
reverse order also gives the identity. Indeed, the composed map is

a⊗ b⊗ (∆∗c) 	→ p−1
1 (∆−1(b) �∆−1(a) � c)⊗ 1⊗ 1.

Consider now the element

a⊗ 1⊗∆∗c ∈ p−1
1 AΠ ⊗̂�[[�]] p

−1
2 A op

Π ⊗p−1
1−2OX [[�]] (∆∗�[[�]]).

Taking into account that p−1
1 (∆−1(a)) = a, p−1

2 (∆−1(b)) = b, and using the definition of the left–
right module structure on p−1

1 AΠ ⊗̂�[[�]] p
−1
2 A op

Π ⊗p−1
1−2OX [[�]] (∆∗�[[�]]), we get

a⊗ b⊗∆∗c = p−1
1 ((∆−1(a)) � c)⊗ b⊗ 1

= (p−1
1 ((∆−1(a)) � c)⊗ 1⊗ 1) · b.

Moreover, for any x ∈ p−1
1 AΠ, we have the identity

(x⊗ 1⊗ 1) · b = p−1
1 (∆−1(b)) · (x⊗ 1⊗ 1), (5.14)

valid in the left–right module p−1
1 AΠ ⊗̂�[[�]] p

−1
2 A op

Π ⊗p−1
1−2OX [[�]] (∆∗�[[�]]). This identity follows

immediately from the definition of the coproduct map p�
1−2 and from the fact that this module is

supported on the diagonal in X ×X.
Combining the identity (5.14) with the definition of the left p−1

1 AΠ action on p−1
1 AΠ ⊗̂�[[�]]

p−1
2 A op

Π ⊗p−1
1−2OX [[�]] (∆∗�[[�]]), yields

(x⊗ 1⊗ 1) · b = p−1
1 (∆−1(b)) · (x⊗ 1⊗ 1) = (p−1

1 (∆−1(b)) � x)⊗ 1⊗ 1,

and so a⊗ b⊗∆∗c = p−1
1 (∆−1(b) �∆−1(a) � c)⊗ 1⊗ 1.

Now that we have the isomorphism �∗1−2O0[[�]] ∼= ∆∗AΠ we can easily compute that for any
element M ∈ D∗(�Π)

Rp1∗(�∗1−2O0[[�]]⊗p−1
2 AΠ

p−1
2 M ) ∼= Rp1∗(R∆∗AΠ ⊗p−1

2 AΠ
p−1
2 M )

∼= Rp1∗R∆∗(AΠ ⊗∆−1p−1
2 AΠ

∆−1p−1
2 M )

in other words we have

Rp1∗(�∗1−2O0[[�]]⊗p−1
2 AΠ

p−1
2 M ) ∼= Rp1∗R∆∗(AΠ ⊗AΠ

M ) ∼= Rp1∗R∆∗(M ) ∼= M .

This completes the proof of the lemma.

In the opposite direction we must verify the identity

φ
[�Π→B�∨]
Q ◦ φ[B�

∨→�Π]
P

∼= idD∗(B�∨,−1)[−g].
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By Lemma 5.4 we have

φ
[B�

∨→�Π]
P ◦ φ[�Π→B�∨]

Q
∼= idD∗(�Π)[−g],

and so φP := φ
[B�

∨→�Π]
P is essentially surjective. Therefore, if we can check that φP is fully faithful

we can conclude that φP is an equivalence and that φQ[g] is the inverse.

Lemma 5.5. The functor φ
[B�

∨→�Π]
P is fully faithful.

To argue that φP is fully faithful we first identify an orthogonal spanning class of objects for
the category D∗(B�∨,−1), and then check that φP satisfies the Bondal–Orlov faithfulness criterion
[BO95, Bri99] on the spanning class. To apply the criterion we need to know that the functor φP

has left and right adjoints. For this we only need to note that φP is given as the composition of
a pullback, a tensoring with P, and a pushforward. Since the pullback and the pushforward have
left and right adjoints and the tensoring with P has a left and right adjoint given by the tensoring
with Q, we get that φP has both left and right adjoints. This puts us in a position to apply the
Bondal–Orlov criterion. We proceed in several steps.

Step 1. Consider the category D∗(B�∨,−1) of weight (−1) sheaves on the gerbe B�∨. We have a
natural collection of objects in this category labeled by the points of the torus X∨.

Indeed, suppose that s ∈ X∨ is a point in the torus X∨ and let s : � → �∨ be the constant
section of �∨ = X∨ × � → � passing through s. The first observation is that the pullback of the
gerbe B�∨ by s is a trivial O×-gerbe on �. Indeed, the gerbe B�∨ was defined as a global quotient
[�∨/�] with � acting through the projection � → �∨ and the natural free action of �∨ on �

∨. In
particular, for any space S and any map f : S → X∨ for which S×X∨ V

∨ is a trivial Λ∨ cover of S,
the f -pullback of B�∨ will be a trivial O×-gerbe. This implies that for any weight k ∈ � we can
view the sheaf s∗O� = Os×� as a sheaf on B�∨ of pure weight k.

In fact, the presentation of B�∨ as a global quotient provides a canonical way of endowing s∗O�
with the structure of a weight k sheaf on the gerbe. To that end, consider the universal covering
map π : V ∨ → X∨. The preimage Fs := π−1(s) ⊂ V ∨ is a Λ∨-orbit in V ∨, and the pullback gerbe

s∗(B�∨) := B�
∨ ×�∨,s �

is naturally realized as the global quotient [(Fs×�)/�]. Looking at �-points it is clear that in order to
equip s∗O� with the structure of a weight (−1)-sheaf on B�∨, it suffices to describe a Γ equivariant
structure on OFs [[�]] in which every central element z ∈ �[[�]]× ⊂ Γ acts as multiplication by z−1

viewed as a section in OFs [[�]].
To achieve this as before we let c : Λ∨ × Λ∨ → �[[�]]× denote the cocycle defining the group Γ.

Since c was given as the exponential of a multiple of the �-linear map B :
∧2 V

∨ → �, we can use
�-linearity to extend c to a multiplicative map c̃ : Λ∨ ⊗ V ∨ → �[[�]]×. Now, suppose (ξ, z) ∈ Γ and
let f ∈ OFs [[�]]. Since Fs is a discrete set of points, we can write f as a collection {fw}w∈Fs with
fw ∈ OFs,w[[�]] = �[[�]]. With this notation (ξ, z) gives rise to an automorphism

ρ(ξ,z) : H0(Fs,OFs [[�]])→ H0(Fs,OFs [[�]]),

where for each w ∈ Fs we define

ρ(ξ,z) = {(ρ(ξ,z)f)w}w∈Fs , with (ρ(ξ,z)f)w := z−1c̃(w, ξ)fw−ξ.

To check that ρ is a Γ-action we compute

(ρ(ξ′,z′)ρ(ξ,z)f)w = z′−1c̃(w, ξ′)(ρ(ξ,z)f)w−ξ′

= z′−1z−1c̃(w, ξ′)c̃(w − ξ′, ξ)fw−ξ′−ξ

= (z′z)−1c̃(−ξ′, ξ)c̃(w, ξ + ξ′)fw−ξ′−ξ.
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On the other hand, (ξ′, z′) · (ξ, z) = (ξ + ξ′, zz′c(ξ′, ξ)) and so

(ρ(ξ′,z′)·(ξ,z)f)w = (z′z)−1c̃(ξ′, ξ)−1c̃(w, ξ + ξ′)fw−ξ′−ξ.

taking into account the fact that c is bilinear on Λ∨ we conclude that ρ(ξ′,z′)·(ξ,z) = ρ(ξ′,z′)ρ(ξ,z).
For future reference we denote the weight (−1)-sheaf given by ρ by (s,−1)∗O�. Clearly this

generalizes to all weights k ∈ � yielding weight k sheaves (s, k)∗O� on B�∨. In fact, we have a pair
of adjoint functors (L(s, k)∗, (s, k)∗) between the categories D∗(�) and D∗(B�∨, k), defined for all
integers k.

The existence of such functors is a basic fact about any morphism between a space and an O×
gerbe. Indeed, suppose that S is a space and T is an O× gerbe on a space T . Suppose that we
are given a morphism of spaces f : S → T with the property that f∗T is trivializable. Choosing
a trivialization f∗T ∼= 0S we get a well-defined pair of adjoint functors (Lf∗, Rf∗) between D∗(S)
and D∗(T ). By construction these functors are compatible with the weight decompositions so we
get induced adjoint pairs between the corresponding weight pieces. These can, in turn, be combined
with the canonical equivalences D∗(S) = D∗(0S, k) which are also defined for all k. This results in
adjoint pairs of functors

D∗(S)
R(f,k)∗ ��

D∗(T , k)
L(f,k)∗

�� (5.15)

which we frequently use below. Note that the construction of (5.15) depends on the choice of triv-
ialization of the gerbe f∗T . In the particular case of the map s : � → �∨, we used a special
trivialization constructed out of the quotient presentation of B�∨. This trivialization is precisely
encoded in the map c̃ used above.

Consider now the collection of objects {(s,−1)∗O�}s∈X∨ ⊂ ob(D∗(B�∨,−1)). We argue that
this is an orthogonal spanning class of D∗(B�∨,−1).

The orthogonality is obvious since for any two points s �= t ∈ X∨ the supports of the
sheaves (s,−1)∗O� and (t,−1)∗O� are disjoint substacks in B�

∨.
To show that these sheaves span the category, we need to check that if A is a complex of sheaves

on B�
∨ of pure weight (−1), with the property that A is left (respectively right) orthogonal to all

(s,−1)∗O�, then A = 0 in D∗(B�∨,−1). Suppose first RHom((s,−1)∗O�, A) = 0 for all s ∈ X∨.
Let j : X∨ → B�

∨ be the natural closed immersion. We have a distinguished triangle

A
� ��A ��(j,−1)∗L(j,−1)∗A ��A[1] (5.16)

and since the complex of vector spaces RHom((s,−1)∗O�, A) is exact, it follows that the complex
RHom((s,−1)∗O�, (j,−1)∗L(j,−1)∗A) is exact.

By adjunction we get that

RHomX(L(j,−1)∗(s,−1)∗O�, L(j,−1)∗A) = 0. (5.17)

However, L(j,−1)∗(s,−1)∗O� can be computed explicitly:

L(j,−1)∗(s,−1)∗O� = Lj∗s∗O� = Os. (5.18)

The first equality in (5.18) follows tautologically from the definition of the functors L(j,−1)∗ and
(s,−1)∗ and the second follows immediately from the base change identity Lj∗s∗O� = Rs∗Li∗O� =
Rs∗O0 = Os. Here i : 0 → � denotes the inclusion of the closed point and s : 0 → X∨ is the map
given by the point s.

Now (5.17) and (5.18) imply that RHomX(Os, L(j,−1)∗A) = 0 for all s ∈ X∨. Since the
structure sheaves of points form a spanning class in the derived category of X∨ it follows that
L(j,−1)∗A = 0. Thus, (j,−1)∗L(j,−1)∗A = 0 in D∗(B�∨,−1). Now the exact triangle (5.16)
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implies that multiplication by � is an isomorphism on all cohomology sheaves of the complex A.
By Nakayama’s lemma this implies that the cohomology sheaves of A are all zero and so A is
quasi-isomorphic to the zero complex.

Step 2. Given a section s : �→ �∨ of �∨ → �, we check that

φP((s,−1)∗O�) ∼= Ps, (5.19)

where Ps is the line bundle

Ps := L(id×s, 1)∗P = (id×s, 1)∗P

on �Π.
Indeed, if we write 	Π : �Π → � for the structure morphism of �Π we get a natural cartesian

diagram

�Π

�Π

��

id×� �� �Π ×� B�∨
	2

��
� �

��
B�
∨

where � : �→ B�
∨ denotes the map corresponding to our preferred trivialization of the O×-gerbe

s∗(B�∨) on �.
Base changing along this diagram now gives p−1

2 (s,−1)∗O� = R(id×s,−1)∗	−1
Π O�. Thus,

P ⊗p−1
2 OB�∨

p−1
2 (s,−1)∗O� = P ⊗p−1

2 OB�∨
R(id×s,−1)∗	−1

Π O�
= R(id×s, 0)∗(L(id×s, 1)∗P ⊗

�
−1
Π O� 	

−1
Π O�)

= R(id×s, 0)∗Ps, (5.20)

where for the second equality we used the projection formula applied to the map id×�.
We are now in a position to check (5.19). By definition, we have

φP((s,−1)∗O�) = Rp1∗(P ⊗p−1
2 OB�∨

p−1
2 ((s,−1)∗O�))

and therefore by (5.20)

φP((s,−1)∗O�) = Rp1∗R(id×s, 0)∗Ps

= R(p1 ◦ (id×s, 0))∗Ps

= R(id)∗Ps

= Ps.

Remark 5.6. This calculation only uses the fact that s : � → �∨ is a section and is insensitive to
whether this section is constant or not. In particular, our proof shows that the identity (5.19) is
valid for all (not necessarily constant) sections s : �→ �∨.

Step 3. Finally we check that

RHomD∗(B�∨)((s,−1)∗O�, (t,−1)∗O�) = RHomD∗(�Π)(Ps,Pt)

for all constant sections s, t : �→ B�
∨.

Since Ps and Pt are translation invariant line bundles on �Π, they are naturally AΠ bimodules.
In particular, there is a well-defined inner hom

H omAΠ−mod(Ps,Pt) = P∨
s ⊗AΠ

Pt

which is also a translation invariant line bundle on �Π. In fact, by writing the factors of automorphy
for P∨

s and Pt it is clear that P∨
s ⊗AΠ

Pt = Pt−s.
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Thus, for the global homomorphisms in the derived category we get

RHom•(Ps,Pt) ∼= H•(X,Pt−s).

Now by the computation in Appendix D we conclude that H•(X,Pt−s) = 0 unless Pt−s/� ∼= OX

or, equivalently, s(0) = t(0). Since our sections s and t are constant, this can happen only when
s = t.

Finally, when s = t, we have Pt−s = P0 = AΠ, and so as a sheaf on X we have P0 = OX [[�]].
In other words H•(X,P0) = H•(X,O)[[�]]. This completes the proof of Step 3.

Lemma 5.4 together with Lemma 5.5 now yield a proof of the theorem.

Remark 5.7. It was pointed out by the anonymous referee that in the case of abelian varieties,
the proof of the previous theorem can be simplified considerably. The first observation is that the
two composition functors in the statement of Theorem 5.2 can be shown to be equivalences by
deformation theory. Up to a shift, the composition functor is an integral transform whose kernel
is a deformation of the structure sheaf of the diagonal. One can verify order by order that this
kernel is a bimodule and then check that after pushing forward with either of the two projections it
becomes an invertible bimodule. This will imply that the compositions φQ ◦ φP and φP ◦ φQ are
both equivalences and, in particular, will show that φP and φQ are equivalences. This argument can
be used as a replacement for the explicit verification of the Bondal–Orlov conditions in Lemma 5.5
and shows that the first identity in the statement of Theorem 5.2 implies the second.

Finally, to prove the first identity one can use a method employed by Gaitsgory in the context
of Fourier transforms for perverse sheaves. The key observation here is that once we know that a
functor is an equivalence, its inverse will coincide with its adjoints (both left and right). Therefore,
it suffices to check that φQ is the adjoint of φP . In the algebraic situation this follows from relative
duality theory (and some special care needed to deal with the quasi-coherent sheaves). In the analytic
situation this argument has only a chance of working for the Ramis–Ruget notion of quasi-coherence
and leads to technical difficulties which we have not analyzed.

5.3 Remarks on classical supports

The reader may have noticed by now that there are some suggestive similarities between the module
theory on a deformation quantization and the theory of D-modules. Here we point out a particular
aspect of this similarity that has to do with the supports of quantum modules.

Definition 5.8. (i) Suppose that � = (M,AM ) is a deformation quantization of a complex manifold
M . Let

M

��

i⊂ �

��
o ∈ �

be the inclusion of the closed fiber and let F be a coherent sheaf on �. We define the classical
support of F as the support of the complex Li∗F ∈ Db

c(M).

(ii) Suppose that N is a complex manifold and suppose N→ � = N × � is an O×-gerbe which
is trivialized on the closed fiber N × {o} ⊂ �. Let

N

��

i⊂ N

��
o ∈ �
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be the inclusion corresponding to this trivialization and let G be a coherent sheaf of pure weight
on N. We define the classical support of G as the support of the complex Li∗G ∈ Db

c(N).

Observe that if the sheaf F on � is flat over �, then the classical supports of F is just the
support of the sheaf i∗F . Similarly, if G is flat over N, then the classical support of G is the support
of the sheaf i∗G.

Claim 5.9. (a) Suppose that � = (M,AM ) is a deformation quantization of a complex manifold
M and suppose that F is a coherent sheaf on � which is flat over �. Let Π ∈ H0(M,

∧2 TM ) be
the holomorphic Poisson structure associated with �, and let {•, •}Π : OM ⊗� OM → OM be the
corresponding bracket on functions. Then the classical support S ⊂ M of F is coisotropic with
respect to Π, i.e. the ideal sheaf IS ⊂ OM satisfies {IS ,IS}Π ⊂ IS.

(b) Suppose that N is a complex manifold and suppose that N → � = N × � is an O×-gerbe
which is trivialized on the closed fiber. Let B ∈ H2(N,O) be the infinitesimal class of the gerbe N

and let G be a pure weight one coherent sheaf on N which is flat over �. Then the classical support
T ⊂ N of G is B-isotropic, i.e. B|T = 0 ∈ H2(T,OT ).

Remark 5.10. There is a puzzling asymmetry in the notions of coisotropic and isotropic defined
above. Whereas the property of being coisotropic is geometric, the property of being isotropic
appears to be only homological. To justify why our notion of isotropic is meaningful note that if
B ∈ H2(N,ON ), and if we choose a Hermitian metric on N , then B can be represented by a ∂̄-
harmonic (0, 2)-form β. When the metric is Kähler and N is compact, the form β is d-harmonic and
hence closed. In other words, B is represented by a presymplectic form β on the C∞-manifold N . If,
now, T ⊂ N is a complex submanifold for which B|T = 0 ∈ H2(N,ON ), it follows that the restriction
β|T ∈ Γ(T,A0,2

T ) is the zero form, i.e. T is isotropic in the sense of presymplectic geometry.
Note also, that when N = X∨ was a complex torus and N = B�

∨, then the class B had a
canonical harmonic representative, since B was given by an element in

∧2 V .

Proof of the Claim. Part (a) is a deformation quantization analogue of the corresponding result for
D-modules. It is, in fact, a special case of a general version of Gabber’s theorem [Bjö93, Appendix III,
Theorem 3.7]. The result [Bjö93, Appendix III, Theorem 3.7] implies the usual Gabber’s theorem on
D-modules when applied to R/t2, where R is the Rees algebra of the sheaf of differential operators.
It also implies part (a) of our claim when applied to AM/�

2. The only thing we need to check is the
hypothesis ker[F/�2 �·→ F/�2] = im[F/�2 �·→ F/�2] which is immediate from the fact that F is flat
over �.

Part (b) follows from [Tod05, Proposition 6.1] applied to N/�2. Indeed, according to [Tod05,
Proposition 6.1], for any sheaf Φ on N , the existence of a flat extension of Φ to N/�2 is equivalent
to the vanishing of the product of the exponential exp(a(Φ)) ∈⊕k Extk(G,G⊗Ωk

N ) of the Atiyah
class a(Φ) of Φ, and the B ∈ H2(N,ON ) ⊂ HT 2(N) =

⊕
p+q=2H

p(N,
∧q TN ). Here the product is

defined as the image under the natural map(⊕
k

Extk(G,G ⊗ Ωk
N)
)
⊗
(⊕

p,q

Hp(N,∧qTN )
)
∪ ��
⊕
a,b

Exta(G,G ⊗ Ωb
N) ��

⊕
a

Exta(G,G).

In particular, exp(a(Φ)) ·B can be zero only if B restricts to zero on the support of Φ. Applying
this to Φ := i∗G and taking into account that G is flat, we get the statement (b). The claim is
proved.

The claim together with the classical Fourier–Mukai duality impose non-trivial conditions on
the support of a sheaf on M , that are necessary for quantizing it. For instance, part (b) of the claim
immediately implies that an ample line bundle on an abelian variety can not be quantized since its
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Fourier–Mukai transform is a vector bundle on the dual abelian variety. The supports of modules
over deformation quantizations was recently investigated in [NT04].

6. The gerbe Pic0(�Π/�)

With the equivalence of categories in place we are now ready to identify B�∨ geometrically as the
relative Picard stack Pic0(�Π/�) of degree zero line bundles on �Π → �.

Before we define Pic0(�Π/�) let us recall the classical notion of a Picard variety. In the clas-
sical situation, the Picard variety Pic0(Z) of a smooth space Z is defined as the moduli space of
isomorphism classes of degree zero line bundles. More precisely, consider the site San of analytic
spaces with the analytic topology and let Pic0(Z) denote the moduli stack on San associated to
the prestack:

Y →
{

the groupoid whose objects are holomorphic line bundles on Z × Y of degree
zero relative to Y , and morphisms are isomorphisms

}
. (6.1)

The associated sheaf of sets π0(Pic0(Z)) associated to Pic0(Z) is representable by a space Pic0(Z).
The stack Pic0(Z) is an O×-gerbe over Pic0(Z) which encodes the fact that the automorphisms
of a line bundle are given by multiplication by an invertible holomorphic function. Explicitly, for
any analytic space Y one introduces an equivalence relation ∼Y on the collection of all line bundles
on Z × Y . Two line bundles L,M → Z × Y are considered to be equivalent if L is isomorphic to
M ⊗ p∗YA for some line bundle A on Y . The variety Pic0(Z) represents the functor

π0(Pic0(Z)) : San → Sets

given by

Y →
{

the set of all ∼Y -equivalence classes of holomorphic line bundles on Z × Y of
degree zero relative to Y

}
.

Moreover the moduli problem (6.1) can be rigidified in a simple way (by considering line bundles
on Z × Y equipped with a trivialization on {o} × Y for some fixed point o ∈ Z) which trivializes
this gerbe Pic0(Z). Interestingly, in the non-commutative case we can not resort to a rigidification
trick since the non-commutative space �Π need not have any points. In fact, as we will see below,
Pic0(�Π/�) is a gerbe on �∨ which is no longer trivializable.

To define line bundles of degree zero on �Π we look at the translation action of a torus X on
itself. Since the holomorphic Poisson structures are constant, this action lifts to the sheaf AX,Π.
In particular, X acts on the non-commutative space �Π. In the classical situation, the degree zero
line bundles can be characterized as those that are translation invariant. We use this as our definition
of degree 0 in the non-commutative case.

Definition 6.1. A line bundle (a locally free rank one left AX,Π-module) on �Π is said to be of
degree zero when it is translation invariant.

It turns out that a line bundle L on �Π is of degree zero if and only if its classical part L /�L
has zero first Chern class (see Lemma C.2). It is a coincidence that such an L is also a bimodule.
We will not use these bimodule structures. As discussed in § 4.2, if one wants line bundles to vary
in families, the bimodule structures on the individual line bundles can not be chosen in a consistent
way.

By definition Pic0(�Π/�) is the moduli stack of line bundles of relative degree zero on �Π → �.
To spell this out we need the analytic site (FS /�)an of formal analytic spaces over �. Formal
analytic spaces are the analytic counterpart of Knutson’s formal algebraic spaces. The theory of
formal analytic spaces is parallel to [Knu71, ch. V] but with commutative rings replaced with
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Stein algebras. A convenient way to look at the formal analytic spaces over � is as commutative
deformation quantizations of analytic spaces. A morphism 
 = (f, f �) : � → � in the category
FS /� is an analytic open immersion if the map f = 
/� : X → Y is an open analytic map,
and the map f � : f−1OY → OX is an isomorphism. The analytic topology on the category of
formal analytic spaces is the Grothendieck topology associated (in the sense of say [Knu71]) with
the subcategory of analytic open immersions.

Given a formal analytic space � over �, with closed fiber Y we form the ringed space

�Π ×� � = (X × Y, p−1
X AX,Π ⊗̂�[[�]] p

−1
Y AY )

where ⊗̂ denotes the completed tensor product of sheaves of nuclear Frechet algebras.
Given a formal analytic space � over �, we say that a line bundle L on �Π ×� � is of degree

zero relative to � if for any section σ : � → �, the pullback (1 × σ)∗(L ) is of degree zero as a line
bundle on �Π.

Definition 6.2. The moduli stack Pic0(�Π/�) is the stack on (FS /�)an associated with the
prestack:

(�→ �)→
{

the groupoid whose objects are line bundles over �Π×�� of degree zero relative
to �, and morphisms are isomorphisms

}
.

By definition the Poincaré sheaf P on �Π×� (B�∨) is a line bundle of relative degree zero along
�Π. Indeed if we pullback P by a translation by a point in X, then we get a line bundle isomorphic
to P. This is easily seen in terms of factors of automorphy. If w ∈ V is any point, then translation
of the factor of automorphy by w results into a cohomologous factor of automorphy. The two factors
are related by the coboundary of the element g ∈ C0(Λ× Γ,A ×

V×V
∨(V × V ∨)) = A ×

V×V
∨(V × V ∨),

where g(l, v) := exp(π〈l, w〉).
In particular, the Poincaré sheaf P gives rise to a natural morphism of stacks

c : B�∨ →Pic0(�Π/�), (6.2)

which sends 
 : �→ B�
∨ to the line bundle 
∗P on �Π ×� �.

Our goal is to show that c is an isomorphism. The first step is to analyze the relationship between
B�
∨ and Pic0(�Π/�) on the level of �-points.

Proposition 6.3. The map c induces an equivalence between the groupoid B�
∨(�) of all sections

of B�
∨ → � and the groupoid Pic0(�Π/�)(�) of global translation invariant line bundles on �Π.

Proof. The set of isomorphism classes of the groupoid B�∨(�) is the set �∨(�) of �-points of the
formal space �∨ → �. The natural map from B�

∨(�) to the discrete groupoid �∨(�) is actually
split. This is a special feature of the groupoid of �-points and no such splitting exists for general
test spaces � ∈ FS /�. For our purposes it will be important to exhibit a distinguished splitting of
B�
∨(�)→ �∨(�). In fact, we have already done this in the proof of Step 1 of Lemma 5.5. Specifically,

to lift a section s : �→ �∨ to a section � : �→ B�
∨(�), we have to produce a natural trivialization

of the pullback gerbe s∗(B�∨). For this we can use the global quotient presentation of B�∨(�). Write
s ∈ X∨ for the image s(0) of the closed point 0 ∈ �. Then in the notation of the proof of Step 1 of
Lemma 5.5 we have a quotient presentation [(Fs×�)/�] of s∗(B�∨(�)). Now a trivialization of the
gerbe [(Fs × �)/�] is simply a Γ-equivariant structure on OFs [[�]] in which z ∈ �[[�]] ⊂ Γ acts
as multiplication by z (viewed as a section of OFs [[�]]). The cocycle c :

∧2 Λ∨ → �[[�]]× gives
rise to such an equivariant structure: a group element (ξ, z) ∈ Γ acts on f = {fw}w∈Fs via the
formula f 	→ {zc̃(w, ξ)fw+ξ}w∈Fs . Thus, we get a natural section a : �∨(�) → B�

∨(�) and hence
an isomorphism between the groupoid B�∨(�) and the groupoid �∨(�)×B(�[[�]]×).
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On the non-commutative side, the set π0(Pic0(�Π/�)(�)) of isomorphism classes of global
degree zero quantum line bundles on �Π → �, coincides with the set Pic0(�/�)(�) of isomorphism
classes of global degree zero line bundles on �→ �. This fact is not obvious but can be established as
follows. First of all, as explained in Lemma C.2, every element in the set X∨× (V ∨)�>0 gives rise to
a quantum line bundle of degree zero, and this procedure induces a bijection between X∨× (V ∨)�>0

and the set of isomorphism classes of quantum line bundles of degree zero. On the other hand, the
set Pic0(�/�)(�) is simply the set of formal arcs in X∨ = Pic0(X) and so can be described [Voj04]
explicitly in terms of Hasse–Schmidt higher derivations [HS37, Mat89].

Recall that a Hasse–Schmidt higher �-derivation from OX∨ to � is a pair (s,D), where s ∈ X∨
is a point and D is (bounded or unbounded) sequence D = (D1,D2,D3, . . . ) of �-linear maps
Di : OX∨,s → � satisfying

Dk(fg) =
k∑

i=0

Di(f)Dk−i(g)

for any two germs f and g of OX∨,s. HereOX∨,s denotes the local ring at s ∈ X∨ andD0 : OX∨,s → �

is the evaluation map.
We denote the infinite-order higher-order derivations by Der∞� (OX∨ ,�). It is not hard to identify

these derivations with the set of formal arcs in X∨. Indeed, to specify a formal arc s : �→ X∨, we
need to specify a point s ∈ X∨ and a �-algebra homomorphism s� : OX∨,s → �[[�]]. In these terms,
the identification

Der∞� (OX∨ ,�) ∼= Hom�(�,�∨) = Hom(�,X∨) (6.3)

is given by

(s,D) 	→
(
s, s� :=

∞∑
k=0

�
kDk

)
.

On the other hand, we have a bijection

X∨ × (V ∨)�>0 → Der∞� (OX∨ ,�) (6.4)

given by

(s, l1, l2, l3, . . . ) 	→ (D0 = evs,D1,D2,D3, . . . )

where

D0 ◦ exp(π(�l1 + �
2l2 + �

3l3 + · · · )) = D0 + �D1 + �
2D2 + · · ·

and the li ∈ V
∨ are thought of as translation invariant vector fields on X∨. The exponential in

the left-hand side of this formula is defined by the usual power series using the composition of
differential operators. This is an extension of the standard fact that any tangent germ l, defined
at a smooth point m in some complex analytic space M , can be exponentiated to a formal arc
e : �→M in M :

e :=
(
D0,D0 ◦ l, 12D0 ◦ l2, 1

3!
D0 ◦ l3, 1

4!
D0 ◦ l4, . . .

)
∈ Der∞� (OM ,�),

where D0 denotes the evaluation map at the point m and lk denotes the kth iterated Lie derivative.
Combining the bijections (6.3) and (6.4) with the fact that X∨ × (V ∨)�>0 parameterizes

isomorphism classes of degree zero quantum line bundles (see Lemma A.1), we obtain a natural
identification

π0(Pic0(�Π/�)(�)) ∼= �∨(�).

Thus, we get a map Pic0(�Π/�)(�) → �∨(�) which similarly to the map B�
∨(�) → �∨(�)

admits a preferred splitting b : �∨(�) → Pic0(�Π/�)(�), defined to be the composition of the
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correspondence of Lemma C.2 with the identification (6.4). In particular, we get a natural equiva-
lence of groupoids between Pic0(�Π/�)(�) and the groupoid �∨(�) ×B(�[[�]]×).

Therefore, we get an explicit equivalence

B�
∨(�) ∼= �∨(�) ×B(�[[�]]×) ∼= Pic0(�Π/�)(�). (6.5)

Finally, to show that the equivalence (6.5) is given by the map c we need to chase through the
sequence of bijections defining (6.5). This is tedious but straightforward. The key observation here
is that c : B�∨(�) →Pic0(�Π/�)(�) maps the discrete subgroupoid �∨(�) ⊂ B�∨(�) identically
to the discrete subgroupoid �∨(�) ⊂ Pic0(�Π/�)(�). This is sufficient to conclude that (6.5)
is given by c since c is a morphism of groupoids. The statement that c induces the identity on
�∨(�) is easy to check directly. Specifically we need to check that the two sections c ◦ a and b of
Pic0(�Π/�)(�) → �∨(�) are isomorphic, i.e. we need to exhibit an isomorphism of functors ι:

�∨(�)

c◦a
��

b

��

�� ��
		 ι Pic0(�Π/�)(�).

For this we need the explicit form of the functors c ◦ a and b. By definition, the splitting b is the
composition of the correspondence of Lemma C.2 with the identification (6.4). Given an arc s in
X∨, we can describe the degree zero line bundle b(s) on �Π explicitly by a factor of automorphy.
Use (6.4) to write s = (s, s�), s� = evs ◦ exp(

∑∞
i=1 �

ili) for some collection of li ∈ V ∨. Now according
to Lemma C.2 the factor of automorphy for b(s) is the map

Λ �� Γ(V,A ×V,Π)

λ
� �� χs(λ) exp

(
π
∑∞

i=1 �
i〈li, λ〉

)
,

(6.6)

where χs : Λ → U(1) ⊂ �× is the unitary character corresponding to s ∈ X∨. To compare this
factor of automorphy with that corresponding to c ◦ a(s), it is convenient to realize �Π not as
the quotient �Π/� but rather as the quotient (�Π × Fs)/(� × Λ∨). Using the the identification
�Π = (�Π × Fs)/(� × Λ∨) we can now rewrite the factor of automorphy (6.6) as a factor of
automorphy for the group Λ× Λ∨ with values in Γ(V,

∏
w∈Fs

A ×V,Π). In these terms (6.6) becomes

Λ× Λ∨ ��
∏

w∈Fs
Γ(V,A ×V,Π)

(λ, ξ) � �� {e(2π
√−1 Im〈w,λ〉)e(π

∑∞
i=1 �

i〈li,λ〉)}w∈Fs .
(6.7)

The factor of automorphy defining c ◦ a(s) is also easy to describe. Since the map c is given
by the Poincaré sheaf P, the degree zero line bundle c ◦ a(s) on �Π can be described as first
restricting the sheaf P to the product �Π ×� (s∗(B�∨)) and then pulling back this restriction by
our preferred trivialization of the gerbe s∗(B�∨). Equivalently, we can tensor the restriction of P
to �Π ×� (s∗(B�∨)) by the structure sheaf on � viewed as a weight (−1) line bundle on s∗(B�∨)
(via the preferred trivialization). Writing �Π ×� s∗(B�∨) as the quotient [(� × Fs)/(� ×� �)] we
can now describe the restriction of P by the Λ× Γ factor of automorphy

s�φ : Λ× Γ→
∏

w∈Fs

Γ(V,A ×V,Π).

Here as usual φ is the factor of automorphy for P (see (4.7)) and the terms in s� act on the functions
φ(λ, (ξ, z)) as iterated Lie derivatives. Similarly, we can use this quotient presentation, to write the
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factor of automorphy for the structure sheaf on � viewed as a weight (−1) line bundle on s∗(B�∨).
As explained in the proof of Step 1 of Lemma 5.5, this twisted line bundle corresponds to the Γ
equivariant structure on

∏
w∈Fs

O� given by the representation ρ. In particular, the pullback of the
twisted line bundle to the product �Π ×� s∗(B�∨) is given by the factor of automorphy obtained
by applying ρ to the constant section 1, i.e. by

Λ× Γ ��
∏

w∈Fs
Γ(V,A ×V,Π),

(λ, (ξ, z)) �� ρ(ξ,z)(1) = {z−1c̃(w, ξ)}w∈Fs .
(6.8)

Multiplying s�φ and (6.8) gives rise to a factor of automorphy on Λ × Γ, which is a pullback of
a factor of automorphy on Λ × Λ∨ which describes the non-commutative line bundle c ◦ a(s). The
latter factor is easily computed. The formula (4.7) describing φ, together with the definition of s�,
give

(s�φ)(λ, (ξ, z))w(v) = exp(π〈ξ + w, λ〉) exp(π〈ξ, v〉) exp
(
π
∞∑
i=1

�
i〈li, λ〉

)
.

Hence, the factor of automorphy of c ◦ a(s) is given by the formula

Λ× Λ∨ ��
∏

w∈Fs
Γ(V,A ×V,Π),

(λ, ξ) �� {e(π〈ξ+w,λ〉)c̃(w, ξ)e(π〈ξ,•〉)e(π
∑∞

i=1 �
i〈li,λ〉)}w∈Fs .

(6.9)

We are now ready to describe the isomorphism of functors ι. Specifying ι is equivalent to specifying
isomorphisms ιs : c ◦ a(s) → b(s) of non-commutative line bundles. In terms of the
factors of automorphy (6.7) and (6.9) the isomorphism ιs can be viewed as a group cochain
ιs ∈ C0(Λ × Λ∨,

∏
w∈Fs

Γ(V,A ×V,Π)) =
∏

w∈Fs
Γ(V,A ×V,Π) which makes the factor of automorphy

(6.7) cohomologous to (6.9). A straightforward computations shows that

ιs := {e−π〈w,•〉}w∈Fs

does the job. This completes the proof of the proposition.

Proposition 6.3 together with Theorem 5.2 readily imply the following.

Theorem 6.4. The morphism c : B�∨ → Pic0(�Π/�) is an isomorphism of analytic stacks on
(FS /�)an.

Proof. The proof follows the reasoning of [Pol03, Theorem 11.2] with some necessary modifications
since we work in the context of formal deformation quantizations. The essential difficulties are
already dealt with in Proposition 6.3, Theorem 5.2, and [Pol03, Theorem 11.2], but some additional
work is required to package the argument properly. Given a formal analytic space � → � and a
line bundle L → � ×� �Π we need to construct a morphism 
 : � → B�

∨ and an isomorphism
(
× id)∗P ∼= L. Consider the integral transform

φ
[�×��Π→�×�(B�

∨)]
Q : Db

c(�×� �Π)→ Db
c(�×� (B�∨),−1).

and the object φ[�×��Π→�×�(B�
∨)]

Q (L) ∈ D∗c(� ×� (B�∨),−1). By Proposition 6.3 it follows that
for every � point y : � → � of �, the pullback y∗L is isomorphic to (� × id)∗P for some �-point
� : �→ B�

∨. Specifying the �-point � amounts to specifying a �-point s : �→ �∨ together with a
trivialization of the gerbe s∗(B�∨). Now (y× id)∗φ[�×��Π→�×�(B�

∨)]
Q (L) = φ

[�Π→B�∨]
Q ((�× id)∗P),

which in turn is isomorphic to (s,−1)∗O�[−g], as explained in the proof of Theorem 5.2. Taking
homs into the various elements of our orthogonal spanning class for D∗c(B�∨,−1), we conclude that
the object φ[�×��Π→�×�(B�

∨)]
Q (L) is of the form F [−g] for some (−1)-twisted sheaf F on �×�(B�∨).
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The key point of the argument is to show that the stack-theoretic support of F is the graph of a map

 : �→ B�

∨ and that F is a line bundle on its support. As in the proof of [Pol03, Theorem 11.2],
this will follow from the property

(y× id)∗F ∼= (s,−1)∗O�, for all �-points y : �→ � (6.10)

provided that we can show that F is finite and flat over �.
The property (6.10) implies that F is a (−1)-twisted line bundle on its support. In other words,

we can find a closed analytic subspace i : � ↪→ �×� �∨, so that the stack-theoretic support of F is
the gerbe �×�×��∨ [�×� (B�∨)] and F trivializes this gerbe. In particular, F is (non-canonically)
isomorphic to a sheaf of the form (i,−1)∗G for some line bundle G on �. Thus, F will be finite and
flat over � if and only if the sheaf i∗G on �×� �∨ is finite and flat over �. To check this we use the
following lemma.

Lemma 6.5. Suppose that L is a line bundle on �Π ×� � which is of degree zero relative to �. Let
� ⊂ � ×� �∨ and G be as above. Then there exists a line bundle M on �×� � which is of degree
zero relative to Y and for which

φ
[�×��→�×��∨]
P∨[[�]] (M) ∼= i∗G [−g].

Proof. Consider the natural projection and addition maps

�×� �×� �Π

	1,2+3 ��
	1,3

�� �×� �Π.

Here �1,3 is the projection onto the first and third factors and �1,2+3 = �1 × (0.1) is the product
of the projection onto � and the ringed space map (0,1) : �×� �Π → �Π described in § 3.1.4.

Since by hypothesis L → �×� �Π is of degree zero relative to �, i.e. L is translation invariant
in the �Π direction, it follows that the line bundles �∗1,3L and �∗1,2+3L satisfy the assumptions of
the see-saw principle Proposition 4.7. Therefore, we can find a line bundle M on �×� � so that

�∗1,2M ⊗ �∗1,3L
∼= �∗1,2+3L.

Now a straightforward diagram chase shows that the Fourier–Mukai transform of M with respect
to the Poincaré sheaf �∗2,3P∨[[�]] on �×� �×� �∨ is the object i∗G [−g].

With M in hand we can now proceed to reason as in the proof of [Pol03, Theorem 11.2]. Since
�×� � → � and �×� �∨ → � are dual family of complex tori, the usual argument [Pol03, § 11.2]
shows that φ[�×��→�×��∨]

P∨[[�]] is left-adjoint to φ[�×��∨→�×��]
P[[�]] , and that the adjunction map

Id→ φ
[�×��∨→�×��]
P[[�]] ◦ φ[�×��→�×��∨]

P∨[[�]]

is an isomorphism.
Now, to check that i∗G is finite and flat over � we can assume that the closed fiber Y ⊂ � of

�→ � is a Stein space and check that the global sections of i∗G on �×�� are a flat module of finite
rank over the Stein algebra Γ(�,O�).

For the global sections Γ(�×� �, i∗G ) we use the above adjunction to compute

Γ(�×� �, i∗G ) = Hom(O�×��, i∗G )

= Hom(φ[�×��→�×��∨]
P∨[[�]] (O�×��),M)

= Hom((id×o)∗O�[−g],M)
= Extg((id×o)∗O�,M),
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where o : �→ � is the constant section corresponding to the origin o ∈ X. Now, on �×�� we have
(id×o)∗O� = �∗2o∗O� and since o∗O� is supported on a section of �→ � we get

Extg((id×o)∗O�,M) = Extg(�∗2o∗O�,M)
= Extg(o∗O�,�2∗M)

= H0(�,E xtg(o∗O�,�2∗M)).

Now, it only remains to observe that since M is a line bundle, �2∗M is a flat O�-module, and so
E xtg(o∗O�,�2∗M) = E xtg(o∗O�,O�)⊗O� �2∗M = o∗O� ⊗O� �2∗M . In other words

Γ(�×� �, i∗G ) = H0(�, o∗O� ⊗O� �2∗M)

which is clearly finite and flat as an Γ(�,O�)-module.
This implies that the sheaf F on � ×� (B�∨) is finite and flat over �, which combined with

the property (6.10) implies that the support � is the graph of a morphism 
 : � → B�
∨. Hence,

φ
[�×�(B�

∨)→�×��Π]
P (F ) is a line bundle on � ×� �Π which is isomorphic to (id×
)∗P along the

fibers of � ×� �Π → �. However, in the proof of Theorem 5.2 we checked that the composition
functor φ[B�

∨→�Π]
P ◦ φ[�Π→B�∨]

Q is isomorphic to id[−g]. This implies that the canonical adjunction
morphism

φ
[�×�(B�

∨)→�×��Π]
P (F )→ L

is an isomorphism since it is an isomorphism over every � point of �. Applying again the see-saw
principle Proposition 4.7, we conclude that L is isomorphic to �∗1A⊗ (id×
)∗P for a line bundle A
on � which is unique up to a unique isomorphism. This shows that c is an isomorphism of stacks
and concludes the proof of the theorem.

In the appendices, we prove some general facts concerning the module theory for deformation
quantizations of Hausdorff analytic spaces. In some cases we specialize to complex tori, or the Moyal
quantization in particular. It should be noted that many of the proofs in these appendices carry
over immediately to other contexts. In particular we expect that our results will be applicable to
deformation quantizations in characteristic p (see [BK04]) and the case of C∞ real manifolds. In
particular, our deformation theory analysis recovers some results from [BW00, BW04, BW05].
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Appendix A. Quantum invertible sheaves

Let S be a Hausdorff analytic space. Let � := (S,A ) be a deformation quantization of (S,O). We
assume that A and O[[�]] are isomorphic as sheaves of �[[�]]-modules and that the product on A
is given by a �-product on O[[�]]. Suppose further that for some subsheaf of �-algebras C ⊂ O,
the left or right �-multiplication action of C[[�]] ⊂ A on A agree with the commutative action
of multiplication of C[[�]] ⊂ O[[�]] on O[[�]]. In particular, C[[�]] ⊂ A is a subsheaf of central
�[[�]]-subalgebras in A.

To any locally free left rank one C[[�]]-module M we can associate a natural line bundle L :=
A ⊗C[[�]] M on �. In this way we get a functor from the groupoid of locally free left rank one
C[[�]]-modules to the groupoid of line bundles on �. We would like to understand the map that this
functor induces on isomorphism classes.
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The isomorphism classes of locally free left rank one C[[�]]-modules are in a natural bijection
with the cohomology group H1(S, C[[�]]×), whereas the isomorphism classes of line bundles on �

are in bijection with the cohomology set H1(S,A ×). Denote by G the image of H1(S, C[[�]]×) in
H1(S,A ×), by I0 the image of H1(S, C×) in H1(S,O×), and by I the image of H1(S, C) in H1(S,O).
Then we seek to understand the structure of G, in terms of I0 and I.

Lemma A.1. There is a natural bijection I0×
∏∞

k=1 I → G. In particular, G is a commutative group.

Proof. First consider the isomorphism of sheaves of groups

Exp : C× ×∏∞k=1 C �� C[[�]]×

(a0, a1, a2, a3, . . .)
� �� a0 exp(a1� + a2�

2 + a3�
3 + · · · ).

For any open covering U of S we have an induced isomorphism of groups

Exp : Ž1(S,U, C×)×∏∞i=1 Ž
1(S,U, C) �� Ž1(S,U, C[[�]]×)

Ž1(S,U, C× ×∏∞k=1 C).

We also have a bijection of sets

Exp : Č0(S,U,O×)×∏∞k=1 Č
0(S,U,O) �� Č0(S,U,O[[�]]×)

∼=��

Č0(S,U,O× ×∏∞k=1O) Č0(S,U,A ×).

given by the same formula (for the regular exponential, not the �-exponential). Suppose now that
we have two cocycles a, a′ ∈ Ž1(S,U, C×)×∏∞k=1 Ž

1(S,U, C) which satisfy

a(a′)−1 = δ(b)

in Ž1(S,U,O×)×∏∞k=1 Ž
1(S,U,O), with some b ∈ Č0(S,U,O×)×∏∞k=1 Č

0(S,U,O). Then we have
aijbj = bia

′
ij and so

Exp(aij) · Exp(bj) = Exp (bi) · Exp (a′ij).
Since Exp(aij) and Exp(a′ij) are in C[[�]], this means that

(Exp(bi))−1 � Exp(aij) � Exp(bj) = Exp(a′ij)

in Ž1(S,U,A ×), where the inverse here is taken with respect to the �-product. Therefore, we have
produced a well-defined and surjective map

Exp : I0 ×
∞∏

k=1

I → G.

Now suppose that a ∈ Ž1(S,U, C×)×∏∞k=1 Ž
1(S,U, C) is a cocycle for which Exp(a) ∈ Ž1(S,U,A ×)

is a coboundary. Then Exp(aij) = (Exp(a))ij = ci � c
−1
j for some c ∈ Č0(S,U,A ×). Consequently

(Exp(aij))cj = ci and so if we choose b ∈ Č0(S,U,O×) ×∏∞k=1 Č
0(S,U,O) satisfying Exp(b) = c,

then we have a = δ(b). Therefore, Exp is in fact an isomorphism. By taking the limit over all
coverings U, we arrive at the desired statement.

Remark A.2. One important example of the above is the case when S is a complex manifold,
A is a deformation quantization of the structure sheaf OS which is globally isomorphic to OS [[�]],
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and Π is the corresponding global holomorphic Poisson structure on S. In this case we can take
C ⊂ O to be the subsheaf of functions constant along the leaves of the foliation of S by symplectic
leaves. Explicitly, C is the kernel of the map O → TS of �-sheaves given by the composition of the
de Rham differential d : O → Ω1

S,cl ⊂ Ω1
S with the contraction Π � : Ω1

S → TS. If we further define
Ω1

S,Π,cl ⊂ Ω1
S,cl as the kernel of the map Π � : Ω1

S,cl → TS , then we have a short exact sequence of
sheaves of groups

1→ C[[�]]× → O[[�]]× → (Ω1
S,cl/Ω

1
S,Π,cl)[[�]]→ 0.

Combining the relevant part of the associated long exact sequence of cohomology groups with
Lemma A.1 we obtain a five term exact sequence of groups

1 �� H0(S, C[[�]]×) �� H0(S,A ×) �� H0(S, (Ω1
S,cl/Ω

1
S,Π,cl)[[�]] ����

���


��
H1(S, C[[�]]×) �� I0 ×

∏∞
k=1 I

�� 1

(A.1)

where the identification I0 ×
∏∞

k=1 I
∼= G ⊂ H1(S,A ×) is described in Lemma A.1, and we have

used the natural identification

image[H1(S, C[[�]]×)→ H1(S,A ×)] ∼= image[H1(S, C[[�]]×)→ H1(S,O[[�]]×)].

Note that the first two groups in (A.1) are often isomorphic, e.g. for a compact S. In such cases, the
sequence (A.1) reduces to a short exact sequence and we get a concrete description of H1(S, C[[�]]×).

For line bundles on a quantization of a complex torus we obtain the more specific results in
Lemma C.2 using factors of automorphy on the universal cover, instead of C̆ech cohomology.

Appendix B. Quantized vector bundles

In this appendix, we provide the promised proof of the triviality of locally free left AV -modules
where AV is a Moyal quantization of a vector space V . In fact, we prove a more general statement,
which is applicable in many contexts that arise in deformation quantization.

Let S be a Hausdorff analytic space and let A be a sheaf of �[[�]]-algebras such that A ⊗�[[�]]�
∼=

OS . Consider the multiplicative sheaf of groups A utA−mod(A ⊕m) of left A -module automorphisms
of A ⊕m. Isomorphism classes of left A -modules which are locally free of rank m are in a natural
bijective correspondence with H1(S,A utA−mod(A ⊕m)). It turns out that the vanishing of the first
cohomology of the multiplicative sheaf of groups A utO(O⊕m) and the first cohomology of the
additive sheaf of groups E ndO(O⊕m) guarantee that all such left A -modules are isomorphic to
the trivial one. Below we treat only left modules, and so we simply write A utA (A ⊕m) in place of
A utA−mod(A ⊕m) and also E ndA (A ⊕m) in place of E ndA−mod(A ⊕m).

Lemma B.1. If H1(S,E ndO(O⊕m)) = {0} and H1(S,A utO(O⊕m)) = {1}, then the set
H1(S,A utA−mod(A ⊕m)) has only one element.

Proof. Fix a cofinal system of coverings S, such that if U is any covering in S we have
Ȟ1(S,U,E ndO(O⊕m)) = {0}, Ȟ1(S,U,A utO(O⊕m)) = {1}, and also such that for any covering U

in S and for any open set U in the covering U, there is a splitting (a morphism of sheaves of �-vector
spaces) σU over U of the projection ρ : A → O. Then if we have a covering U = {Ui | i ∈ I} in the
system S it is enough to show that any C̆ech 1-cochain G ∈ Ž1(S,U,A utA (A ⊕m)) is a coboundary.
We do this by constructing a sequence {G =: G0, G1, G2, . . . } of cocycles in Ž1(S,U,A utA (A ⊕m))
with the following properties:
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• Gj+1 is cohomologous to Gj for j � 0;
• ρ(Gj) = id for j � 1;
• ρ((Gj − id)/�k) = 0 for every j � 1 and every k = 1, . . . , j − 1.

To carry out the construction chose splittings σi := σUi : O|Ui
→ A|Ui

over each Ui as above.
The cocycle relationship says that Gij ∈ A utA (A ⊕m)(Uij) satisfy

Gik = Gij ◦Gjk.

Reducing modulo � we see that

ρ(G) ∈ Ž1(S,U,A utO(O⊕n)).

Since Ȟ1(S,A utO(O⊕m)) = 0 we can choose

φ0 = {φ0
i }i∈I ∈ Č0(S,U,A utO(O⊕m))

satisfying

(φ0
i )
−1 ◦ ρ(Gij) ◦ φ0

j = 1O|Uij
.

Consider the cochain G1 ∈ Č1(S,U,A utA (A ⊕m)) defined by

G1
ij = (σi(φ0

i ))
−1 ◦Gij ◦ (σj(φ0

j )).

Clearly G1 is a cocycle which is cohomologous to G. By construction, G1 satisfies ρ(G1) = id and
therefore ρ(G1 − id) = 0.

Assume that by induction we have produced G1, . . . , Gn which are cohomologous to each other
and such that for each 1 � j � n we have ρ(Gj) = id and for k < j we have ρ((Gj − id)/�k) = 0.
Now we have

(Gn
ij − id) ◦ (Gn

jk − id) = Gn
ik −Gn

ij −Gn
jk + id = (Gn

ik − id)− (Gn
ij − id)− (Gn

jk − id). (B.1)

Note that

ρ(((Gn
ij − id) ◦ (Gn

jk − id))/�n) = ρ((Gn
ij − id)/�n−1) ◦ ρ((Gn

jk − id)/�) = 0.

Therefore, dividing by �
n and applying ρ to (B.1) we conclude that

ρ((Gn
ik − id)/�n) = ρ((Gn

ij − id)/�n) + ρ((Gn
jk − id)/�n).

In other words ρ((Gn − id)/�n) ∈ Ž1(S,U,E ndO(O⊕m)). Therefore, taking into account the fact
that Ȟ1(S,E ndO(O⊕m)) = 0, we can choose a cochain

φn = {φn
i }i∈I ∈ Č0(S,U,E ndO(O⊕m))

satisfying
φn

i − φn
j = ρ((Gn

ij − id)/�n).

Consider now the cocycle Gn+1 ∈ Ž1(S,U,A utA (A ⊕m)) defined by

Gn+1
ij = (id +�

nσi(φn
i ))−1 ◦Gn

ij ◦ (id +�
nσj(φn

j )).

Then modulo �
n+1 we have that (id +�

nσi(φn
i ))−1 is equivalent to (id−�

nσi(φn
i )) and so Gn+1

ij is
cohomologous to (id−�

nσi(φn
i )+ (Gn

ij − id)+ �
nσj(φn

j )) where (Gn
ij − id) ∈ Č1(U, �nE ndA (A ⊕m)).

Clearly, Gn+1 is cohomologous to Gn, ρ(Gn+1) = id and ρ((Gn+1 − id)/�k) = 0 for 0 � k < n.
Finally,

ρ((Gn+1 − id)/�n) = ρ((Gn
ij − id)/�n)− φ(n)

i + φ
(n)
j = 0.

Therefore, we have produced the required element Gn+1 completing the induction step and the
proof of the lemma.
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The previous lemma shows that if there are no non-trivial rank m vector bundles on S and if
the trivial rank m vector bundle has no infinitesimal deformations, then there are no non-trivial
quantum vector bundles of rank m on the deformation quantization � := (S,A ).

Next we discuss the obstructions for quantizing a rank m holomorphic vector bundle W on
S along a given deformation quantization � = (S,A ). We do this order by order in the formal
parameter �. One may consider these investigations as first steps in understanding A −mod as the
formal deformation of the abelian category OS − mod. Hopefully, this will eventually lead to an
interpretation in terms of a more systematic study of the deformation theory of abelian categories.
This study has appeared, for instance, in [LV04].

As before, we write A utA /�qA ((A /�qA )⊕m) instead of A utA /�qA−mod((A /�qA )⊕m).
Consider the projection map

projq : H1(S,A utA /�qA ((A /�qA )⊕m))→ H1(S,A utO(O⊕m)).

We define the set of length q quantizations of W along � as

Quantq(W ) := proj−1
q ([W ]).

Lemma B.2. Let W be a holomorphic vector bundle on a Hausdorff analytic space S. Then there
is a map

obn+1 : Quantn+1(W )→ H2(S,E nd(W ))
which measures the obstruction for a length n + 1 quantization of W to prolong to a length n + 2
quantization. The ambiguity in choosing such a prolongation is given by H1(S,E nd(W )). In other
words, we have an exact sequence of sets

Quantn+2(W )→ Quantn+1(W )
obn+1→ H2(S,E nd(W ))

and a free action of the additive group H1(S,E nd(W )) on Quantn+2(W ), so that

Quantn+2(W )/H1(S,E nd(W )) = im[Quantn+2(W )→ Quantn+1(W )].

Proof. We first define the map obn+1 : Quantn+1(W ) → H2(S,E nd(W )) and prove that ob−1
n+1(0)

is the image of Quantn+2(W ). Fix a fine enough open cover U = {Ui | i ∈ I} of S. Represent
[W ] ∈ H1(S,A utO(O⊕m)) by a cocycle g ∈ Ž1(S,U,A utO(O⊕m)) where gij = µi ◦ µ−1

j for some
trivializations µi : W|Ui

→ O⊕m
|Ui

. Similarly, we represent G ∈ Quantn+1(W ) by an element {Gij} ∈
Ž1(S,U,A utA /�n+1A ((A /�n+1A )⊕m)).

Define obn+1(G) to be the element of H2(S,E nd(W )) induced by taking the limit over all open
covers of the elements {obn+1(G)ijk} ∈ Ž1(S,U,E ndO(W )) where

obn+1(G)ijk = µ−1
k ◦ ρ

(
G̃ki ◦ G̃ij ◦ G̃jk − id

�n+1

)
◦ µk = µ−1

i ◦ ρ
(
G̃ij ◦ G̃jk − G̃ik

�n+1

)
◦ µk.

Here ρ : A utA /�n+1(A ⊕m/�n+1) → A utO(O⊕m) is the reduction modulo �, and {G̃ij} is a lift of
{Gij} to Č1(S,U,A utA /�n+2A ((A /�n+2A )⊕m)). We check that {obn+1(G)ijk} is closed. Checking
that the above definition of obn+1 is independent of all choices made in the construction is easy but
tedious and is left to the reader:

(δ{obn+1(G)abc})ijkl = obn+1(G)jkl − obn+1(G)ikl + obn+1(G)ijl − obn+1(G)ijk

= µ−1
j ◦ ρ

(
G̃jk ◦ G̃kl − G̃jl

�n+1

)
◦ µl − µ−1

i ◦ ρ
(
G̃ik ◦ G̃kl − G̃il

�n+1

)
◦ µl

+ µ−1
i ◦ ρ

(
G̃ij ◦ G̃jl − G̃il

�n+1

)
◦ µl − µ−1

i ◦ ρ
(
G̃ij ◦ G̃jk − G̃ik

�n+1

)
◦ µk.
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By making the substitution G̃ik = G̃ij ◦ G̃jk + (G̃ik − G̃ij ◦ G̃jk) in the second term, we can rewrite
this term as

−µ−1
i ◦ ρ

(
G̃ij ◦ G̃jk ◦ G̃kl − G̃il

�n+1

)
◦ µl − µ−1

i ◦ ρ
(
G̃ik − G̃ij ◦ G̃jk

�n+1

)
◦ µk.

Similarly, by making the substitution G̃jl = G̃jk ◦ G̃kl + (G̃jl − G̃jk ◦ G̃kl) into the third term, we
can rewrite this term as

µ−1
i ◦ ρ

(
G̃ij ◦ G̃jk ◦ G̃kl − G̃il

�n+1

)
◦ µl + µ−1

j ◦ ρ
(
G̃jl − G̃jk ◦ G̃kl

�n+1

)
◦ µl.

It is now clear that all of the terms cancel, and we have shown that δ{obn+1(G)abc} = 0. Clearly
if G comes from Quantn+1(W ) then we can choose the cochain {G̃ij} to be a cocycle, and so the
cohomology class obn+1(G) is 0 in H2(S,E ndO(W )). Conversely, if obn+1(G) = 0 then for a fine
enough U we can find an element C ∈ Č1(S,U,E ndO(W )), with δ(C)ijk = obn+1(G)ijk. Then we
can define a new element G̃′ ∈ Č1(S,U,A utA /�n+2A ((A /�n+2A )⊕m)) by the rule

G̃′ij = G̃ij − �
n+1σi(µi ◦ Cij ◦ µ−1

j ).

Here, σi is our chosen �-module splitting of ρ : A → O over Ui. Note that G̃′ maps to G modulo
�

n+1 and so in order to see that it is closed, we merely observe the following vanishing:

ρ(((G̃ij − �
n+1σi(µi ◦ Cij ◦ µ−1

j )) ◦ (G̃jk − �
n+1σj(µj ◦ Cjk ◦ µ−1

k ))

− (G̃ik − �
n+1σi(µi ◦ Cik ◦ µ−1

k )))/�n+1)

= µi ◦ obn+1(G)ijk ◦ µ−1
k − gij ◦ µj ◦ Cjk ◦ µ−1

k − µi ◦ Cij ◦ µ−1
j ◦ gjk + µi ◦ Cik ◦ µ−1

k

= µi ◦ (obn+1(G)ijk − Cjk − Cij + Cik) ◦ µ−1
k = µi ◦ ((obn+1(G)− δ(C))ijk) ◦ µ−1

k

= 0.

The group H1(S,E ndO(W )) acts on Quantn+2(W ) by

{Kij} 	→ {Kij ◦ (id−�
n+1σi(µj ◦ hij ◦ µ−1

j ))} = {Kij − �
n+1σi(µi ◦ hij ◦ µ−1

j ))}
for h ∈ H1(S,E ndO(W )) and K ∈ Quantn+2(W ). This action is clearly free and preserves the fibers
of the map Quantn+2(W )→ Quantn+1(W ). In order to see that it is transitive, consider two elements
K,K ′ ∈ Quantn+2(W ) in the same fiber. They define a unique element of h ∈ H1(S,E ndO(W )) by
the formula

hij = µ−1
j ◦ ρ

( id−Kji ◦ (K ′ji)
−1

�n+1

)
◦ µj

and it is easily seen that h maps K to K ′. In order to see that h is closed, we simply calculate

hij = µ−1
j ◦ ρ

(
Kjk ◦ (Kkj −Kkj ◦Kji ◦ (K ′ji)

−1)
�n+1

)
◦ µj

= µ−1
k ◦ ρ

(
Kkj −Kki ◦ (K ′ji)

−1

�n+1

)
◦ µj

= µ−1
k ◦ ρ

((Kkj −Kki ◦ (K ′ji)
−1) ◦K ′jk

�n+1

)
◦ µk

= µ−1
k ◦ ρ

(
Kkj ◦ (K ′kj)

−1 −Kki ◦ (K ′ki)
−1

�n+1

)
◦ µk

= hik − hjk.

This concludes the proof of the lemma.
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Remark B.3. The set Quantq(W ) can be naturally identified with the set of isomorphism classes
of objects in a complex analytic stack. The map Quantn+2(W ) → Quantn+1(W ) is induced from
a morphism of stacks and the action of H1(S,E ndO(W )) on Quantn+2(W ) can be refined to an
analytic action on the stack corresponding to Quantn+2(W ).

Remark B.4. The above lemma implies that if W is a classical vector bundle for which
H2(S,E nd(W )) ∼= {0}, then W extends to a locally free left A module of the same rank. At
each stage of extension, the ambiguity is precisely H1(S,E nd(W )). However, the vanishing of
the obstruction space is not necessary for quantizability. There are many bundles with non-trivial
obstruction spaces which quantize to all orders. For instance, any flat bundle does.

Appendix C. The quantum Appell–Humbert theorem

We now focus on the case of the Moyal deformation quantization of the sheaf of holomorphic
functions on a complex torus. Here we can use factors of automorphy to obtain more precise formulas
for the various obstruction maps. We begin by computing explicitly the obstruction ob0(W ) for a
line bundle W on X to quantize to first order in �. The assignment W 	→ ob0(W ) gives rise to
a short exact sequence of pointed cohomology sets

H1(X, (A /�2A )×) ��H1(X,O×)
ob0 ��H2(X,O). (C.1)

If W is a line bundle on X, then the ‘relative to W ’ part of this sequence is precisely the
sequence appearing in the statement of Lemma B.2. Indeed Quant0(W ) = {[W ]} ⊂ H1(X,O×),
and Quant1(W ) is just the fiber of the map H1(X, (A /�2A )×)→ H1(X,O×) over the point [W ].

We can understand the sequence (C.1) in terms of the group cohomology of Λ acting on functions
on the universal cover V . Taking into account the fact that H1(V, (A /�2A )×)) = 0 (see the proof
of Lemma B.1) we can rewrite (C.1) as the exact sequence of pointed group cohomology sets:

H1(Λ,H0(V, (A /�2A )×))→ H1(Λ,H0(V,O×))→ H2(Λ,H0(V,O)).

Now recall from (4.1) that Z1(Λ,H0(V, (A /�2A )×)) consists of maps

φ = φ0 + �φ1 : Λ→ H0(V, (A /�2A )×)

satisfying
(δφ)(λ1, λ2) = φ(λ1 + λ2)− φ(λ2) � (φ(λ1) · λ2). (C.2)

Two cocycles φ and ψ are cohomologous if there exists f ∈ H0(V, (A /�2A )×) which satisfies, for
all λ ∈ Λ, the relationship

ψ(λ) = f−1 � φ(λ) � (f · λ). (C.3)
In the following, we use the notation

f � g = fg +
∞∑

j=1

�
j(f � g)j ,

for the components of a star product.
Suppose now that we are given a holomorphic line bundle W on X represented by a particular

cocycle φ0 ∈ Z1(Λ,H0(V,O×)). By the classical Appell–Humbert theorem we can always replace
φ0 by a cohomologous cocycle which is given by the Appell–Humbert formula:

ah(H,χ)(λ)(v) = χ(λ) exp
(
πH(v, λ) +

π

2
H(λ, λ)

)
. (C.4)

Here H is an element in the Neron–Severi group of X thought of as a Hermitian form on V which
satisfies ImH(Λ,Λ) ⊂ �, and χ is an H-semi-character of Λ.
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Denote by P(Λ) the group of all pairs (H,χ) where H ∈ NS(X) and χ is a semicharacter for
H (see [BL99, § 1.2]). By the Appell–Humbert theorem, the assignment

P(Λ) �� Z1(Λ,H0(V,O×))

(H,χ) �� ah(H,χ),

is an injective group homomorphism, which after a composition with the projection

Z1(Λ,H0(V,O×) � H1(Λ,H0(V,O×) ∼= Pic(X)

becomes an isomorphism.

We now have the following lemma which computes the obstruction and ambiguity to extending
φ0 to a non-commutative cocycle φ = φ0 + �φ1.

Lemma C.1. (a) The obstruction map

ob0 : H1(Λ,H0(V,O×))→ H2(Λ,H0(V,O))

can be lifted to a map on Appell–Humbert data:

P(Λ)
ob0 ��

��

��

Z2(Λ,H0(V,O))

��
H1(Λ,H0(V,O×))

ob0

�� H2(Λ,H0(V,O))

where

ob0(ah(H,χ))(λ1, λ2) = {hλ2 , hλ1}.
(b) Suppose that W ∈ Pic(X) is such that ob0([W ]) = 0 in H2(X,O). Let (H,χ) be the Appell–

Humbert data corresponding to [W ]. Then ob0(ah(H,χ)) = 0 in Z2(Λ,H0(V,O)).

Proof. Suppose that we can find a φ ∈ Z1(Λ,H0(V, (A /�2A )×), so that φ = φ0 modulo �. If ψ0

is a cocycle, cohomologous to φ0, then we can find a cocycle ψ ∈ Z1(Λ,H0(V, (A /�2A )×), so that
ψ = ψ0 modulo �, and ψ is cohomologous to φ. Indeed, if f ∈ H0(V,O×) is a global holomorphic
function for which ψ0(λ)/φ0(λ) = (f · λ)/f , then by viewing f as an element in H0(V,A ) we can
define a new cocycle ψ according to the rule (C.3) using φ and f . This new ψ clearly has the required
properties.

Hence, without loss of generality, we may assume that φ = ah(H,χ) + �φ1 for some appropriately
chosen Appell–Humbert data (H,χ).

Let now δ : C1(Λ,H0(V,O))→ C2(Λ,H0(V,O)) denote the group cohomology differential given
by

θ 	→ [(λ1, λ2) 	→ θ(λ1 + λ2)− θ(λ2)− θ(λ1) · λ2].

A non-commutative cochain φ = φ0 + �φ1 ∈ C1(Λ,H0(V, (A /�2A )×) is a cocycle if and only if
φ′1 = φ1/φ0 ∈ C1(Λ,H0(V,O)) satisfies the condition

(δφ′1)(λ1, λ2) =
(φ0(λ2) � ((φ0(λ1)) · λ2))1

(φ0(λ2))(φ0(λ1) · λ2)
=

(φ0(λ2) � ((φ0(λ1)) · λ2))1
φ0(λ1 + λ2)

.
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After substituting φ0 = ah(H,χ) into this formula, several terms cancel and we get:

(δφ′1)(λ1, λ2) =
(exp(πH(v, λ2)) � exp(πH(v + λ2, λ1)))1

exp(πH(v, λ2) + πH(v + λ2, λ1))

=
(exp(πH(v, λ2)) � exp(πH(v, λ1)))1

exp(πH(v, λ1 + λ2))

=
(exp(hλ2) � exp(hλ1))1

exp(hλ1+λ2)
= (exp(�{hλ2 , hλ1}))1
= {hλ2 , hλ1}.

Here hλ ∈ V ∨ denotes the �-linear function v 	→ πH(v, λ) and in the last equality we used the
identity (4.9). Due to the equality δφ′1 = {hλ2 , hλ1} we conclude that we will be able to extend
ah(H,χ) to a non-commutative cocycle φ = ah(H,χ) + �φ1 if and only if the cocycle [(λ1, λ2) 	→
{hλ2 , hλ1}] ∈ Z2(Λ,H0(V,O)) is a coboundary. This shows that [(λ1, λ2) 	→ {hλ2 , hλ1}] represents
the obstruction class ob0([ah(H,χ)]) and proves part (a) of the lemma.

For the proof of part (b) note that, by construction, the cocycle ob0(ah(H,χ)) is actually in
Z2(Λ,�) ⊂ Z2(Λ,H0(V,O)). Furthermore, if we consider the canonical Hodge decomposition

H2(X,�) = H2(X,O)⊕H1(X,Ω1)⊕H0(X,Ω2)

=
∧2

V
∨ ⊕ (V ∨ ⊗ V ∨)⊕

∧2
V ∨,

then the image of ob0(ah(H,χ)) in H2(X,�) lands entirely in the piece H2(X,O) =
∧2 V

∨. Indeed,
thinking of H as an element in V

∨ ⊗ V ∨ we can rewrite the image ob0(ah(H,χ)) in purely linear
algebraic terms as the contraction H � Π �H. Indeed, the additive map λ1∧λ2 	→ {hλ2 , hλ1} extends
by linearity to a unique conjugate linear homomorphism

∧2 V → � which equals H � Π �H as an
element in

∧2 V
∨.

Therefore, the obstruction ob0([ah(H,χ)]) vanishes if and only if H � Π �H = 0 in H2(X,�).
Since H � Π �H was proportional to the anti-linear extension of the map ob(ah(H,χ)) : Λ× Λ → �

this concludes the proof of part (b).

The formula for ob0 given in the lemma can also be deduced from the first-order analysis carried
out in Toda’s paper [Tod05]. However, in our case, the specific geometry of the Moyal quantization
of a complex torus allows us to push the analysis further. In fact, it turns out that for a line bundle
W on X, the vanishing of ob0([W ]) is both necessary and sufficient for W to quantize to all orders.

Lemma C.2. A line bundle W on X can be extended to a line bundle on �Π if and only if

ob0([W ]) = c1(W ) � Π � c1(W ) = 0 in H2(X,O).

Proof. Let (H,χ) be the Appell–Humbert data for the isomorphism class of line bundles [W ].
Consider the map

Λ
φ �� H0(V,A ×V,Π)

λ ��
[
v 	→ χ(λ) exp

(
πH(v, λ) +

π

2
H(λ, λ)

)]
where the exponential now is the �-exponential. By definition, φ ∈ C1(Λ,H0(V,A ×V,Π)) is a non-
commutative cochain. In order for φ to be a cocycle, we must have that

φ(λ1 + λ2)−1 � φ(λ2) � (φ(λ1) · λ2) = 1. (C.5)
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However, in the proof of Lemma C.1 we evaluated the left-hand side of (C.5) and showed that it
is equal to exp(�{hλ2 , hλ1}). This proves our assertion since the constant {hλ2 , hλ1} is equal to the
value of H � Π �H ∈ ∧2 V

∨ on the element λ1 ∧ λ2.

Suppose that (H,χ) ∈ P(Λ) is some Appell–Humbert data and let l(�) =
∑∞

i=1 �
ili ∈ �V

∨[[�]].
Consider the map qah((H,χ),l(�)) : Λ→ H0(V,A ×V,Π) given by

qah((H,χ), l(�))(λ)(v) = χ(λ) exp
(
πH(v, λ) +

π

2
H(λ, λ) +

∞∑
j=1

�
jπ〈lj , λ〉

)
. (C.6)

A straightforward check shows that if (H,χ) satisfies H � Π �H = 0, then the map qah((H,χ), l(�)) is
a non-commutative 1-cocycle, i.e. qah((H,χ), l(�)) ∈ Z1(Λ,H0(V,A ×)).

Consider now the subset P(Λ,Π) ⊂ P(Λ) defined by

P(Λ,Π) = {(H,χ) ∈ P(Λ) | H � Π �H = 0}.
With this notation we have the following quantum version of the Appell–Humbert theorem.

Proposition C.3. The map

P(Λ,Π) × �V
∨[[�]] �� H1(X,A ×X,Π)(

(H,χ),
∞∑
i=1

�
ili

)
� �� qah((H,χ), l(�))(λ)

is a bijection of pointed sets.

Proof. It suffices to show that for each j the map qah induces a bijection

P(Λ,Π) × �V
∨[[�]]/�j → H1(X, (AX,Π/�

j)×).

Note that the case j = 1 is the usual Appell–Humbert theorem. If we assume that this has been
shown for j � n then to show that it holds for j = n + 1 we can use the argument from the proof
of Lemma C.1 where it was shown that the case j = 1 implies the case j = 2. The key point is that
for ψ ∈ C1(Λ,H0(V,O)) the cochain in C1(Λ,H0(V, (AΠ/�

n+1)×) given by

λ 	→ χ(λ) exp
(
πH(v, λ) +

π

2
H(λ, λ) +

n∑
j=1

�
jπ〈lj , λ〉+ �

n+1ψ

)
is a cocycle if and only if ψ is in Z1(Λ,H0(V,O)).

Remark C.4. The quantum Appell–Humbert theorem gives preferred group cocycle representa-
tives for the isomorphism classes of quantum line bundles. For degree zero line bundles the
representatives are given by

λ 	→ χ(λ) exp
( ∞∑

j=1

�
jπ〈lj , λ〉

)
.

Here χ ∈ Hom(Λ, U(1)) and lj ∈ V ×. Thus, the connected componentH1(X,A ×X,Π)o of the quantum

Picard H1(X,A ×X,Π) is in bijection with X∨ × (V ∨)�>0 ∼= H1(X,O[[�]]×)o.

Remark C.5. As an example consider the product of elliptic curves E1 × E2 with coordinates
(z1, z2) and Poisson structure ∂/∂z1 ∧ ∂/∂z2. Let L be the line bundle corresponding to the divisor
E1×{0} and M the line bundle corresponding to the divisor {0}×E2. Then L andM are quantizable
but L⊗M is not. Note also that L⊕M is a quantizable vector bundle yet has a non-zero second
Chern class, given by the Poincaré dual to the intersection of the two divisors.
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Appendix D. On the cohomology of left A -modules

Let S be a Hausdorff analytic space and A be a sheaf of �[[�]]-algebras such that A ⊗�[[�]]�
∼= OS .

The usual arguments in [Har77] go through to show that if L is a left A -module, then there are well-
defined cohomology groups of L computed from the derived functors of the global sections functor
in the categories of sheaves of abelian groups, sheaves of �-vector spaces, sheaves of �[[�]]-modules,
and sheaves of A -modules. Furthermore, all of these cohomologies are naturally isomorphic to each
other. If L is a locally free left A -module of finite rank, then these cohomologies also agree with
the C̆ech cohomology of L . Indeed, choose a cover U = {Ui | i ∈ I} by contractible open sets
such that for UI =

⋂
j∈I Uj we have Hj(S,UI ,O) = {0} and H1(S,UI ,O×) = {1} for all finite

subsets I ⊂ I and all j � 1. Denote the inclusion maps by κI : UI → S. Then, by Lemma B.1 we
have Hj(S,UI ,L ) ∼= Hj(S,UI ,A ) ∼= Hj(S,UI ,O)[[�]] = {0} for all I and j � 1. Therefore we can
compute cohomology from the following acyclic resolution

0→ L →
⊕
i∈I

κi∗(L |Ui)→
⊕

{i,j}∈I×2

κij∗(L |Ui,j )→ · · · .

This cohomology is precisely the C̆ech cohomology.

Lemma D.1. Let L be a degree zero line bundle on the non-commutative torus �Π. View L as a
sheaf of left AX,Π modules on the underlying torus X. Then:

(a) L is non-trivial if and only if H0(X,L ) = 0;
(b) if L /�L �∼= O, then H i(X,L ) = 0 for all i � 0.

Proof. First we prove part (a). Since L is a translation invariant line bundle on �Π, it is given
by a constant factor of automorphy (see Remark C.4) and so the sheaf L has a preferred flat
connection. Denote the corresponding local system of �[[�]]-modules by L . Furthermore, the sheaf
L has a natural structure of an O[[�]]-module. This follows from the identification L ∼= L ⊗�O =
L ⊗�[[�]] O[[�]]. Now observe that

H0(X,L ) = HomO−mod(O,L ) = lim←− HomO−mod(O,L /�k) = lim←−H
0(X,L /�k).

Note that L /�k is a free O[[�]]/�k module and so is a holomorphic vector bundle of rank k on X.
The vector bundle L /�k has a preferred flat connection coming from the natural identification
L /�k ∼= (L /�k)⊗� O. From the formula for the factor of automorphy for L (see Remark C.4) it
is clear that the flat connection on L /�k is unitary. Since X is Kähler we can now use that the
Hodge decomposition to compare the cohomology of the local system L /�k and the holomorphic
bundle L /�k. In particular, we have that the natural map L /�k → L /�k induces an isomorphism
on H0. Therefore,

H0(X,L ) = lim←−H
0(X,L /�k) = lim←−H

0(X,L /�k) = H0(X,L ),

and so a non-zero global section of L is nowhere vanishing. Since L is a locally free rank one
AX,Π-module this implies that L is trivial. The opposite implication is obvious. This completes
the proof of part (a).

For part (b) recall the classical result that if L is a non-trivial degree zero line bundle on X,
then Hj(L) = 0 for all j � 0. Suppose now that L is a quantum line bundle of degree zero for
which L /�L is non-trivial. Consider the short exact sequence

0 −→ L
�−→ L −→ L /�L −→ 0.

Since all cohomology groups of L /�L vanish, the long exact cohomology sequence implies that �

induces an isomorphism of �[[�]]-modules Hj(L )→ Hj(L ) for all j. This implies that Hj(L ) = 0
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for all j. Indeed if not, choose the largest possible p ∈ {0, 1, 2, . . . } such thatHj(L )/�pHj(L ) = (0),
then applying the isomorphism gives that Hj(L )/�p+1Hj(L ) = 0, a contradiction.

Suppose that L is a degree zero quantum line bundle with L /�L ∼= O, yet L is non-trivial.
In this case the higher cohomology groups of L need not vanish. The easiest way to see this is to
note that

0 −→ L
�−→ L −→ O −→ 0 (D.1)

is a short exact sequence of O-modules and so the extension class of this sequence lies in H1(X,L ).
Modulo �

2 the sequence (D.1) induces a short exact sequence of O-modules

0 �� L /� �� L /�2 �� L /� �� 0

O O
(D.2)

whose extension class is in H1(X,O). If H1(X,L ) was zero, then this sequence (D.1), and hence the
sequence (D.2), will split. However, it is immediate to check that if L is represented by quantum
Appell–Humbert data ((0, 1),

∑∞
i=1 �

ili), then the extension class of (D.2) is given by the group
cohomology class [l1] ∈ H1(Λ,H0(V,O)). Since we are completely free to choose the li this shows
that (D.2), and hence (D.1), are non-split in general. This implies that a general L with L /� ∼= O
has non-trivial first cohomology.
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JSW02 B. Jurčo, P. Schupp and J. Wess, Noncommutative line bundle and Morita equivalence, Lett.
Math. Phys. 61 (2002), 171–186.

Kal04 D. Kaledin, On the coordinate ring of a projective Poisson scheme, Math. Res. Lett. 13 (2006),
99–107.

Kap04 A. Kapustin, Topological strings on noncommutative manifolds, Int. J. Geom. Methods Mod.
Phys. 1 (2004), 49–81.

Kel99 B. Keller, On the cyclic homology of exact categories, J. Pure Appl. Algebra 136 (1999), 1–56.
Knu71 D. Knutson, Algebraic spaces, Lecture Notes in Mathematics, vol. 203 (Springer, Berlin, 1971).
Kon91 M. Kontsevich, Topics in deformation theory, in Lecture Notes by A. Weinstein, University of

California at Berkeley (1991), http://www.math.brown.edu/∼abrmovic/kontsdef.ps.

473

https://doi.org/10.1112/S0010437X06002636 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06002636


O. Ben-Bassat, J. Block and T. Pantev

Kon01 M. Kontsevich, Deformation quantization of algebraic varieties, in EuroConférence Moshé Flato
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