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ON A PROBLEM OF TURAN ABOUT 
POLYNOMIALS HI 

R. PIERRE AND Q. I. RAHMAN 

Let 

Tn(x): = cos nd, 

sin (n + 1)0 
Un(x): = 

sin 0 

where x: = cos 0, denote the nth degree Chebyshev polynomials of the 
first and second kind, respectively. Further, let 

nM.- * cos { ( 2 ^ + 1)0/2} 
U«W'-y/2 cos (0/2) 

Rn(x): 
1 sin {(2n + 1)0/2} 

A / 2 COS (0/2) 

x: = cos 0. 

Given non-negative integers X and M we define 

^(w): = n — I 
"x + i" 
. 2 . + M + l " 

2 + 1 

and 
N X / 2 / 

(1) Pn,x,„(*): = 

Let 

(i _ *)*/*(! + x)^2rKn)_!(x) 

if X and /x are both even 

if X and /x are both odd 
(?v(n)-lC*0 

if X is even and /x is odd 

(1 - x)A/'(l +x) (M+D/2 

(1 - * ) ( A + ^ ( 1 + x ) * ' ^ W - i ( * ) 
if X is odd and /x is even. 

(2) xi ^ x2 g . . . ^ x„(n) 

be the roots of the equation 

Pn.x.pQs) (3) 1 -
(1 - *)*(! +x)M 0, 

Received March 19, 1981. 

https://doi.org/10.4153/CJM-1982-061-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-061-0


A PROBLEM OF TURAN 889 

and put 

F(x): = (1 - x)[(X+1)/2](l + x)[(M+1)/2] n (* - *i). 

Now set 

(4) F,(*): = F ( x ) / ( x - x , ) 

and denote by 

*i =§ «2 ^ • • • S ïn-j, Vi è m S • • • ^ «;„-> 

the roots of 

Fit)(x)=0, F1
(j\x) = 0, 

respectively. We have proved [4] that if pn(x) is a polynomial of degree n 
such that 

(5) \pn(x)\ ^ (1 - x)x /2(l + xY'2 for - 1 < x < 1, 

then 

(6) \pn
(i\z)\ è \P&A*)\ 

for all real values of z lying outside the interval (£i, ^ - j ) . 
Here we shall show (see Theorem 1') that (6) holds everywhere outside 

the open disk D° with (£i, ??n-;) as diameter, and that too under a weaker 
assumption. The idea of such an extension was suggested by a result of 
Erdôs [2, Theorem 7]. 

The proof of our main result depends on the following 

LEMMA. Let 

-1 = yo < yi < y2 < . . . < yN = 1 

and set 

« ( * ) : = (l+xr(l-xrfl(x-ym) 

where n\, n<i are non-negative integers. Further, let 

o)m(x): = co(x)/(x - ym), m = 0, 1, 2, . . . , N. 

If we put n: = N + ni + n<i and denote by 

<Xm,l ^ « m , 2 ^ . . . ^ OLm,n-j, M = 0 , 1 , 2 , . . . , N 

the zeros of com
(;)(x), then for all z lying outside the closed disk D with 

[aNti, a0fn-j] as diameter, the angle between any two of the vectors œm
(j)(z) is 

less than ir/2. 
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890 R. PIERRE AND Q. I. RAHMAN 

Proof. First we show that if 0 < h < k S N, then the zeros of wh
U) (x) 

and œk
U) (x) interlace. To be precise 

(7) ajb.i ^ ah,j ^ a*,2 ^ oih>2 ^ . ^ a*,w_̂  ^ a»,n-r 

If we set 

«*,*(*): = <ah(x)/(x - yk) = wk(x)/(x - yh) 

then by Leibnitz's rule 

(8) o>h
u)(x) = (x - 3>*K,fc

0)(*) + jc^ 0 ' - 1*(*) . 

Thus, if 0 is a zero of o)h>k
U)(x), then 

(9) co,0 ,(^)=icoM°'-1)(/3). 

It follows from Rolle's theorem that the zeros of wh
U)(x), œk

U)(x) and 
Uh,kU)(x) lying in ( — 1 , 1) must all be simple. 

Now we distinguish three different cases. 
Case (i). 0 < h < k < N. If fa < fa < . . . < pQ are the zeros of 

<>>h,ka)(%) in ( — 1, 1) then from (9) it follows that in each of the intervals 
(0i, fa), {fa, fa), . . . , (00_i, PQ) there is at least one zero of <ah

U)(x). 
Further, for sufficiently small and positive values of e 

s g l W ^ - l + e) = ( - I ) " - " - 1 

sgn«»(i)C8i) = sgaa^^iPi) = ( -1 ) ' 

whereas 

s g n c ^ - l + e) = ( - 1 ) ^ 
s&iuh

ij)(fa) = sgno>h,k
(j-l)(fa) = ( - 1 ) 

W(a \ - e„M ,, (J-D//0 \ _ / i\n-ni-2f if 7 â Wi + 1, 

0)/>o \ _ o™ ,. O-D/̂ » N _ / n«- i - i ( ifi > wi + 1. 

Hence co^0)(x) must also have a zero in ( — 1, fa). Again, for sufficiently 
small and positive values of e 

v«2+2-jr if i ^ «2 + 1, 

whereas 

s g n « » w ( l - 0 = ( - D " , + ^ 
sgn«»(y) (/*«,) = s g n o , , , , » - " ^ ) = ( - 1 ) " 

">/« ^ - „«, ,.. " - » ^ 0 ) = - l j i f j > n* + *• 
sgnco A

0 , ( l - 6 ) = + 1 
sgach

lfi(0Q) = s g i W - i J ( / 3 

and so o>ft
0)(x) must have a zero in (/3Q, 1) as well. 

Since wh
li)(x) has exactly Q + 1 zeros in ( — 1, 1) it must have one and 

only one zero in each of the intervals ( — 1 , j8i), (/3i, /32), . . • , (/30_i, |8Q), 
(J8<J, 1). Thus, if ai < a2 < . . . < aQ < a 0 + i be the zeros of uh

a)(x) in 
( — 1 , 1), then 

(10) ai < ft < a2 < ft < . . . < aQ < 0O < aQ+i. 
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From (8) and 

(8') œk
(i)(x) = (x - yh)a>h,k

(3)(x) + j ^ , ^ (x) 

it follows that 

(11) co,0 )K) = (yk - yh)œh,k
(j)M, g = 1, 2, . . . , (J + 1. 

Hence, in view of (10), the sign of œk
U)(aq) alternates as a increases from 

1 to Q + 1. Consequently, œk
U)(x) must vanish at least once in each of 

the intervals 

(12) («i , a 2 ) , (a2 , a 3 ) , • • • > (<*Q, <*Q+I). 

Further, for sufficiently small and positive values of e 

s g n c W l + e) = ( - ] 
sgnuk

(3)(ai) = sgn<ahtk
(3)( 

whereas 

s g n c o ^ - l + e) = ( - l ) - ' 
sgnco*0 0^) = s g n c o ^ a O = ( - I f 

Hence cok
U)(x) must have a zero in ( — 1, ai) as well. Thus, if 71 < 72 < 

. . . < 7Q+i are the zeros of œk
U)(x) in ( — 1, 1), then 

71 < on < 72 < «2 < . . . < 7 Q < OLQ < 7Q+i < OLQ+I. 

At the point —1 the polynomials o>h
U)(x) and uk

U)(x) have a zero of the 
same mulitplicity nti ^ 0, where 

• I \ W - W 1 - 1 "J 

V) = (-i)~2fif^Wi + 1' 

00 / \ _ o r v„ # i O)/̂  \ _ / i\»-j-if Hj > »i + 1. 

= )ni + 1 - j if j < »i + 1 
lO if j è »i + 1. 

Similarly at + 1 , the polynomials uh
U)(x) and wfc

(;)(x) have a zero of the 
same multiplicity m2 ^ 0, where 

_ )n2 + 1 — j if j < n2 + 1 
W2: ~ lo if j è ». + 1. 

With this we see that (7) does hold in the case 0 < h < k < N. 
Case (ii). 0 = h < k < N. The above proof with very little modification 

shows that if o)htk
U)(x) has Q zeros Pi < p2 < . • . < PQ in (— 1, 1), then 

coh
U)(x) must have Q + 1 zeros «i < a2 < . . . < aQ+i in (—1, 1) such 

that (10) holds. Again, uk
U)(x) must vanish at least once in each of the 

intervals (12). Besides, it must have a zero of multiplicity Wi + 1 at 
— 1 if wh

U)(x) has a zero of multiplicity mi ( ^1 ) there. But if uh
U)( — l) 

7* 0 then cok
U)(x) must have a zero in [ — 1, on). This follows from the 

fact that 

sgn «*<»(-00) = ( -1 )*- ' , 

s g i W ^ a O = s g n c ^ ' V ) = ( - l ) ^ " 1 . 
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At the point + 1 the polynomials wh
U)(x) and wk

U)(x) have a zero of the 
same multiplicity w2 ^ 0. These observations show that (7) holds in this 
case also. 

Case (iii). 0 = h < k = N. Let ft < ft < . . . < fiQ be the zeros of 
Wftf*

a)(*) in ( — 1, 1). As before it can be shown that <ah
U)(x) must vanish 

at least once in each of the intervals (ft, ft), (ft, ft), . . . , (0Q_I, PQ) as 
well as in ( — 1, ft). 

Now let j ^ n2. Then at + 1 the polynomials wh
U)(x), <ahtk

U)(x) have a 
zero of multiplicities w2 + 1 — J, w2 — j ^ 0 respectively, whereas at — 1 
they have a zero of the same multiplicity m\ ( ^ 0 ) . Hence uh

U)(x) has 
precisely Q zeros «i < a2 < . . . < aQ in (— 1, 1) which satisfy 

(13) «i < ft < a2 < ft < . . . < aQ < pQ. 

In each of the intervals (ah a2), (a2, a3), . . . , («Q_I, a^) the polynomial 
œk

U) (x) must have at least one zero. Besides, it has a zero of multiplicity 
Wi + 1 at — 1 if o)h

U)(x) has a zero of multiplicity mi è 1 there. But if 
«ft(^( — 1) 5̂  0 then œk(

j) (x) must have a zero in [ — 1, «i) since 

sgn «*«>(-oo) = ( - 1 ) - ' , 

sgn «*<%,) = sgn«».»w(a,) = ( - l ) " - ^ 1 . 

Further, in view of (13) we have 

sgna>k
(j)(aQ) = sgn c ^ f o ) = ( - 1 ) " ^ , 

sgn Wit<»(l - e) = (-l)n*-j if e > 0 is small, 

and so a)k
U)(x) has at least one zero in (aQi 1) as well. Thus we see that 

(7) holds if j S n2. 
If j ^ n2 + 1 then c V ^ x ) must have a zero in (0 c, 1) since 

sgna>h
(j)(/3Q) = s g n c o ^ 0 ' " 1 ^ ) = - 1 , 

sgn wh
U)(l — e) = + 1 if e > 0 is small. 

Hence œh
U)(x) has Q + 1 zeros «i < a2 < . . . < aQ+i in (—1,1) such 

that (10) holds. 
In each of the intervals (12), cok

U)(x) must have at least one zero. At 
— 1, it has a zero of multiplicity mi + 1 if œh

U) (x) has a zero of multi­
plicity Wi ^ 1 there, whereas if wh

U)(— 1) ^ 0 then it (ook
U)(x)) must 

have a zero in [ — 1, «i). Hence again (7) holds. 
Having established (7) we are ready to proceed with the proof of 

the lemma. 
Now consider any two of the vectors wm

U)(z), say uh
U)(z) and œk

U)(z) 
where z € C\D. Without loss of generality we may assume h < k so that 
(7) holds. If Im z ^ 0 and the values of "arg" are all taken between 0 and 
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7T, then 

= arg {(z - ahtn-3)/{z - ak%1)) 
n—j 

- H arg {(z - aklll)/(z - a^-i)} < TT/2 

since 
n—j 

0 ^ ]£ arg {(z - aktll)/(z - aAfM_i)} 
A*=2 

^ arg {(z - a^n-^Kz - ak,i)} < |. 

Hence the lemma holds in the case when Im s ^ 0. The proof is similar 
if Im z < 0. 

THEOREM 1. Let 

- l = yo < y\ < j2 < . . . < yN = l, 

and suppose that Pn{z) is a polynomial of degree n: = N + n\ + n2 having 
the following properties: 

(i) it has zeros of multiplicities n\ and n2 at y0 and yN respectively, where 
either or both of the numbers n\ and n2 may be zero, 

(ii) the polynomial 

Pn(z): = P n ( * ) / { ( l + * ) * i ( l -*)»«} 

has alternating signs at the points yo, yi, y2, • . • , yN-
Further, let w (x), um (x) and amttl be as in the lemma. 
Now, if p (z) is a polynomial of degree n with real coefficients having zeros 

of multiplicities nf ( ̂  ni), n2* ( è n2) at — 1, + 1 respectively, and 

(14) \p(ym)\ S \Pn(ym)\, m = 0,l,2,...,N, 

then for z lying outside the open disk A0 with (aNtu ao,n-i) as diameter, we 
have 

(15) \p^{z)\ g |P,»)(s)| . 

Proof. Let 

Hz): =/»(«)/{ (1+8)""(1 - s ) » 2 } , 

Q(z): = W ( * ) / { ( 1 + S ) - ( 1 -«)»«}. 

By Lagrange's interpolation formula 

Mz) = ffo»> a(*) 

https://doi.org/10.4153/CJM-1982-061-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-061-0


894 R. PIERRE AND Q. I. RAHMAN 

and so 

Clearly 

.(*)• 

n'(y«) = (-i)w-"|o'(ym)l. « = o, 1,2 iv. 
Hence, differentiating the two sides of (16) j times, we obtain 

(17) pw(z) ( 1} à loU)! Wm (2)-
In particular, 

(17') |P n
0 )(s) | = lfi»(y*i)l 0) 

(2) 
:& |o Cv«) 

since by hypothesis, the numbers 

( - 1 ) - P n ( ^ ) , m = 0, 1,2, . . . , i V 

are all of the same sign. 
If z lies outside the closed disk Â with [«AM, &o,n-j] as diameter then, 

according to the lemma, the angle between any two of the vectors 
Urn -U)(z) is less than 7r/2, and so 

1 ^ ) 1 = (2) Z^ I^OOI (J) 
„ o'c-v \\ m (*) 

which, in conjunction with (14) and (17'), implies the desired inequality 
(15) for z £ C\A. By continuity, the inequality must also hold for z £ dA. 

The following result is an immediate consequence of Theorem 1. 

THEOREM 1'. Given non-negative integers X and /x let PHi\ifi(x) and the 
points Xi, x2, . . . , xV(n) be as in (1) and (2) respectively. Further, let Fi(x) 
be defined as in (4) and denote by £i the smallest zero of FV(n)

U)(x) and by 
rin-j the largest zero of FiU) (x). If pn(x) is a polynomial of degree n with real 
coefficients having a zero of multiplicity at least [(X + l ) /2] at 1 and of 
multiplicity at least [(/* + l ) /2 ] at — 1 such that (5) holds, or more generally 

\pn(xù\ ^ |P*.X,M(*,) | , / = 1 , 2 , . . . ,!>(*) 

then 

(18) \pn
u)(z)\ ^ |PJi„(*)l 

for all z lying outside the open disk D° with (£i, T)n-j) as diameter. 

The zeros of Pn\t\{z) are symmetric with respect to the imaginary 
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axis and so for all p > 0 

max|PJix(*) | = | ^ , x ( ± i p ) | . 

Moreover, if X = \x then £1 = —rin-j- Hence, as a corollary of Theorem 1' 
we obtain 

COROLLARY 1. Let pn(x) be a polynomial of degree n with real coefficients 
satisfying the hypotheses of Theorem V with X = /x. Then for all p ^ t}n-3 

m a x i m s ) | Û |PJix(±*p)|. 
\Z\£P 

As another consequence of Theorem 1' we have 

COROLLARY 2. Let n be an odd integer. If pn(x): = J^=o a*#* is a poly­
nomial of degree n with real coefficients satisfying the hypotheses of Theorem 
V with X = JU and yn,\,n is the dominating coefficient of the polynomial 
Pn,\,\(x),then 

(19) \an\ + \a0\ ^ |Tn.x.n|-

Proof. Since the polynomial PHi\y\(z) is clearly odd it must be of the 
form 

According to Theorem 1' 

(18 ; ) \pn(*)\ ^ \Pn,xAz)\ for\z\ ^ 1, 

and so for all f G C such that |f | > 1 the polynomial 

pn{z) — ÇPn>xti(z) = a0 + (ai - f7„,x,i)s + «2s2 + . . • 

+ (an - fTn,X,n)sW 

must have all its zeros in \z\ < 1. Consequently 

(20) |a0| < \an - r7n,x,n| for |f| > 1. 

This implies in particular that \an\ ^ |7w,x,n|- So we can choose arg f 
such that 

K - f7n,X,n| = |f| |7n.X.n| ~ K\-

Thus from (20) it follows that if |f | > 1, then 

ko| < |f| \yn,\,n\ — Kl 
and so (19) must hold. 

Remark 1. The example Pni\t\(x) shows that (19) does not hold if n is 
even (note that |Pnfx,x(0)| = 1) but the above proof with a slight modifi­
cation shows that in that case 

(19') \an\ S |7n,x,n| - (1 - |a0 |). 
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Inequalities (19), (19') not only generalize but also strengthen the 
classical inequality of Chebyshev [1, page 63 (see Problem 8 (e))]. 

Earlier [4] we had proved the following 

THEOREM A. Let 

A k J (1 - x2)x/2rw_x(x) if X is even 
Pn.X.x(x) - ^ J n ^ X = | ( J _ %2) ( X + 1 ) / « ^ ^ {f U s ^ 

Ifpn(x) = 2Z^=o cikx
k is a polynomial of degree at most n with real coefficients 

such that 

(21) \pn(x)\ ^ (1 - x2)*/2 

for — 1 < x < 1, then 

(22) \an„2j\ + \an-2j-i\ ^ |7n,x,»-2j|, \j = 0, 1, . . . , [^"9—J j • 

It is natural to ask if (22) remains valid for polynomials with complex 
coefficients. The answer turns out to be negative. In fact, we shall prove 
that for every given e > 0 there exists a polynomial 

Pn,\(x) = 2aX,fc** 

of degree n satisfying the conditions of Theorem A such that 

(23) \a\tn-2j\ + e\a\in-2j-l\ > \yn,\,n-2ji­

lt is clearly enough to prove (23) for all sufficiently small e > 0. Now let 

n 

pn,x(x): = {Pn,X,\(x) + Ù2Pn-l,\,\ (*)} / V l + * = Z AX.***. 
k=0 

Then clearly 

\pn,\(x)\ S (1 - * 2 ) x / 2 f o r - U * g l . 

Further 

1 • 2 

1 te d\,n-2j — /-. , 4 7n,\,n-2jy a\,n-2j-l — /T~T ? 7n-l,X,n-2j-l 

and so 

\a\,n-2j\ + e\a\,n-2j-i\ = /^ , =7 {|Y»,x,n-2i| + € |7n_i)x(n_2j-_i|} 

> |Tn,X,n—2^| 

if 
* < 2|7n_i<x,n-2i-l|/|7n,X,n-2i| 
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We take this opportunity to present a short proof of Theorem A. In 
fact, we shall prove the somewhat stronger 

THEOREM A'. Let Pn>\t\(x) be as in Theorem A and denote by 

(24) Xn,i < Xn,2 < . . . < #n,n-2[(X+l)/2] + l 

the roots of the equation 

1 " 7f31?)K " °-

Then for a polynomial pn(x) = 22t=o akx
k of degree at most n with real 

coefficients, inequality (22) holds even if (21) is satisfied only at the points 
«..,0/(24). 

Proof. First we show that if (21) is satisfied at the points x„j, 
(1 ^ / ^ n - 2[(X + l ) /2] + 1), then 

(25) ln—2j\ ^ |7n,X,n-2i|, ( j = 0, 1, . . . , [^ I j . 

It is clear that for — 1 < 6 < 1 the polynomial 

, / M fPn,\,\(x) - (0/2){Pn(x) + Pn(-x)} if w is even 
l{Xl }' \Pn^{x) - (e/2){pn(x) - £ „ ( - * ) } if?* is odd, 

changes sign between two consecutive points xn>i and so must have at 
least n — 2[(X + l ) /2] zeros in ( — 1, 1). Besides, it has a zero of multi­
plicity [(X + l ) /2] at each of the points —1, + 1 and so all its zeros are 
real. The coefficients of xn~l, xn~3, . . . being all zero, none of the other 
coefficients can vanish ; for then by Descartes' rule of signs, the zeros of 
hi(x, 6) could not all be real. This is possible only if (25) holds. 

The preceding argument is based on an idea of O. D. Kellogg [3]. 
Next we show that if (21) is satisfied at the points x = #n_ifi, xn-i,2, 

. . . , x„_iin_2[(x+i)/2], then 

(26) |are_2;+i| ^ |Y»-i,x,n-2*+i|, yj = 1, 2, . . . , [ ^ ~ ~ J j • 

In fact, all we have to do is to apply the above reasoning to the function 

L (r M . = )Pn-i,x,\(x) - (6/2){pn(x) +pn(-x)\ if n is odd 
n2^u). \pn_ixx(x) _ (0/2){pn(x) - pn(-x)} if wiseven. 

Now let us consider the polynomial 

m 

f(x): = i | (1 + x)pn(x) + (1 - x)p,(-x)\ = £ bkx
k (say). 

fc=0 

Note that m is equal to n or n + 1 according as n is even or odd respec-
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tively. In view of the fact that 

| ( | 1 + x\ + |1 - x\) = 1 for - 1 < x < 1 

we have 

\f(x)\ ^ (1 - X2)X/2 for X = Xn,i, Xn,2, • • , *n,n-2[(X+l)/2] + l 

and so from (25), (26) we obtain 

( \n — 1 
j = 0, 1 , . . . , 

On the other hand, considering 

g(x): = |{(1 - x)pn(x) + (1 +x)pn(-x)} 

we can prove in the same way that 

) • 

(28) i i «- i i / • n 1 \n - l ] \ 
\dn-2j — an-2j-l\ ^ \yn,\,n-2j\, IJ — U, 1, . . . , ~ J . 

Inequalities (27) and (28) together give us the desired result. 

We observe that, at least in the case of odd n, the conclusion of Theorem 
A' can be considerably strengthened if pn(x) happens to be non-negative 
at the points (24). In fact, we have 

THEOREM A". Let n be odd. If the polynomial pn(x) = ][^=o akx
k satisfies 

the hypotheses of Theorem A' and is, in addition, non-negative at the points 
xn>iof(2±),then 

(29) \On-2j\ + K-2 , - l | ^ 4|7n,X.»-2j|, (j = 0, 1, . . . , [ ^ ~ " J ) • 

In the case of even n we can prove 

THEOREM A"'. Let n be even. If pn(x) = 52îUo cikXk is a polynomial of 
degree n with real coefficients such that 

0 ^ pn(x) g (1 - x2)x/2 

at the points x = xn_i,i, x_i,2, . . . , #n_itn_2[(x+i)/2], then 

(30) \an-2j+l\ ^ i|7n-l,X,n-2j+l|, [j = 1,2, • 0 
n-¥\)-

Proof of Theorems A7', A'". First of all we observe that if f(x) = /̂ %Lo 
bkx

k is a polynomial of degree m (even) with real coefficients such that 

(31) 0 g / ( * ) ^ (1 - x2)x/2 

at the points x = xm_i,i, xm_i,2, . . . , xm_i,m_2[(x+i)/2], then 

l/(*) -f(~x)\ S (1 -x 2 ) x / 2 
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at these points. Since/(x) — f( — x) is a polynomial of degree m — 1 it 
follows from (26) that 

(32) |6m_2j+l| ^ è|7m-lfX,m-2j4-l|> \j ~ 1» 2, . . . , 

which proves Theorem A'". 
Now if pn(x) = ^2l=o akx

k is a polynomial of degree n (odd) satisfying 
the hypotheses of Theorem A", then 

/(*): = *{(1 +x)Pn(x) + (1 - x)pn{-x)\ 

is a polynomial of degree n + 1 (even) with real coefficients such that (31) 
is satisfied at the points x = xn>i, xn>2,. . . , #n,n+i_2[(x+i)/2] and so according 
to (32) we must have 

(33) \an-2j + an-2j-l\ ^ | |7n,X,n-2j | , [j = 0, 1, . . . , 

On the other hand, considering 

g(x): = è{(l ~x)pn{x) + (1 +x)pn(-x)\ 

we can prove in the same way that 

(34) \an-2j - a n _ 2 j - l | = £|7n,X,n-2i|, ( j = 0, 1, . . . , 

and so Theorem A" holds. 
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