ON A PROBLEM OF TURÁN ABOUT POLYNOMIALS III

R. PIERRE AND Q. I. RAHMAN

Let

$$
\begin{aligned}
T_{n}(x): & =\cos n \theta \\
U_{n}(x): & =\frac{\sin (n+1) \theta}{\sin \theta}
\end{aligned}
$$

where $x:=\cos \theta$, denote the nth degree Chebyshev polynomials of the first and second kind, respectively. Further, let

$$
\begin{aligned}
& Q_{n}(x):=\frac{1}{\sqrt{2}} \frac{\cos \{(2 n+1) \theta / 2\}}{\cos (\theta / 2)}, \\
& R_{n}(x):=\frac{1}{\sqrt{2}} \frac{\sin \{(2 n+1) \theta / 2\}}{\cos (\theta / 2)}, \\
& x:=\cos \theta
\end{aligned}
$$

Given non-negative integers λ and μ we define

$$
\nu(n):=n-\left(\left[\frac{\lambda+1}{2}\right]+\left[\frac{\mu+1}{2}\right]\right)+1
$$

and
(1) $\quad P_{n, \lambda, \mu}(x):=\left\{\begin{array}{c}(1-x)^{\lambda / 2}(1+x)^{\mu / 2} T_{\nu(n)-1}(x) \\ \text { if } \lambda \text { and } \mu \text { are both even } \\ (1-x)^{(\lambda+1) / 2}(1+x)^{(\mu+1) / 2} U_{\nu(n)-1}(x) \\ \text { if } \lambda \text { and } \mu \text { are both odd } \\ (1-x)^{\lambda / 2}(1+x)^{(\mu+1) / 2} Q_{\nu(n)-1}(x) \\ \text { if } \lambda \text { is even and } \mu \text { is odd } \\ (1-x)^{(\lambda+1) / 2}(1+x)^{\mu / 2} R_{\nu(n)-1}(x) \\ \text { if } \lambda \text { is odd and } \mu \text { is even. }\end{array}\right.$

Let
(2) $\quad x_{1} \leqq x_{2} \leqq \ldots \leqq x_{\nu(n)}$
be the roots of the equation
(3) $1-\frac{P_{n, \lambda, \mu}^{2}(x)}{(1-x)^{\lambda}(1+x)^{\mu}}=0$,

Received March 19, 1981.
and put

$$
F(x):=(1-x)^{[(\lambda+1) / 2]}(1+x)^{[(\mu+1) / 2]} \prod_{l=1}^{v(n)}\left(x-x_{l}\right)
$$

Now set
(4) $\quad F_{l}(x):=F(x) /\left(x-x_{l}\right)$
and denote by

$$
\xi_{1} \leqq \xi_{2} \leqq \ldots \leqq \xi_{n-j}, \eta_{1} \leqq \eta_{2} \leqq \ldots \leqq \eta_{n-j}
$$

the roots of

$$
F_{\nu(n)}^{(j)}(x)=0, \quad F_{1}^{(j)}(x)=0
$$

respectively. We have proved [4] that if $p_{n}(x)$ is a polynomial of degree n such that

$$
\begin{equation*}
\left|p_{n}(x)\right| \leqq(1-x)^{\lambda / 2}(1+x)^{\mu / 2} \quad \text { for }-1<x<1 \tag{5}
\end{equation*}
$$

then
(6) $\left|p_{n}{ }^{(j)}(z)\right| \leqq\left|P_{n, \lambda, \mu}^{(j)}(z)\right|$
for all real values of z lying outside the interval $\left(\xi_{1}, \eta_{n-j}\right)$.
Here we shall show (see Theorem 1^{\prime}) that (6) holds everywhere outside the open disk D^{0} with (ξ_{1}, η_{n-j}) as diameter, and that too under a weaker assumption. The idea of such an extension was suggested by a result of Erdös [2, Theorem 7].

The proof of our main result depends on the following
Lemma. Let

$$
-1=y_{0}<y_{1}<y_{2}<\ldots<y_{N}=1
$$

and set

$$
\omega(x):=(1+x)^{n_{1}}(1-x)^{n_{2}} \prod_{m=0}^{N}\left(x-y_{m}\right)
$$

where n_{1}, n_{2} are non-negative integers. Further, let

$$
\omega_{m}(x):=\omega(x) /\left(x-y_{m}\right), \quad m=0,1,2, \ldots, N
$$

If we put $n:=N+n_{1}+n_{2}$ and denote by

$$
\alpha_{m, 1} \leqq \alpha_{m, 2} \leqq \ldots \leqq \alpha_{m, n-j}, \quad m=0,1,2, \ldots, N
$$

the zeros of $\omega_{m}{ }^{(j)}(x)$, then for all z lying outside the closed disk \bar{D} with $\left[\alpha_{N, 1}, \alpha_{0, n-j}\right]$ as diameter, the angle between any two of the vectors $\omega_{m}{ }^{(j)}(z)$ is less than $\pi / 2$.

Proof. First we show that if $0<h<k \leqq N$, then the zeros of $\omega_{h}{ }^{(j)}(x)$ and $\omega_{k}^{(j)}(x)$ interlace. To be precise

$$
\begin{equation*}
\alpha_{k, 1} \leqq \alpha_{h, 1} \leqq \alpha_{k, 2} \leqq \alpha_{h, 2} \leqq \ldots \leqq \alpha_{k, n-j} \leqq \alpha_{h, n-j} . \tag{7}
\end{equation*}
$$

If we set

$$
\omega_{h, k}(x):=\omega_{h}(x) /\left(x-y_{k}\right)=\omega_{k}(x) /\left(x-y_{n}\right)
$$

then by Leibnitz's rule

$$
\begin{equation*}
\omega_{h}^{(j)}(x)=\left(x-y_{k}\right) \omega_{h, k}{ }^{(j)}(x)+j \omega_{h, k}{ }^{(j-1)}(x) . \tag{8}
\end{equation*}
$$

Thus, if β is a zero of $\omega_{h, k}{ }^{(j)}(x)$, then

$$
\begin{equation*}
\omega_{h}^{(j)}(\beta)=j \omega_{n, k}{ }^{(j-1)}(\beta) . \tag{9}
\end{equation*}
$$

It follows from Rolle's theorem that the zeros of $\omega_{h}{ }^{(j)}(x), \omega_{k}{ }^{(j)}(x)$ and $\omega_{h, k^{(j)}}(x)$ lying in $(-1,1)$ must all be simple.

Now we distinguish three different cases.
Case (i). $0<h<k<N$. If $\beta_{1}<\beta_{2}<\ldots<\beta_{Q}$ are the zeros of $\omega_{h, k^{(j)}}(x)$ in $(-1,1)$ then from (9) it follows that in each of the intervals $\left(\beta_{1}, \beta_{2}\right),\left(\beta_{2}, \beta_{3}\right), \ldots,\left(\beta_{Q-1}, \beta_{Q}\right)$ there is at least one zero of $\omega_{h}{ }^{(j)}(x)$. Further, for sufficiently small and positive values of ϵ

$$
\left.\begin{array}{l}
\operatorname{sgn} \omega_{n}^{(j)}(-1+\epsilon)=(-1)^{n-n_{1}-1} \\
\operatorname{sgn} \omega_{h}{ }^{(j)}\left(\beta_{1}\right)=\operatorname{sgn} \omega_{h, k}^{(j-1)}\left(\beta_{1}\right)=(-1)^{n-n_{1}-2}
\end{array}\right\} \text { if } j \leqq n_{1}+1,
$$

whereas

$$
\left.\begin{array}{l}
\operatorname{sgn} \omega_{{ }^{(j)}}^{(j)}(-1+\epsilon)=(-1)^{n-j} \\
\operatorname{sgn} \omega_{h}{ }^{(j)}\left(\beta_{1}\right)=\operatorname{sgn} \omega_{h, k}{ }^{(j-1)}\left(\beta_{1}\right)=(-1)^{n-j-1}
\end{array}\right\} \text { if } j>n_{1}+1 .
$$

Hence $\omega_{n}^{(j)}(x)$ must also have a zero in ($-1, \beta_{1}$). Again, for sufficiently small and positive values of ϵ

$$
\left.\begin{array}{l}
\operatorname{sgn} \omega_{h}^{(j)}(1-\epsilon)=(-1)^{n_{2}+1-j} \\
\operatorname{sgn} \omega_{h}^{(j)}\left(\beta_{Q}\right)=\operatorname{sgn} \omega_{h, k}^{(j-1)}\left(\beta_{Q}\right)=(-1)^{n_{2}+2-j}
\end{array}\right\} \text { if } j \leqq n_{2}+1,
$$

whereas

$$
\left.\begin{array}{l}
\operatorname{sgn} \omega_{n}^{(j)}(1-\epsilon)=+1 \\
\operatorname{sgn} \omega_{h}{ }^{(j)}\left(\beta_{Q}\right)=\operatorname{sgn} \omega_{h, k}^{(j-1)}\left(\beta_{Q}\right)=-1
\end{array}\right\} \text { if } j>n_{2}+1,
$$

and so $\omega_{h}{ }^{(j)}(x)$ must have a zero in $\left(\beta_{Q}, 1\right)$ as well.
Since $\omega_{h}^{(j)}(x)$ has exactly $Q+1$ zeros in $(-1,1)$ it must have one and only one zero in each of the intervals $\left(-1, \beta_{1}\right),\left(\beta_{1}, \beta_{2}\right), \ldots,\left(\beta_{Q-1}, \beta_{Q}\right)$, ($\beta_{Q}, 1$). Thus, if $\alpha_{1}<\alpha_{2}<\ldots<\alpha_{Q}<\alpha_{Q+1}$ be the zeros of $\omega_{h}{ }^{(j)}(x)$ in $(-1,1)$, then
(10) $\alpha_{1}<\beta_{1}<\alpha_{2}<\beta_{2}<\ldots<\alpha_{Q}<\beta_{Q}<\alpha_{Q+1}$.

From (8) and

$$
\omega_{k}^{(j)}(x)=\left(x-y_{h}\right) \omega_{h, k}^{(j)}(x)+j \omega_{h, k}^{(j-1)}(x)
$$

it follows that

$$
\begin{equation*}
\omega_{k}^{(j)}\left(\alpha_{q}\right)=\left(y_{k}-y_{h}\right) \omega_{h, k}^{(j)}\left(\alpha_{q}\right), \quad q=1,2, \ldots, Q+1 \tag{11}
\end{equation*}
$$

Hence, in view of (10), the sign of $\omega_{k}{ }^{(j)}\left(\alpha_{q}\right)$ alternates as q increases from 1 to $Q+1$. Consequently, $\omega_{k}{ }^{(j)}(x)$ must vanish at least once in each of the intervals

$$
\begin{equation*}
\left(\alpha_{1}, \alpha_{2}\right),\left(\alpha_{2}, \alpha_{3}\right), \ldots,\left(\alpha_{Q}, \alpha_{Q+1}\right) \tag{12}
\end{equation*}
$$

Further, for sufficiently small and positive values of ϵ

$$
\left.\begin{array}{l}
\operatorname{sgn} \omega_{k}{ }^{(j)}(-1+\epsilon)=(-1)^{n-n_{1}-1} \\
\operatorname{sgn} \omega_{k}{ }^{(j)}\left(\alpha_{1}\right)=\operatorname{sgn} \omega_{h, k}{ }^{(j)}\left(\alpha_{1}\right)=(-1)^{n-n_{1}-2}
\end{array}\right\} \text { if } j \leqq n_{1}+1,
$$

whereas

$$
\left.\begin{array}{l}
\operatorname{sgn} \omega_{k}^{(j)}(-1+\epsilon)=(-1)^{n-j} \\
\operatorname{sgn} \omega_{k}{ }^{(j)}\left(\alpha_{1}\right)=\operatorname{sgn} \omega_{h, k}{ }^{(j)}\left(\alpha_{1}\right)=(-1)^{n-j-1}
\end{array}\right\} \text { if } j>n_{1}+1 .
$$

Hence $\omega_{k}{ }^{(j)}(x)$ must have a zero in $\left(-1, \alpha_{1}\right)$ as well. Thus, if $\gamma_{1}<\gamma_{2}<$ $\ldots<\gamma_{Q+1}$ are the zeros of $\omega_{k}{ }^{(j)}(x)$ in $(-1,1)$, then

$$
\gamma_{1}<\alpha_{1}<\gamma_{2}<\alpha_{2}<\ldots<\gamma_{Q}<\alpha_{Q}<\gamma_{Q+1}<\alpha_{Q+1} .
$$

At the point -1 the polynomials $\omega_{h}{ }^{(j)}(x)$ and $\omega_{k}{ }^{(j)}(x)$ have a zero of the same mulitplicity $m_{1} \geqq 0$, where

$$
m_{1}:= \begin{cases}n_{1}+1-j & \text { if } j<n_{1}+1 \\ 0 & \text { if } j \geqq n_{1}+1\end{cases}
$$

Similarly at +1 , the polynomials $\omega_{h}^{(j)}(x)$ and $\omega_{k}{ }^{(j)}(x)$ have a zero of the same multiplicity $m_{2} \geqq 0$, where

$$
m_{2}:= \begin{cases}n_{2}+1-j & \text { if } j<n_{2}+1 \\ 0 & \text { if } j \geqq n_{2}+1\end{cases}
$$

With this we see that (7) does hold in the case $0<h<k<N$.
Case (ii). $0=h<k<N$. The above proof with very little modification shows that if $\omega_{h, k}{ }^{(j)}(x)$ has Q zeros $\beta_{1}<\beta_{2}<\ldots<\beta_{Q}$ in $(-1,1)$, then $\omega_{h}{ }^{(j)}(x)$ must have $Q+1$ zeros $\alpha_{1}<\alpha_{2}<\ldots<\alpha_{Q+1}$ in $(-1,1)$ such that (10) holds. Again, $\omega_{k}{ }^{(j)}(x)$ must vanish at least once in each of the intervals (12). Besides, it must have a zero of multiplicity $m_{1}+1$ at -1 if $\omega_{h}^{(j)}(x)$ has a zero of multiplicity $m_{1}(\geqq 1)$ there. But if $\omega_{h}{ }^{(j)}(-1)$ $\neq 0$ then $\omega_{k}{ }^{(j)}(x)$ must have a zero in $\left[-1, \alpha_{1}\right)$. This follows from the fact that

$$
\begin{aligned}
& \operatorname{sgn} \omega_{k}^{(j)}(-\infty)=(-1)^{n-j} \\
& \operatorname{sgn} \omega_{k}^{(j)}\left(\alpha_{1}\right)=\operatorname{sgn} \omega_{h, k}^{(j)}\left(\alpha_{1}\right)=(-1)^{n-j-1}
\end{aligned}
$$

At the point +1 the polynomials $\omega_{n}^{(j)}(x)$ and $\omega_{k}{ }^{(j)}(x)$ have a zero of the same multiplicity $m_{2} \geqq 0$. These observations show that (7) holds in this case also.

Case (iii). $0=h<k=N$. Let $\beta_{1}<\beta_{2}<\ldots<\beta_{Q}$ be the zeros of $\omega_{h, k^{(j)}}(x)$ in $(-1,1)$. As before it can be shown that $\omega_{h}^{(j)}(x)$ must vanish at least once in each of the intervals $\left(\beta_{1}, \beta_{2}\right),\left(\beta_{2}, \beta_{3}\right), \ldots,\left(\beta_{Q-1}, \beta_{Q}\right)$ as well as in $\left(-1, \beta_{1}\right)$.

Now let $j \leqq n_{2}$. Then at +1 the polynomials $\omega_{h}^{(j)}(x), \omega_{n, k^{(j)}}(x)$ have a zero of multiplicities $n_{2}+1-j, n_{2}-j \geqq 0$ respectively, whereas at -1 they have a zero of the same multiplicity $m_{1}(\geqq 0)$. Hence $\omega_{h}{ }^{(j)}(x)$ has precisely Q zeros $\alpha_{1}<\alpha_{2}<\ldots<\alpha_{Q}$ in ($-1,1$) which satisfy

$$
\begin{equation*}
\alpha_{1}<\beta_{1}<\alpha_{2}<\beta_{2}<\ldots<\alpha_{Q}<\beta_{Q} . \tag{13}
\end{equation*}
$$

In each of the intervals $\left(\alpha_{1}, \alpha_{2}\right),\left(\alpha_{2}, \alpha_{3}\right), \ldots,\left(\alpha_{Q-1}, \alpha_{Q}\right)$ the polynomial $\omega_{k}{ }^{(j)}(x)$ must have at least one zero. Besides, it has a zero of multiplicity $m_{1}+1$ at -1 if $\omega_{h}{ }^{(j)}(x)$ has a zero of multiplicity $m_{1} \geqq 1$ there. But if $\omega_{n}{ }^{(j)}(-1) \neq 0$ then $\omega_{k}{ }^{(j)}(x)$ must have a zero in $\left[-1, \alpha_{1}\right)$ since

$$
\begin{aligned}
& \operatorname{sgn} \omega_{k}^{(j)}(-\infty)=(-1)^{n-j}, \\
& \operatorname{sgn} \omega_{k}^{(j)}\left(\alpha_{1}\right)=\operatorname{sgn} \omega_{h, k}^{(j)}\left(\alpha_{1}\right)=(-1)^{n-j-1} .
\end{aligned}
$$

Further, in view of (13) we have

$$
\begin{aligned}
& \operatorname{sgn} \omega_{k}^{(j)}\left(\alpha_{Q}\right)=\operatorname{sgn} \omega_{h, k}^{(j)}\left(\alpha_{Q}\right)=(-1)^{n_{2}-j+1}, \\
& \operatorname{sgn} \omega_{k}^{(j)}(1-\epsilon)=(-1)^{n_{2}-j} \text { if } \epsilon>0 \text { is small, }
\end{aligned}
$$

and so $\omega_{k}{ }^{(j)}(x)$ has at least one zero in ($\alpha_{Q}, 1$) as well. Thus we see that (7) holds if $j \leqq n_{2}$.

If $j \geqq n_{2}+1$ then $\omega_{h}{ }^{(j)}(x)$ must have a zero in $\left(\beta_{Q}, 1\right)$ since

$$
\operatorname{sgn} \omega_{h}^{(j)}\left(\beta_{Q}\right)=\operatorname{sgn} \omega_{h, k}^{(j-1)}\left(\beta_{Q}\right)=-1,
$$

$$
\operatorname{sgn} \omega_{h}{ }^{(j)}(1-\epsilon)=+1 \text { if } \epsilon>0 \text { is small. }
$$

Hence $\omega_{h}^{(j)}(x)$ has $Q+1$ zeros $\alpha_{1}<\alpha_{2}<\ldots<\alpha_{Q+1}$ in $(-1,1)$ such that (10) holds.

In each of the intervals (12), $\omega_{k}{ }^{(j)}(x)$ must have at least one zero. At -1 , it has a zero of multiplicity $m_{1}+1$ if $\omega_{h}{ }^{(j)}(x)$ has a zero of multiplicity $m_{1} \geqq 1$ there, whereas if $\omega_{h}{ }^{(j)}(-1) \neq 0$ then it $\left(\omega_{k}{ }^{(j)}(x)\right)$ must have a zero in $\left[-1, \alpha_{1}\right.$). Hence again (7) holds.

Having established (7) we are ready to proceed with the proof of the lemma.
Now consider any two of the vectors $\omega_{m}{ }^{(j)}(z)$, say $\omega_{h}{ }^{(j)}(z)$ and $\omega_{k}{ }^{(j)}(z)$ where $z \in \mathbf{C} \backslash \bar{D}$. Without loss of generality we may assume $h<k$ so that (7) holds. If $\operatorname{Im} z \geqq 0$ and the values of "arg" are all taken between 0 and
π, then

$$
\begin{aligned}
0 \leqq & \arg \left\{\omega_{h}^{(j)}(z) / \omega_{k}^{(j)}(z)\right\} \\
& =\arg \left\{\left(z-\alpha_{h, n-j}\right) /\left(z-\alpha_{k, 1}\right)\right\} \\
& -\sum_{\mu=2}^{n-j} \arg \left\{\left(z-\alpha_{k, \mu}\right) /\left(z-\alpha_{h, \mu-1}\right)\right\}<\pi / 2
\end{aligned}
$$

since

$$
\begin{aligned}
0 \leqq \sum_{\mu=2}^{n-j} \arg \left\{\left(z-\alpha_{k, \mu}\right) /\left(z-\alpha_{h, \mu-1}\right)\right\} & \\
& \leqq \arg \left\{\left(z-\alpha_{h, n-j}\right) /\left(z-\alpha_{k, 1}\right)\right\}<\frac{\pi}{2}
\end{aligned}
$$

Hence the lemma holds in the case when $\operatorname{Im} z \geqq 0$. The proof is similar if $\operatorname{Im} z<0$.

Theorem 1. Let

$$
-1=y_{0}<y_{1}<y_{2}<\ldots<y_{N}=1
$$

and suppose that $P_{n}(z)$ is a polynomial of degree $n:=N+n_{1}+n_{2}$ having the following properties:
(i) it has zeros of multiplicities n_{1} and n_{2} at y_{0} and y_{N} respectively, where either or both of the numbers n_{1} and n_{2} may be zero,
(ii) the polynomial

$$
\hat{P}_{n}(z):=P_{n}(z) /\left\{(1+z)^{n_{1}}(1-z)^{n_{2}}\right\}
$$

has alternating signs at the points $y_{0}, y_{1}, y_{2}, \ldots, y_{N}$.
Further, let $\omega(x), \omega_{m}(x)$ and $\alpha_{m, \mu}$ be as in the lemma.
Now, if $p(z)$ is a polynomial of degree n with real coefficients having zeros of multiplicities $n_{1}{ }^{*}\left(\geqq n_{1}\right), n_{2}{ }^{*}\left(\geqq n_{2}\right)$ at $-1,+1$ respectively, and

$$
\begin{equation*}
\left|p\left(y_{m}\right)\right| \leqq\left|P_{n}\left(y_{m}\right)\right|, m=0,1,2, \ldots, N \tag{14}
\end{equation*}
$$

then for z lying outside the open disk Δ^{0} with $\left(\alpha_{N, 1}, \alpha_{0, n-j}\right)$ as diameter, we have

$$
\begin{equation*}
\left|p^{(j)}(z)\right| \leqq\left|P_{n}^{(j)}(z)\right| \tag{15}
\end{equation*}
$$

Proof. Let

$$
\begin{aligned}
\hat{p}(z):=p(z) /\left\{(1+z)^{n_{1}}(1-z)^{n_{2}}\right\} & \\
& \Omega(z):=\omega(z) /\left\{(1+z)^{n_{1}}(1-z)^{n_{2}}\right\} .
\end{aligned}
$$

By Lagrange's interpolation formula

$$
\hat{p}(z)=\sum_{m=0}^{N} \frac{\hat{p}\left(y_{m}\right)}{\Omega^{\prime}\left(y_{m}\right)} \frac{\Omega(z)}{z-y_{m}}
$$

and so

$$
\begin{equation*}
p(z)=\sum_{m=0}^{N} \frac{\hat{p}\left(y_{m}\right)}{\Omega^{\prime}\left(y_{m}\right)} \omega_{m}(z) . \tag{16}
\end{equation*}
$$

Clearly

$$
\Omega^{\prime}\left(y_{m}\right)=(-1)^{N-m}\left|\Omega^{\prime}\left(y_{m}\right)\right|, m=0,1,2, \ldots, N .
$$

Hence, differentiating the two sides of (16) j times, we obtain

$$
\begin{equation*}
p^{(j)}(z)=(-1)^{N} \sum_{m=0}^{N} \frac{(-1)^{m} \hat{p}\left(y_{m}\right)}{\left|\Omega^{\prime}\left(y_{m}\right)\right|} \omega_{m}^{(j)}(z) . \tag{17}
\end{equation*}
$$

In particular,
(17') $\left|P_{n}{ }^{(j)}(z)\right|=\left|\sum_{m=0}^{N} \frac{\left|\hat{P}_{n}\left(y_{m}\right)\right|}{\left|\Omega^{\prime}\left(y_{m}\right)\right|} \omega_{m}{ }^{(j)}(z)\right|$
since by hypothesis, the numbers

$$
(-1)^{m} \hat{P}_{n}\left(y_{m}\right), m=0,1,2, \ldots, N
$$

are all of the same sign.
If z lies outside the closed disk $\bar{\Delta}$ with $\left[\alpha_{N, 1}, \alpha_{0, n-j}\right]$ as diameter then, according to the lemma, the angle between any two of the vectors $\omega_{m}{ }^{(j)}(z)$ is less than $\pi / 2$, and so

$$
\left|p^{(j)}(z)\right|=\left|\sum_{m=0}^{N} \frac{(-1)^{m} \hat{p}\left(y_{m}\right)}{\left|\Omega^{\prime}\left(y_{m}\right)\right|} \omega_{m}^{(j)}(z)\right| \leqq\left|\sum_{m=0}^{N} \frac{\left|\hat{p}\left(y_{m}\right)\right|}{\left|\Omega^{\prime}\left(y_{m}\right)\right|} \omega_{m}^{(j)}(z)\right|
$$

which, in conjunction with (14) and (17'), implies the desired inequality (15) for $z \in \mathbf{C} \backslash \bar{\Delta}$. By continuity, the inequality must also hold for $z \in \partial \Delta$.

The following result is an immediate consequence of Theorem 1.
Theorem 1^{\prime}. Given non-negative integers λ and μ let $P_{n, \lambda, \mu}(x)$ and the points $x_{1}, x_{2}, \ldots, x_{\nu(n)}$ be as in (1) and (2) respectively. Further, let $F_{l}(x)$ be defined as in (4) and denote by ξ_{1} the smallest zero of $F_{\nu(n)}{ }^{(j)}(x)$ and by η_{n-j} the largest zero of $F_{1}^{(j)}(x)$. If $p_{n}(x)$ is a polynomial of degree n with real coefficients having a zero of multiplicity at least $[(\lambda+1) / 2]$ at 1 and of multiplicity at least $[(\mu+1) / 2]$ at -1 such that (5) holds, or more generally

$$
\left|p_{n}\left(x_{l}\right)\right| \leqq\left|P_{n, \lambda, \mu}\left(x_{l}\right)\right|, l=1,2, \ldots, \nu(n)
$$

then
(18) $\quad\left|p_{n}{ }^{(j)}(z)\right| \leqq\left|P_{n, \lambda, \mu}^{(j)}(z)\right|$
for all z lying outside the open disk D^{0} with $\left(\xi_{1}, \eta_{n-j}\right)$ as diameter.
The zeros of $P_{n, \lambda, \lambda}^{(j)}(z)$ are symmetric with respect to the imaginary
axis and so for all $\rho>0$

$$
\max _{|z| \leq \rho}\left|P_{n, \lambda, \lambda}^{(j)}(z)\right|=\left|P_{n, \lambda, \lambda}^{(j)}(\pm i \rho)\right|
$$

Moreover, if $\lambda=\mu$ then $\xi_{1}=-\eta_{n-j}$. Hence, as a corollary of Theorem 1^{\prime} we obtain

Corollary 1. Let $p_{n}(x)$ be a polynomial of degree n with real coefficients satisfying the hypotheses of Theorem 1^{\prime} with $\lambda=\mu$. Then for all $\rho \geqq \eta_{n-j}$

$$
\max _{|z| \leqq \rho}\left|p_{n}^{(j)}(z)\right| \leqq\left|P_{n, \lambda, \lambda}^{(j)}(\pm i \rho)\right|
$$

As another consequence of Theorem 1^{\prime} we have
Corollary 2. Let n be an odd integer. If $p_{n}(x):=\sum_{k=0}^{n} a_{k} x^{k}$ is a polynomial of degree n with real coefficients satisfying the hypotheses of Theorem 1^{\prime} with $\lambda=\mu$ and $\gamma_{n, \lambda, n}$ is the dominating coefficient of the polynomial $P_{n, \lambda, \lambda}(x)$, then
(19) $\left|a_{n}\right|+\left|a_{0}\right| \leqq\left|\gamma_{n, \lambda, n}\right|$.

Proof. Since the polynomial $P_{n, \lambda, \lambda}(z)$ is clearly odd it must be of the form

$$
\gamma_{n, \lambda, 1} z+\gamma_{n, \lambda, 3} z^{3}+\ldots+\gamma_{n, \lambda, n} z^{n} .
$$

According to Theorem 1^{\prime}

$$
\left(18^{\prime}\right) \quad\left|p_{n}(z)\right| \leqq\left|P_{n, \lambda, \lambda}(z)\right| \quad \text { for }|z| \geqq 1
$$

and so for all $\zeta \in \mathbf{C}$ such that $|\zeta|>1$ the polynomial

$$
\begin{aligned}
p_{n}(z)-\zeta P_{n, \lambda, \lambda}(z)=a_{0}+\left(a_{1}-\zeta \gamma_{n, \lambda, 1}\right) z+a_{2} z^{2} & +\ldots \\
& +\left(a_{n}-\zeta \gamma_{n, \lambda, n}\right) z^{n}
\end{aligned}
$$

must have all its zeros in $|z|<1$. Consequently
(20) $\quad\left|a_{0}\right|<\left|a_{n}-\zeta \gamma_{n, \lambda, n}\right| \quad$ for $|\zeta|>1$.

This implies in particular that $\left|a_{n}\right| \leqq\left|\gamma_{n, \lambda, n}\right|$. So we can choose arg ζ such that

$$
\left|a_{n}-\zeta \gamma_{n, \lambda, n}\right|=|\zeta|\left|\gamma_{n, \lambda, n}\right|-\left|a_{n}\right|
$$

Thus from (20) it follows that if $|\zeta|>1$, then

$$
\left|a_{0}\right|<|\zeta|\left|\gamma_{n, \lambda, n}\right|-\left|a_{n}\right|
$$

and so (19) must hold.
Remark 1. The example $P_{n, \lambda, \lambda}(x)$ shows that (19) does not hold if n is even (note that $\left|P_{n, \lambda, \lambda}(0)\right|=1$) but the above proof with a slight modification shows that in that case
(19') $\left|a_{n}\right| \leqq\left|\gamma_{n, \lambda, n}\right|-\left(1-\left|a_{0}\right|\right)$.

Inequalities (19), (19') not only generalize but also strengthen the classical inequality of Chebyshev [1, page 63 (see Problem 8 (e))].

Earlier [4] we had proved the following
Theorem A. Let

$$
P_{n, \lambda, \lambda}(x)=\sum_{k=0}^{n} \gamma_{n, \lambda, k} x^{k}= \begin{cases}\left(1-x^{2}\right)^{\lambda / 2} T_{n-\lambda}(x) & \text { if } \lambda \text { is even } \\ \left(1-x^{2}\right)^{(\lambda+1) / 2} U_{n-\lambda-1}(x) & \text { if } \lambda \text { is odd } .\end{cases}
$$

If $p_{n}(x)=\sum_{k=0}^{n} a_{k} x^{k}$ is a polynomial of degree at most n with real coefficients such that
(21) $\left|p_{n}(x)\right| \leqq\left(1-\mathrm{x}^{2}\right)^{\lambda / 2}$
for $-1<x<1$, then

$$
\begin{equation*}
\left|a_{n-2 j}\right|+\left|a_{n-2 j-1}\right| \leqq\left|\gamma_{n, \lambda, n-2 j}\right|, \quad\left(j=0,1, \ldots,\left[\frac{n-1}{2}\right]\right) \tag{22}
\end{equation*}
$$

It is natural to ask if (22) remains valid for polynomials with complex coefficients. The answer turns out to be negative. In fact, we shall prove that for every given $\epsilon>0$ there exists a polynomial

$$
p_{n, \lambda}(x)=\sum_{k=0}^{n} a_{\lambda, k} x^{k}
$$

of degree n satisfying the conditions of Theorem A such that

$$
\begin{equation*}
\left|a_{\lambda, n-2 j}\right|+\epsilon\left|a_{\lambda, n-2 j-1}\right|>\left|\gamma_{n, \lambda, n-2 j}\right| \tag{23}
\end{equation*}
$$

It is clearly enough to prove (23) for all sufficiently small $\epsilon>0$. Now let

$$
p_{n, \lambda}(x):=\left\{P_{n, \lambda, \lambda}(x)+i \epsilon^{2} P_{n-1, \lambda, \lambda}(x)\right\} / \sqrt{1+\epsilon^{4}}=\sum_{k=0}^{n} a_{\lambda, k} x^{k}
$$

Then clearly

$$
\left|p_{n, \lambda}(x)\right| \leqq\left(1-x^{2}\right)^{\lambda / 2} \quad \text { for }-1 \leqq x \leqq 1
$$

Further

$$
a_{\lambda, n-2 j}=\frac{1}{\sqrt{1+\epsilon^{4}}} \gamma_{n, \lambda, n-2 j}, \quad a_{\lambda, n-2 j-1}=\frac{i \epsilon^{2}}{\sqrt{1+\epsilon^{4}}} \gamma_{n-1, \lambda, n-2 j-1}
$$

and so

$$
\begin{aligned}
&\left|a_{\lambda, n-2 j}\right|+\epsilon\left|a_{\lambda, n-2 j-1}\right|=\frac{1}{\sqrt{1+\epsilon^{4}}}\left\{\left|\gamma_{n, \lambda, n-2 j}\right|+\epsilon^{3}\left|\gamma_{n-1, \lambda, n-2 j-1}\right|\right\} \\
&>\left|\gamma_{n, \lambda, n-2 j}\right|
\end{aligned}
$$

if

$$
\epsilon<2\left|\gamma_{n-1, \lambda, n-2 j-1}\right| /\left|\gamma_{n, \lambda, n-2 j}\right| .
$$

We take this opportunity to present a short proof of Theorem A. In fact, we shall prove the somewhat stronger

Theorem A'. Let $P_{n, \lambda, \lambda}(x)$ be as in Theorem A and denote by

$$
\begin{equation*}
x_{n, 1}<x_{n, 2}<\ldots<x_{n, n-2[(\lambda+1) / 2]+1} \tag{24}
\end{equation*}
$$

the roots of the equation

$$
1-\frac{P_{n, \lambda, \lambda}^{2}(x)}{\left(1-x^{2}\right)^{\lambda}}=0
$$

Then for a polynomial $p_{n}(x)=\sum_{k=0}^{n} a_{k} x^{k}$ of degree at most n with real coefficients, inequality (22) holds even if (21) is satisfied only at the points $x_{n, l}$ of (24).

Proof. First we show that if (21) is satisfied at the points $x_{n, l}$, $(1 \leqq l \leqq n-2[(\lambda+1) / 2]+1)$, then

$$
\begin{equation*}
\left|a_{n-2 j}\right| \leqq\left|\gamma_{n, \lambda, n-2 j}\right|, \quad\left(j=0,1, \ldots,\left[\frac{n}{2}\right]\right) \tag{25}
\end{equation*}
$$

It is clear that for $-1<\theta<1$ the polynomial

$$
h_{1}(x, \theta):=\left\{\begin{array}{l}
P_{n, \lambda, \lambda}(x)-(\theta / 2)\left\{p_{n}(x)+p_{n}(-x)\right\} \text { if } n \text { is even } \\
P_{n, \lambda, \lambda}(x)-(\theta / 2)\left\{p_{n}(x)-p_{n}(-x)\right\} \text { if } n \text { is odd }
\end{array}\right.
$$

changes sign between two consecutive points $x_{n, l}$ and so must have at least $n-2[(\lambda+1) / 2]$ zeros in $(-1,1)$. Besides, it has a zero of multiplicity $[(\lambda+1) / 2]$ at each of the points $-1,+1$ and so all its zeros are real. The coefficients of x^{n-1}, x^{n-3}, \ldots being all zero, none of the other coefficients can vanish; for then by Descartes' rule of signs, the zeros of $h_{1}(x, \theta)$ could not all be real. This is possible only if (25) holds.

The preceding argument is based on an idea of O. D. Kellogg [3].
Next we show that if (21) is satisfied at the points $x=x_{n-1,1}, x_{n-1,2}$, $\ldots, x_{n-1, n-2[(\lambda+1) / 2]}$, then

$$
\begin{equation*}
\left|a_{n-2 j+1}\right| \leqq\left|\gamma_{n-1, \lambda, n-2 j+1}\right|, \quad\left(j=1,2, \ldots,\left[\frac{n+1}{2}\right]\right) \tag{26}
\end{equation*}
$$

In fact, all we have to do is to apply the above reasoning to the function

$$
h_{2}(x, \theta):=\left\{\begin{array}{l}
P_{n-1, \lambda, \lambda}(x)-(\theta / 2)\left\{p_{n}(x)+p_{n}(-x)\right\} \text { if } n \text { is odd } \\
P_{n-1, \lambda, \lambda}(x)-(\theta / 2)\left\{p_{n}(x)-p_{n}(-x)\right\} \text { if } n \text { is even }
\end{array}\right.
$$

Now let us consider the polynomial

$$
f(x):=\frac{1}{2}\left\{(1+x) p_{n}(x)+(1-x) p_{n}(-x)\right\}=\sum_{k=0}^{m} b_{k} x^{k} \quad(\text { say })
$$

Note that m is equal to n or $n+1$ according as n is even or odd respec-
tively. In view of the fact that

$$
\frac{1}{2}(|1+x|+|1-x|) \equiv 1 \quad \text { for }-1<x<1
$$

we have

$$
|f(x)| \leqq\left(1-x^{2}\right)^{\lambda / 2} \quad \text { for } x=x_{n, 1}, x_{n, 2}, \ldots, x_{n, n-2[(\lambda+1) / 2]+1}
$$

and so from (25), (26) we obtain

$$
\begin{equation*}
\left|a_{n-2 j}+a_{n-2 j-1}\right|=\left|b_{-2 j}\right| \leqq\left|\gamma_{n, \lambda, n-2 j}\right|, \quad\left(j=0,1, \ldots,\left[\frac{n-1}{2}\right]\right) \tag{27}
\end{equation*}
$$

On the other hand, considering

$$
g(x):=\frac{1}{2}\left\{(1-x) p_{n}(x)+(1+x) p_{n}(-x)\right\}
$$

we can prove in the same way that

$$
\begin{equation*}
\left|a_{n-2 j}-a_{n-2 j-1}\right| \leqq\left|\gamma_{n, \lambda, n-2 j}\right|, \quad\left(j=0,1, \ldots,\left[\frac{n-1}{2}\right]\right) \tag{28}
\end{equation*}
$$

Inequalities (27) and (28) together give us the desired result.
We observe that, at least in the case of odd n, the conclusion of Theorem A^{\prime} can be considerably strengthened if $p_{n}(x)$ happens to be non-negative at the points (24). In fact, we have

Theorem $A^{\prime \prime}$. Let n be odd. If the polynomial $p_{n}(x)=\sum_{k=0}^{n} a_{k} x^{k}$ satisfies the hypotheses of Theorem A^{\prime} and is, in addition, non-negative at the points $x_{n, l}$ of (24), then

$$
\begin{equation*}
\left|a_{n-2 j}\right|+\left|a_{n-2 j-1}\right| \leqq \frac{1}{2}\left|\gamma_{n, \lambda, n-2 j}\right|, \quad\left(j=0,1, \ldots,\left[\frac{n-1}{2}\right]\right) \tag{29}
\end{equation*}
$$

In the case of even n we can prove
Theorem $\mathrm{A}^{\prime \prime \prime}$. Let n be even. If $p_{n}(x)=\sum_{k=0}^{n} a_{k} x^{k}$ is a polynomial of degree n with real coefficients such that

$$
0 \leqq p_{n}(x) \leqq\left(1-x^{2}\right)^{\lambda / 2}
$$

at the points $x=x_{n-1,1}, x_{-1,2}, \ldots, x_{n-1, n-2[(\lambda+1) / 2]}$, then
(30) $\left|a_{n-2 j+1}\right| \leqq \frac{1}{2}\left|\gamma_{n-1, \lambda, n-2 j+1}\right|, \quad\left(j=1,2, \ldots,\left[\frac{n+1}{2}\right]\right)$.

Proof of Theorems $\mathrm{A}^{\prime \prime}, \mathrm{A}^{\prime \prime \prime}$. First of all we observe that if $f(x)=\sum_{k=0}^{m}$ $b_{k} x^{k}$ is a polynomial of degree m (even) with real coefficients such that
(31) $0 \leqq f(x) \leqq\left(1-x^{2}\right)^{\lambda / 2}$
at the points $x=x_{m-1,1}, x_{m-1,2}, \ldots, x_{m-1, m-2[(\lambda+1) / 2]}$, then

$$
|f(x)-f(-x)| \leqq\left(1-x^{2}\right)^{\lambda / 2}
$$

at these points. Since $f(x)-f(-x)$ is a polynomial of degree $m-1$ it follows from (26) that

$$
\begin{equation*}
\left|b_{m-2 j+1}\right| \leqq \frac{1}{2}\left|\gamma_{m-1, \lambda, m-2 j+1}\right|, \quad\left(j=1,2, \ldots,\left[\frac{m+1}{2}\right]\right) \tag{32}
\end{equation*}
$$

which proves Theorem $\mathrm{A}^{\prime \prime \prime}$.
Now if $p_{n}(x)=\sum_{k=0}^{n} a_{k} x^{k}$ is a polynomial of degree n (odd) satisfying the hypotheses of Theorem $\mathrm{A}^{\prime \prime}$, then

$$
f(x):=\frac{1}{2}\left\{(1+x) p_{n}(x)+(1-x) p_{n}(-x)\right\}
$$

is a polynomial of degree $n+1$ (even) with real coefficients such that (31) is satisfied at the points $x=x_{n, 1}, x_{n, 2}, \ldots, x_{n, n+1-2[(\lambda+1) / 2]}$ and so according to (32) we must have

$$
\begin{equation*}
\left|a_{n-2 j}+a_{n-2 j-1}\right| \leqq \frac{1}{2}\left|\gamma_{n, \lambda, n-2 j}\right|, \quad\left(j=0,1, \ldots,\left[\frac{n-1}{2}\right]\right) \tag{33}
\end{equation*}
$$

On the other hand, considering

$$
g(x):=\frac{1}{2}\left\{(1-x) p_{n}(x)+(1+x) p_{n}(-x)\right\}
$$

we can prove in the same way that

$$
\begin{equation*}
\left|a_{n-2 j}-a_{n-2 j-1}\right| \leqq \frac{1}{2}\left|\gamma_{n, \lambda, n-2 j}\right|, \quad\left(j=0,1, \ldots,\left[\frac{n-1}{2}\right]\right) \tag{34}
\end{equation*}
$$

and so Theorem $\mathrm{A}^{\prime \prime}$ holds.

References

1. E. W. Cheney, Introduction to approximation theory (McGraw-Hill Book Company, 1966).
2. P. Erdös, Some remarks on polynomials, Bull. Amer. Math. Soc. 53 (1947), 1169-1176.
3. O. D. Kellogg, On bounded polynomials in several variables, Math. Z. 27 (1927), 55-64.
4. R. Pierre and Q. I. Rahman, On a problem of Turán about polynomials. II, Can. J. Math. 33 (1981), 701-733.

Université Laval, Québec, Québec;
Université de Montréal, Montréal, Québec

