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§ 1. In the preceding paper Professor Whittaker has given a general
method for the solution of differential equations by means of definite
integrals. It depends on finding a solution x (<Z> Q) of an auxiliary
pair of simultaneous partial differential equations to be derived from
an arbitrary contact transformation by changing the momentum
variables into differential operators. The first object of the present
paper is to arrive at a method for passing from the contact trans-
formation in its algebraic form to these partial differential equations,
in a manner which is unambiguous and which makes them compatible.
We show too how to obtain any number of such, pairs of equations
from any given contact transformation. Successive transformations
are also discussed.

§ 2. The derivation of the equations for \. Consider the contact
transformation derived from the function1 W (q, Q) which transforms
the variables q, p into the variables Q, P according to the equations

- •

£. .
Let us now regard P, p as operators given by2

p | ( 3 )

1 The theory is given explicitly for a single pair of variables q, p (or Q, P). It is
clear, however, that it may be generalised at once to include any number of pairs.

2 Professor Whittaker takes both signs positive ; but it is more convenient for the
present method to take one positive and one negative.
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and consider the simultaneous equations for the function \ (Q> i)>

p -f- —_ x = 0, (5)

that is
a,, aw

X = 0 (4')

X = 0. (5')

These obviously possess the solution

X = ew. (6)
It is not necessary to include an arbitrary multiplicative factor.

Now this x will satisfy any equations derived from (4'), (5') by
multiplying them by any functions of q or Q, or by differentiating
them with respect to q or Q, or by any combination of such processes.
In particular it will satisfy the equations

-£)*-!-••
if they can be derived by these processes. Here Q (q, — d/dq) or
Q (q, /:) denotes Q expressed as a function of q, p, and similarly for
?(q,-d/dq).

We may write these equations analogously to (4), (5), as

[Q(q,p)-Q]x = o (7)
[P(q,p)-P]X = 0. (8)

It is clear that the passage from (4'), (5') to (7'), (8'), or from (4), (5)
to (7), (8), by the stated processes is exactly equivalent to the
algebraic solution of (1), (2) for Q, P in terms of q, p, provided that
the algebraic operations employed are:

(i) Pre-multiplication by q, Q, p or P or any function of these,
(ii) Permutation of the variables according to the equations

qQ -Qq = o, qP - Pq = o,
QP-PQ= o, PP-Pp = o,
qp-pq=l, QP-PQ=-1. (9)

(iii) Equal quantities may be added or subtracted but not multi-
plied or divided.
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These are to replace the ordinary rules of algebra for the
present set of variables.

Since q, Q commute it does not matter in what order the terms
in W (q, Q) and its derivatives are written.

We can solve equation (2), which involves only p, q and Q, for
the variable Q according to the rules and obtain

Q(q,p)-Q = 0, (10)

giving equation (7) at once.
From (10) we obtain, for example,

Q2(<z, P) - 0 2 = o,
where we must obey the rules laid down in forming

Q 2 t e > P) = Q (q, p ) x Q (q, P),

Proceeding in this way we may write in general, if F (Q) is any
function of Q,

Consequently if we write (1) in such a way that in each term of
8W (q, Q)/8Q the part depending on Q comes last, we have merely to
substitute for Q its value already found in (10). This gives equation
(8), and we have now derived (7), (8), or (7'), (8'), in such a manner
that x is stiU a solution.

The processes employed may be called pre-multiplication and post-
substitution. It is evident from the operational form of the equations
that we may substitute only for a quantity which immediately pre-
cedes the x- I n practical cases we may always check the algebra by
verifying that \ remains a solution of any equation obtained. These
rules never permit of any ambiguity of interpretation. The only
difficulty is that sometimes they do not yield a solution in finite
terms of (2) for Q. This is the case, for example, if one requires the
solution of a general quadratic equation. There seems to be nothing
corresponding to the " completion of the square " of ordinary algebra,
but we may assume there exists a formal solution in series.

§ 3. The solution in definite integrals.
Let us now suppose that two functions </> (t) and </r (q) are

connected by the relation

0 (2) = Jx («.«)*(*)*• (11)
We are going to deal with the two cases where Q satisfies a given
equation (§ 3*1) and where xji satisfies a given equation (§32).
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| 3*1. We have

= | P» (g, - y x (gr, 0 r </, (0 (ft, using (7')

= \ w v"~l (q'~^)x iq> t] tm<f>{t) dti using (8'}

--' x. r 6~\ - J P - 1 (g> - jL) x (q, t ) !

I*"1 <f> (t)\ dt (12)

•on integrating by parts n times.
Suppose now that <f> (t) satisfies a given linear differential equation

O(t, 1 ) ^ ( 0 = 0, (13)

and suppose that the function G {Q, P) can be expanded in terms of
the form PnQm. Let each such term be treated as in (12). We
obtain then, omitting integrated terms of the type given in square
brackets in (12),

Now let the path of integration in (11) be so chosen that the
sum of these integrated terms vanishes. Then it follows that ijj (q)
satisfies the linear differential equation

leading to the result:—
/ / the function </> satisfies a given differential equation G (Q, P) 6 = 0,

then the definite integral (11), taken along a suitable path, will satisfy the
differential equation obtained by substituting for Q, P in G (Q, P) the
values of Q (q, p) and — P (q, p) derived according to the given rules.
The order of the factors in terms like P" Qm must be preserved.
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§ 3* 11. It is to be noted that in deriving (12) we took n to be a
positive integer. We shall assume, however, that the definition of
differentiation has been so extended that the whole process holds
formally also when n is fractional or negative.

§3-12. Example. We shall use the theorem to prove the known
result1 that Dn (q), the parabolic cylinder function of order n, is a
constant multiple of

f e^il+t)-^-1^ -tf^-^dt; (16)
Jc

C is a contour which encircles the point t = — 1 and begins and
ends at — oo .

Here we must evidently take

hence W = \qH, (17)

giving the appropriate contact transformation.
Equations (1) and (2) become

Solving for Q, P we find

For (16) we must take

(l + t)-t»^{l-ty^, (20)

which is easily shown to satisfy the differential equation

(f-l)d^-{n+\-U)<l> = 0, (21)

so that in this case

G(Q,P) = (Q*-l)P-(n + %-ZQ). (22)

Calling the expression (16) tfi(q), and using (19) and (22) in (15),
we find that it must satisfy the differential equation

since the path of integration is seen to have been suitably chosen.

1 Cf. AVhittaker and Watson, Modern Analysis (1927), 353 {Ex. 11)
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This simplifies immediately to

| ^ + (w + i-^), / , = 0, (23)

and is the equation for the parabolic cylinder function which is now
seen to be satisfied by the integral (16). The integral can then be
seen to give the solution which defines this function, when the
constant is suitably chosen.

§ 3'2. Had we solved (1), (2) for q, p, obtaining q — q(Q, P),
p = -p(Q,P), in place of (7'), (8') we should have the equations

-SX=O (V)

We then have from (11)

, (24)

using (7"). If now q (t, 8/dt) contains a term of the form (8/8t)ntm, the
corresponding part of the integral (24) will be

= ( - 1)« j X (q, t) * » ( | J V (*)*, (25)

integrating by parts n times and omitting the integrated part. A
similar result holds for pifj (<?)[•= —Stfi/8q], or any function of q, p
operating on ip (q), the q's and p's in each term being dealt with in the
right order.

Suppose now that >p (q) satisfies a given linear differential
equation

dq

Suppose also that the path of integration in (11) has been so chosen
that when the substitutions of the form (25) have been made, the sum
of the integrated parts vanishes. Then we have the result:—

A given differential equation F (g, p) \p = 0 is satisfied by a family
of integrals of the form (11), taken along suitable paths, provided the
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function <f> (t) satisfies the differential equation derived from, it by sub-
stituting for q and — 8/8q(=p) their values in terms of Q, P obtained
according to the given rules. The expressions for q, p must be expanded
separately in terms of the type PnQm, which must then be written as
tm(-d/dt)n.

The reversal of the order of the factors in going from Pn Qm to
tm (— d/dt)n is important, as also is the fact that it must precede the
combination of terms arising from successive g's or p's.

§321. We shall again, as in §311, suppose the whole process to
hold formally when n is fractional or negative.

§ 3"22. Example. We shall consider the problem converse to that of
§ 3-12, viz., to find (j> (t) such that

t. (27)

We must solve (18) for q, p, this gives

J — O F - . } <28)

We start now with the fact that Dn (q) satisfies (23) giving
F(q,p)=p* + (n + l-lq*) (29)

To obtain the equation for <f> (t) we must substitute 2 (— d/dt)* for
q, and (— djdt)^ t for p, using (28) in the general theorem. Hence for
o2 we substitute

/ d V'2 / d V1/2

and for p1 we substitute ( — - ) t ( — —) t .
\ dU V dP

To reduce the latter we employ Leibniz's Theorem for the
derivative of order 1/2, giving

and

-*h*(r
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Substituting (30), (31) in (29) we get for the equation for

so that <f> (t) is a constant multiple of

(1 + <)-*™-1 (1 — *)*rn"1J, (32)

and the path of integration may be taken as in § 3" 12.

§4.1. The generalised equations for x-

P = k(q,p)j> ( 3 3 )

where h, k are given functions, and if when we write P = d/8Q, p = — d/dq,
we obtain a pair of compatible differential equations with the solution
X (a> Q)' then the equations

Q = oj-1h(q,p)oj\

P = B r - 1 * ( g , 3 » ) c T j >

where vs (q, p) is any function of q, p, also yield compatible differential
equations and have the solution zs'1 x (<Z> Q)-

Here zs-1 is defined by

Z7~1w = l o r C 7 o 7 - 1 = l , ( 3 5 )

which are evidently equivalent.
From the commutation relations (9') we have

Operating on both sides of (34) with vs (q, p), we may therefore
write the corresponding differential equations in the form

Pur** = k~JX*.

Writing X* = C7~1X> these become

Qx =&x

Px =kx,
which are true by hypothesis, thus proving the Theorem.

In the same way we can show that if the relations

H(Q,P) = h(q,p) (36)

K(Q,P)=k(q,p)
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yield compatible equations with the solution x (<7> Q)> then the relations

U-*H (Q, P)U = v

where II (Q, P), vs (q, p) are any functions of Q, P and q, p respectively,
yield compatible equations with the solution u>'lU-1 x(Q> Q)-

§4-2. The equations (7'), (8') may be taken as corresponding to (33).
But it is now clear that throughout the work we could equally well
have taken instead the equations corresponding to (34) derived from
(7'), (8'), by means of any arbitrary VJ function. Or we may replace
(7"), (8") by equations derived from them by means of any arbitrary
II function.

It is clear that when II is a simple function of Q, P, for example
II = Q or II = P, the effect of transforming a term such as Pn Qm into
II-1 PnQmU is, to a greater or less extent, to alter the order of the
factors. Thus frequently alteration of the order of the factors will
ultimately lead to equations which are compatible and have a
common solution, though this will not now be ew but a function
usually bearing some resemblance to it. The point is illustrated in
the following simple example. Other cases may be observed in
Professor Whittaker's paper (cf. §§4, 6).

§4-21. Example. Consider the contact transformation

W (q, Q) = q log Q,

giving P = q/Q

p = — log Q,

so that corresponding to (7") (8") we have

*=QP 1 (37)
p = — logQ.)

remembering the premultiplication rule.

These give compatible equations with the solution

x = ew = Q". (38)

Let us choose a II function

n (Q, P) = Q,
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and form from (37) the relations

g i v i * = PQ 1 ( 3 r )

p = Q-i(- log Q)QJ

and the corresponding x* is

x* = Q-'x = Qi-1- (38')

If therefore this transformation be employed in an example as in
§3-21 we may employ (37') and (38') instead of (37) and (38). This is
interesting as an instance where both possible orders of the factors in
the solution for q, p lead to consistent equations for a x function.

•§5'1. An alternative form. The contact transformation need not
necessarily be derived from a function of q, Q but may be derived
from a function X (P, p) of P, p according to the equations

__ex\ (39)

q~ dp

In this case we may assert that the pair of differential equations

where Xp = 8X/8P, Xp = dX/dp, are compatible and have the
solution

X(Q> 1) = Jje-e<>-^-Y<-<..'=><M2, (40)

where suitable paths of integration must be selected. This follows at
once from Professor Whittaker's extension of the Laplace Transforma-
tion given in § 3 of his paper.

Equations (39) can then be taken in place of (1), (2) as the
starting point of the theor3r, and the appropriate x-function is given
by (40).

It will be immediately evident how to deal with the other
possible forms of the contact transformation in which it is derived
from a function Y (q, P) of q, P, or from a function Z (Q, p) of Q, p.
The function x wiH then be given as a single integral.
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§ 5.2. Example. Take X (P, p) = pP2 + £ log p.

Then x (Q. i) = J | e xP (—Qh — ih ~ h2 h~\ log t2) dtx dt2.

exp(— Qti — h212) dh =
.00

exp(— Qti — h212) dh = const.

Assuming for the moment that these limits of integration are allow-
able, this gives for x (Q> i)

X (Q> fi = const. J t2-
1 exp (j^ — qt2jdt2

= — const. I T"1 exp ( T — q — jdr
J \ 4 T '

if we may take suitable limits in the last integral. Since now this is-
just the ^-function obtained by Professor Whittaker in his § 8 for the
analogous contact transformation, we shall assume without further
investigation that the limits of integration have been correctly chosen.

We obtain for the contact transformation

Q = — = — P2 — — ,
* dp 2p

or Q-ip = fc,-i

P" = -\p-l-q.

Let us as a particular case take the <f> {t) of the general theorem
to be

* (0 = Ji (t)

which therefore satisfies the equation

d 1 ,

The equation for i/> (q) then comes to be

which shows that ^ is a constant.
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So the result of the general theorem is

I Jo (tqi) Jj (t) dt = constant

for the proper path of integration.1

In a somewhat similar way the orthogonal properties of the
Bessel functions may be found. But we leave the matter here,
intending only to show how in practice the method of this paragraph
may allow us to deal with more complicated ^-functions.

§6"1. Successive transformations. Suppose we have

<f> (0 = f p (t, Q) v (Q) dQ, (42)

where A, B denote specified paths of integration. Then

0 (?) = f dt f x (<?> t) P («. Q) V (Q) dQ
JA JB

= f o{q,Q)r,{Q)dQ, (43)
J-B

where
a(q,Q)=[ x(V, t)p(t,Q)dt. (44)

We proceed to find the differential equations satisfied by a (q, Q).
The contact transformations yielding the transformations (41),

(42), like those of §3, are derived respectively from the functions

W(q, ? ' ) = log x (<?,?')• V (q',Q)= logp(q',Q). (45)
Therefore

*-£
p^ cq

We first regard (44) as a transformation from p to a, as functions
of t, q respectively, by means of the transformation function x (<Z> t) by

1 This is a particular case of a general result. Cf. Whittaker and Watson, Modern
Analysis (1927), p. 385, Ex. 50. It should be noted that

d 1 Id
hence the substitution of ip -1 for TT T a n ^ not -r TT •zr at t t at

https://doi.org/10.1017/S001309150000777X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150000777X


SOLUTION OF DIFFERENTIAL EQUATIONS BY DEFINITE INTEGRALS 217

the method of §3-1. For by (47'), p (t, Q) satisfies the differential
equation

cp _ 8V(t, Q) = Q

ct 8t
(48)

Q being treated as constant. Then, by the Theorem of §3*1, a must
satisfy the equation

writing F, for dV/dt. Here q' (q, p), p' (q, p) are got from (46), (47)
by the usual rules of § 2. The partial derivatives denote merely that
Q is not affected.

We next regard (44) as a transformation from ^ to a as functions
of t and Q respectively by means of the transformation function
p (t, Q). For by (46), the function x satisfies the differential equation

8x _ dW(g,t)
8t 8t

(50)

q now being treated as constant. Then, by the Theorem of §3-l,
a must satisfy the equation

where q' (Q, P), p' (Q, P) are got by solving (46'), (47') in the usual
manner.

In (49), (51) we have a pair of differential equations for a (q, Q),
and we know they are compatible since they are satisfied by a given
by (44).

Now if the transformation from q, p to Q, P may be made by a
contact transformation specified by a function U (q, Q), we should
have

(52)

where a* = eu. To find this function U we should solve (46), (47) for
q', p' in terms of q, p and substitute in (47'), and solve (46'), (47')
for q', p' in terms of Q, P and substitute in (46), obtaining in turn

p'(q,p)+Vt{q'(q,p),Q}=0\
p'{Q,p) + Wl{q,q'{Q,P)} = 0.) '

p du

8Q

= -8U
dq-'

or

Pa* =

pa* = —

8a* •

8Q

8a*
dq~'
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If now we convert these into differential equations for a* by writing,,
according to (52), P = 8/dQ, p = — d/dq, we get precisely equations (49),.
(51) and so o* = a.

The whole elimination leading to equations (53) is of course
performed according to the rules of § 2. We have therefore the-
result:—

In the present non-commutative algebra the result of two successive
contact transformations specified by the functions W (q, q'), V(q', Q) is
itself a contact transformation specified by the function U (q, Q) given
by the integral

eu =

taken along a suitable path.
We have in this a method for evaluating definite integrals by

means of algebraic (non-commutative) elimination.

§6-2. Example. We shall take

W=-qq', V = -q'2Q. (55>
Then

p'=-q, P=-q'\
p =q', p ' = 2q' Q.

It is not necessary to use equations corresponding precisely to (53).
Any pair obtained by eliminating q' and p' suffices. We obtain
in fact

q = - 2Qp)

P=-p\ J
giving as differential equations for o (q, Q)

do _ 82o I
8Q = ~ dq1' j

These give readily

On substituting from (55) in (§4) this gives

It is clear that the appropriate limits of integration are ± oo , and
putting q = 0 we see that the constant C is «•-*. The result is
obtainable, of course, by elementary methods.
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§ 6-3. Example. We shall take

W=[q-l)logq', F = (£-l) log(l-<z ') . (58)
Then

p' = (q-l)/q', P = log(l-g')
p = -logg', p'=(Q-l)/(l-q'),

whence
e-v + ep = 1

(<?-l)e" = ( £ - l ) e - p .

We therefore take as differential equations for a

{edidq + e3/3« — 1} a = 0

{(q - 1 ) e-3/32 - (Q - 1) e-3««} a = 0,

which are equivalent to the difference equations

<r(q+i,Q)+o(q,Q+l)=a(q,Q)

(q-l)a(q- 1, Q) = (Q-l)a (q, Q - 1).

The latter are the known difference equations for the Beta function,
so we take

o(q,Q) = B(q,Q).

Substituting from (58) in (54) and adjusting the limits of integration,
we get the familiar result

B (q, Q) =
o

§7. It should be mentioned that a similar theorem to that of the
present paper is implicit in some work of P. Jordan on the Quantum
Mechanics.1 He does not however consider its relation to contact
transformations or its pure mathematical implications. On the
other hand we have not here considered any possible applications of
our methods to the Quantum Mechanics.

§ 8. This work was prompted by lectures delivered by Professor
E. T. Whittaker on the solution of differential equations by
definite integrals, and we wish to thank him for his interest and
encouragement.

1 Zs. f. Physik, 40 (1927), 809.
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