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Abstract

The purpose of this paper is to classify nonharmonic biharmonic curves and surfaces in de Sitter 3-space
and anti-de Sitter 3-space.
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1. Introduction

In [8], Eells and Sampson defined biharmonic maps between Riemannian manifolds
as an extension of harmonic maps, and Jiang [10] obtained their first and second
variational formulas. Since harmonic maps are always biharmonic, it is natural and
interesting to investigate nonharmonic biharmonic maps, which are called proper
biharmonic maps. A submanifold is called a biharmonic submanifold if the isometric
immersion that defines the submanifold is a biharmonic map. During this last decade,
many interesting results on proper biharmonic maps and submanifolds have been
obtained (see, for example, [3]). In particular, proper biharmonic curves and surfaces
in real 3-space forms have been classified (see [4, 5]).

In [12], the author introduced the notion of biharmonic maps between pseudo-
Riemannian manifolds. If the ambient space is the pseudo-Euclidean space, the
notion of biharmonic submanifolds introduced in [12] coincides with Chen’s notion of
biharmonic submanifolds, that is, submanifolds with harmonic mean curvature vector
field (see [6]). Proper biharmonic curves and surfaces in the pseudo-Euclidean 3-space
have been classified (see [6, 7]). In particular, it was proved that there exists no proper
biharmonic surface in pseudo-Euclidean 3-space.

In this paper, we classify proper biharmonic curves and surfaces in de Sitter 3-space
and anti-de Sitter 3-space (Theorems 4.4, 4.5 and 5.4). Contrary to the case of pseudo-
Euclidean 3-space, there exist proper biharmonic surfaces in those spaces. A further
important point is that an example of a proper biharmonic surface in de Sitter space
having no Riemannian counterpart is obtained.
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2. Preliminaries

Let En
s be pseudo-Euclidean n-space with metric given by

g = −

s∑
i=1

dx2
i +

n∑
j=s+1

dx2
j ,

where {x1, . . . , xn} is the natural coordinate system of En
s . Then En

s is a flat pseudo-
Riemannian manifold with index s. We put

S n
s(c) =

{
(x1, . . . , xn+1) ∈ En+1

s

∣∣∣∣∣ − s∑
i=1

x2
i +

n+1∑
j=s+1

x2
j =

1
c

}
,

Hn
s (c) =

{
(x1, . . . , xn+1) ∈ En+1

s+1

∣∣∣∣∣ − s+1∑
i=1

x2
i +

n+1∑
j=s+2

x2
j =

1
c
< 0

}
.

These spaces are complete pseudo-Riemannian manifolds with index s of constant
curvature c. The pseudo-Riemannian manifolds En

1, S n
1(c) and Hn

1(c) are called
Minkowski space, de Sitter space and anti-de Sitter space, respectively. These spaces
with index 1 are called Lorentz space forms.

Denote n-dimensional Lorentz space forms of constant curvature c by Mn
1(c). The

curvature tensor R̃ of Mn
1(c) is given by

R̃(X, Y)Z = c(〈Y, Z〉X − 〈X, Z〉Y), (2.1)

where 〈 , 〉 is the metric tensor of Mn
1(c).

Let M2 be a pseudo-Riemannian surface in M3
1(c). We denote by ∇ and ∇̃ the Levi-

Civita connections on M2 and M3
1(c), respectively. Let X and Y be vector fields tangent

to M2 and let ξ be a normal vector field. Then the formulas of Gauss and Weingarten
are given by

∇̃XY = ∇XY + h(X, Y),

∇̃Xξ = −AξX + DXξ,

respectively, where h, A and D are the second fundamental form, the shape operator
and the normal connection, respectively. The mean curvature vector field H is defined
by H = 1

2 trace h.
Denote by R the curvature tensor of M2. Then the equations of Gauss and Codazzi

are given respectively by

〈R(X, Y)Z, W〉 = c(〈X, W〉〈Y, Z〉 − 〈X, Z〉〈Y, W〉)

+ 〈h(X, W), h(Y, Z)〉 − 〈h(X, Z), h(Y, W)〉,
(2.2)

(∇̄Xh)(Y, Z) = (∇̄Yh)(X, Z), (2.3)
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where X, Y, Z, W are vectors tangent to M, and ∇̄h is defined by

(∇̄Xh)(Y, Z) = DXh(Y, Z) − h(∇XY, Z) − h(Y, ∇XZ).

The Laplace operator which acts on the sections of the normal bundle T⊥M2 is
defined by ∆D = −

∑2
i=1〈ei, ei〉(Dei Dei − D∇ei ei ), where {ei} is a local orthonormal frame

of M2. The gradient of a function f on M2 is defined by grad f = −
∑2

i=1〈ei, ei〉(ei f )ei.

3. Biharmonic maps

Let Mm and Nn be pseudo-Riemannian manifolds of dimensions m and n,
respectively, and φ : Mm→ Nn a smooth map. We denote by ∇ and ∇̃ the Levi-Civita
connections on Mm and Nn, respectively. Then the tension field τ1(φ) is a section of
the vector bundle φ∗T Nn defined by

τ1(φ) := trace(∇φdφ) =

m∑
i=1

〈ei, ei〉(∇
φ
ei

dφ(ei) − dφ(∇ei ei)).

Here ∇φ and {ei} denote the induced connection by φ on the bundle φ∗T Nn, which is
the pull-back of ∇̃, and a local orthonormal frame field of Mm, respectively.

A smooth map φ is called a harmonic map if its tension field vanishes. A map φ is
harmonic if and only if it is a critical point of the energy

E(φ) =

∫ m∑
i=1

〈dφ(ei), dφ(ei)〉 dv

under compactly supported infinitesimal variations, where dv is the volume form of
Mm.

We define the bitension field as follows:

τ2(φ) :=
m∑

i=1

〈ei, ei〉((∇
φ
ei
∇
φ
ei
− ∇

φ
∇ei ei

)τ1(φ) + RN(τ1(φ), dφ(ei)) dφ(ei)), (3.1)

where RN is the curvature tensor of Nn. We say that a smooth map φ is a biharmonic
map (or 2-harmonic map) if its bitension field vanishes (see [10, 12, 13]). If φ is a
biharmonic isometric immersion, then Mm is called a biharmonic submanifold in Nn.
Harmonic maps are clearly biharmonic. Nonharmonic biharmonic maps are called
proper biharmonic maps. A biharmonic map φ is characterised as a critical point of
the bienergy

E2(φ) =

∫
〈τ1(φ), τ1(φ)〉 dv

under compactly supported infinitesimal variations (see [10]). For recent information
on biharmonic maps, we refer to [3, 11].

In the case in which Nn is pseudo-Euclidean space and φ = (φ1, . . . , φn) is an
isometric immersion, then

τ2(φ) = ∆M∆M(φ1, . . . , φn),
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where ∆M = −
∑m

i=1〈ei, ei〉(eiei − (∇ei ei)). Thus, biharmonicity for an isometric
immersion into pseudo-Euclidean space is equivalent to biharmonicity in the sense
of Chen (see [6]).

As for proper biharmonic submanifolds in real or Lorentz 3-space forms, the
following classification results have been obtained.

T 3.1 [5]. Let M be a submanifold of real 3-space forms of nonpositive
constant sectional curvature. Then M is biharmonic if and only if it is harmonic.

T 3.2 [4]. Let γ : I→ S 3(1) be a proper biharmonic unit speed curve and let
x = i ◦ φ, where i : S 3(1)→ E4 is the canonical inclusion. Then x is congruent to one
of the following two families.

(1) x(t) = (cos
√

2t/
√

2, sin
√

2t/
√

2, d1, d2), where d2
1 + d2

2 = 1.
(2)

x(t) =

(cos
√

1 + kt
√

2
,

sin
√

1 + kt
√

2
,

cos
√

1 − kt
√

2
,

sin
√

1 − kt
√

2

)
,

where 0 < k < 1.

T 3.3 [4]. Let M2 be a proper biharmonic surface in S 3(1). Then M2 is locally
a piece of S 2(2) ⊂ S 3(1).

P 3.4 [6, 7]. Let x be a unit speed curve in E3
1. Then x is proper biharmonic

if and only if x is congruent to one of the following:

(1) a spacelike curve such that 〈x′′, x′′〉 = 0, which is given by

x(s) = (as3 + bs2, as3 + bs2, s)

for some constants a and b satisfying a2 + b2 , 0;
(2) a spacelike helix with a spacelike principal normal vector field satisfying κ2 =

τ2 = a2;

x(s) =

(a2

6
s3,

a
2

s2, −
a2

6
s3 + s

)
for some nonzero constant a;

(3) a timelike helix satisfying κ2 = τ2 = a2;

x(s) =

(a2

6
s3 + s,

a2

6
s3,

a
2

s2
)

for some nonzero constant a.

T 3.5 [6]. Let x : M2→ E3
1 be a biharmonic isometric immersion of a pseudo-

Riemannian surface M2 into E3
1. Then x is harmonic.

The purpose of this paper is to classify proper biharmonic submanifolds in de Sitter
3-space and anti-de Sitter 3-space.
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4. Biharmonic curves in nonflat Lorentz 3-space forms

Let (M3
1 , g, ∇̃) be a Lorentz 3-manifold and let γ : I→ M3

1 be a unit speed curve,
that is, a curve satisfying g(γ′, γ′) = ±1. A unit speed curve γ is called spacelike
(respectively, timelike) if g(γ′, γ′) = 1 (respectively, g(γ′, γ′) = −1). A unit speed curve
γ is said to be a Frenet curve if g(∇̃γ′γ′, ∇̃γ′γ′) , 0. A unit speed curve is said to be a
geodesic if ∇̃γ′γ′ = 0.

Let P = (p1, p2, p3) be an orthonormal frame field along a Frenet curve γ such that
p1 = γ′ and P satisfies the following Frenet–Serret equations (see [9]):

∇̃γ′P = P

 0 −ε1κ 0
ε2κ 0 ε2τ
0 −ε3τ 0

 ,
where κ and τ are called the curvature and torsion of γ, respectively, and εi = g(pi, pi).
Note that ε1ε2ε3 = −1. A unit speed curve is a geodesic if and only if κ = 0 at any point.

The vectors p2 and p3 are called the principal normal vector field and the binormal
vector field of γ, respectively. A Frenet curve with constant curvature and torsion is
called a helix. In particular, a helix with zero torsion is called a circle. The mean
curvature vector field Hγ of γ is given by Hγ = −ε3κp2. We remark that Hγ = τ1(γ).

Let γ : I→ M3
1(c) be a Frenet curve. Then, using (2.1) and (3.1), we see that γ is

biharmonic if and only if the mean curvature vector Hγ satisfies ∆̃Hγ = cHγ, where ∆̃ is
the Laplace operator acting on the sections of γ∗T M3

1(c). Applying [9, Theorem 3.2],
we have the following proposition.

P 4.1. Let γ : I→ M3
1(c) be a Frenet curve. Then γ is proper biharmonic if

and only if γ is a helix with

c = −ε3(ε1κ
2 + ε3τ

2), κ , 0.

Let En+1
t be the corresponding pseudo-Euclidean space where Mn

1(c) is lying.
By a similar computation to [5, Proof of Proposition 4.1], we obtain the following
proposition.

P 4.2. Let φ : Mm→ Mn
1(c) be an isometric immersion and let x = i ◦ φ,

where i : Mn
1(c)→ En+1

t is the canonical inclusion. Then

τ2(φ) = τ2(x) + 2cmτ1(x) + (2m2 − c〈τ1(x), τ1(x)〉)x.

By Proposition 4.2, we have the following corollary (see [5, Corollary 4.2]).

C 4.3. Let γ : I→ M3
1(c) be a unit speed curve. Then γ is biharmonic if and

only if x(s) = i ◦ γ(s) satisfies

x(iv) + 2c〈x′, x′〉x′′ + (1 − c〈τ1(γ), τ1(γ)〉)x = 0. (4.1)

By applying Corollary 4.3, we classify proper biharmonic curves in nonflat Lorentz
space forms as follows.
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T 4.4. Let γ : I→ S 3
1(1) be a unit speed curve in de Sitter 3-space. Then γ

is proper biharmonic if and only if x = i ◦ γ is congruent to one of the following five
families.

(1) A spacelike curve with 〈τ1(γ), τ1(γ)〉 = 0;

x(s) = (c1 + c2s) cos s + (c3 + c4s) sin s,

where c1, c2, c3 and c4 are constant vectors orthogonal to each other
satisfying 〈c1, c1〉 = 〈c3, c3〉 = 1 and 〈c2, c2〉 = 〈c4, c4〉 = 0; however, 〈c2, c2〉

2 +

〈c4, c4〉
2 , 0.

(2) A spacelike circle with a spacelike principal normal vector field satisfying κ = 1;

x(s) = c1 + c2 cos
√

2s + c3 sin
√

2s,

where c1, c2 and c3 are constant vectors orthogonal to each other satisfying
〈c1, c1〉 = 〈c2, c2〉 = 〈c3, c3〉 =

1
2 .

(3) A spacelike helix with a spacelike principal normal vector field satisfying
κ2 − τ2 = 1;

x(s) = c1 cosh(
√
κ − 1s) + c2 sinh(

√
k − 1s) + c3 cos(

√
κ + 1s) + c4 sin(

√
κ + 1s),

where c1, c2, c3 and c4 are constant vectors orthogonal to each other satisfying
〈c1, c1〉 = −〈c2, c2〉 = 〈c3, c3〉 = 〈c4, c4〉 =

1
2 .

(4) A timelike circle satisfying κ = 1;

x(s) = c1 + c2 cosh
√

2s + c3 sinh
√

2s,

where c1, c2 and c3 are constant vectors orthogonal to each other satisfying
〈c1, c1〉 = 〈c2, c2〉 = −〈c3, c3〉 =

1
2 .

(5) A timelike helix satisfying κ2 − τ2 = 1;

x(s) = c1 cos
√
κ − 1s + c2 sin

√
κ − 1s + c3 cosh

√
κ + 1s + c4 sinh

√
κ + 1s,

where c1, c2, c3 and c4 are constant vectors orthogonal to each other satisfying
〈c1, c1〉 = 〈c2, c2〉 = 〈c3, c3〉 = −〈c4, c4〉 =

1
2 .

P. We solve (4.1) under the condition that 〈x, x〉 = 1, 〈x′, x′〉 = ±1 and τ1(γ) , 0,
that is, 〈x′, x′〉x′′ + x , 0 for all s. We divide (4.1) into three types.

Case (i). x is spacelike and 〈τ1(γ), τ1(γ)〉 = 0: (4.1) is rewritten as

x(iv) + 2x′′ + x = 0,

whose solutions are congruent to (1).

Case (ii). x is a spacelike helix with a spacelike principal normal vector field satisfying
κ2 − τ2 = 1: (4.1) is rewritten as

x(iv) + 2x′′ + (1 − κ2)x = 0.

If κ = 1 (respectively, κ > 1), then x is congruent to (2) (respectively, (3)).

https://doi.org/10.1017/S0004972711002978 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972711002978


428 T. Sasahara [7]

Case (iii). x is a timelike helix satisfying κ2 − τ2 = 1: (4.1) is rewritten as

x(iv) − 2x′′ + (1 − κ2)x = 0.

If κ = 1 (respectively, κ > 1), then x is congruent to (4) (respectively, (5)). �

T 4.5. Let γ : I→ H3
1(−1) be a unit speed curve in anti-de Sitter 3-space. Then

γ is proper biharmonic if and only if x = i ◦ γ is congruent to one of the following five
families.

(1) A spacelike curve with 〈τ1(γ), τ1(γ)〉 = 0;

x(s) = (c1 + c2s)es + (c3 + c4s)e−s,

where c1, c2, c3 and c4 are constant vectors satisfying 〈c1, c3〉 = −
1
2 and 〈ci, c j〉 =

0 unless (i, j) = (1, 3) or (3, 1); however, 〈c2, c2〉
2 + 〈c4, c4〉

2 , 0.
(2) A spacelike helix with a spacelike principal normal vector field satisfying

κ2 − τ2 = −1 and κ , 0;

x(s) = eαs(c1 cos βs + c2 sin βs) + e−αs(c3 cos βs + c4 sin βs),

where α and β are constants satisfying α2 − β2 = 1, 2αβ = κ, and moreover
c1, c2, c3 and c4 are constant vectors satisfying 〈c1, c3〉 = 〈c2, c4〉 = −

1
2 and

〈ci, c j〉 = 0 unless (i, j) = (1, 3), (3, 1), (2, 4) or (4, 2).
(3) A spacelike circle with a timelike principal normal vector field satisfying κ = 1;

γ(s) = c1 + c2 cosh
√

2s + c3 sinh
√

2s,

where c1, c2 and c3 are constant vectors orthogonal to each other satisfying
〈c1, c1〉 = 〈c2, c2〉 = −〈c3, c3〉 = −

1
2 .

(4) A spacelike helix with a timelike principal normal vector field satisfying κ2 +

τ2 = 1 and κ , 0;

x(s) = c1 cos
√

1 − κs + c2 sin
√

1 − κs + c3 cosh
√

1 + κs + c4 sinh
√

1 + κs,

where c1, c2, c3 and c4 are constant vectors orthogonal to each other satisfying
〈c1, c1〉 = 〈c2, c2〉 = 〈c3, c3〉 = −〈c4, c4〉 = −

1
2 .

(5) A timelike helix satisfying κ2 − τ2 = −1 and κ , 0;

x(s) = eαs(c1 cos βs + c2 sin βs) + e−αs(c3 cos βs + c4 sin βs),

where α and β are constants satisfying α2 − β2 = −1, 2αβ = κ, and moreover
c1, c2, c3 and c4 are constant vectors satisfying 〈c1, c3〉 = 〈c2, c4〉 = −

1
2 and

〈ci, c j〉 = 0 unless (i, j) = (1, 3), (3, 1), (2, 4) or (4, 2).

P. We solve (4.1) under the condition that 〈x, x〉 = 1, 〈x′, x′〉 = ±1 and τ1(γ) , 0,
that is, 〈x′, x′〉x′′ − x , 0 for all s. We divide (4.1) into four types.
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Case (i). x is spacelike and 〈τ1(γ), τ1(γ)〉 = 0: (4.1) is rewritten as

x(iv) − 2x′′ + x = 0,

whose solutions are congruent to (1).

Case (ii). x is a spacelike helix with a spacelike principal normal vector field satisfying
κ2 − τ2 = −1 and κ , 0: (4.1) is rewritten as

x(iv) − 2x′′ + (1 + κ2)x = 0,

whose solutions are congruent to (2).

Case (iii). x is a spacelike helix with a timelike principal normal vector field satisfying
κ2 + τ2 = 1 and κ , 0: (4.1) is rewritten as

x(iv) − 2x′′ + (1 − κ2)x = 0.

If κ = 1 (respectively, 0 < κ < 1), then x is congruent to (3) (respectively, (4)).

Case (iv). x is a timelike helix satisfying κ2 − τ2 = −1: (4.1) is rewritten as

x(iv) + 2x′′ + (1 + κ2)x = 0,

whose solutions are congruent to (5). �

5. Biharmonic surfaces in nonflat Lorentz 3-space forms

By a similar computation to [4, Proof of Theorem 4.1] (see [6, Lemma 2.1]), we
obtain the following lemma.

L 5.1. Let M2 be a pseudo-Riemannian surface in a Lorentz 3-space form of
constant sectional curvature c. Then M2 is biharmonic if and only if∆DH = (2c − 〈N, N〉 trace A2

N)H,

2 trace AD(·)H(·) + grad (〈H, H〉) = 0,

where N is a unit normal vector field.

We need the following two lemmas to classify proper biharmonic pseudo-
Riemannian surfaces in nonflat Lorentz 3-space forms.

L 5.2. Let M2 be a pseudo-Riemannian surface in a Lorentz 3-space form of
constant sectional curvature c. Then M2 is proper biharmonic if and only if it has
nonzero constant mean curvature and AN satisfies

2c − 〈N, N〉 trace A2
N = 0. (5.1)

P. Let M2 be a proper biharmonic pseudo-Riemannian surface in M3
1(c) and let

{e1, e2, e3} be a local orthonormal frame field such that {e1, e2} are tangent to M2

and e3 is normal to M2. We put εi = 〈ei, ei〉 and H = f e3. Note that ε1ε2ε3 = −1.
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By Lemma 5.1,

∆M f = (2c − ε3 trace A2) f , (5.2)

A(grad f ) = −ε3 f (grad f ),

where ∆M f = −
∑2

i=1〈ei, ei〉{ei(ei f ) − (∇ei ei) f } and A = Ae3 .
Let U = {p ∈ M2 | (grad f 2)(p) , 0}. Assume that U is nonempty. Since −ε3 f is an

eigenvector of A by (5.2) and traceA = 2ε3 f , the shape operator A is diagonalisable
and we can choose a local orthonormal frame field {e1, e2} such that e1 is parallel to
grad f . Then

e2 f = 0, (5.3)

h(e1, e1) = −ε1 f e3, h(e1, e2) = 0, h(e2, e2) = 3ε2 f e3, (5.4)

trace A2 = 10 f 2. (5.5)

We put ∇ei = ω
j
i e j. Then ω2

1 = ω1
2. From (5.3) and equation (2.3) of Codazzi,

ω2
1(e1) = 0, 3e1 f = −4 fω2

1(e2). (5.6)

By the first equation of (5.6), we can choose a local coordinate system {u, v} such that
e1 = ∂/∂u and e2 is parallel to ∂/∂v. Then, from (5.3), we have f = f (u).

We denote by f ′ and f ′′ the first and the second derivatives of f with respect to x.
Using (5.6),

4 f ∆M f = 3ε1( f ′)2 − 4ε1 f f ′′. (5.7)

By combining (5.2), (5.5) and (5.7), we obtain

4 f f ′′ − 3( f ′)2 + 40ε2 f 4 + 8cε1 f 2 = 0. (5.8)

If we put θ = ( f ′)2, then (5.8) can be rewritten as

dθ
d f
−

3
2 f
θ = −20ε2 f 3 − 4cε1 f ,

which implies that
θ = −8ε2 f 4 − 8ε1c f 2 + C f

3
2 , (5.9)

where C is a constant.
On the other hand, by (5.4), (5.6) and equation (2.2) of Gauss with X = W = e1 and

Y = Z = e2,

4 f f ′′ − 7( f ′)2 − 16ε2 f 4 −
16
3

cε1 f 2 = 0. (5.10)

Combining (5.8) and (5.10) implies that

θ = −14ε2 f 4 −
10
3

cε1 f 2. (5.11)

By (5.9) and (5.11), f is constant on U, which is a contradiction. Therefore, U is
empty, that is, M2 has constant mean curvature. Hence, by (5.2), we get (5.1).

The converse is clear from Lemma 5.1. �
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L 5.3 [2]. Let M2 be a surface with index 1 in M3
1(c) and let (t − λ)2, λ being

a nonzero constant, be the minimal polynomial of its shape operator AN . Then, in a
neighbourhood of any point, M2 is a B-scroll over a null curve given by

x(s, u) = γ(s) + uY(s), (5.12)

where γ(s) is a null curve in M3
1(c) ⊂ E4

t with an associated Cartan frame {X, Y, Z}.
That is, {X, Y, Z} is a pseudo-orthonormal frame field along γ(s):

〈X, X〉 = 〈Y, Y〉 = 0, 〈X, Y〉 = −1,

〈X, Z〉 = 〈Y, Z〉 = 0, 〈Z, Z〉 = 1,

such that

γ′(s) = X(s),

Z′(s) = −λX(s) − k(s)Y(s),

where k(s) , 0 for all s. Moreover, the shape operator AN of (5.12) is represented as

AN =

(
λ 0

k(s) λ

)
(5.13)

with respect to the usual frame {∂/∂s, ∂/∂u}.

Contrary to Theorem 3.5, there exist proper biharmonic pseudo-Riemannian
surfaces in nonflat Lorentz 3-space forms as follows.

T 5.4. Let M2 be a pseudo-Riemannian surface in a Lorentz 3-space form of
constant sectional curvature c, where c ∈ {−1, 1}. Then M2 is proper biharmonic if
and only if it is congruent to one of the following:

(1) S 2
1(2) ⊂ S 3

1(1);
(2) H2(−2) ⊂ H3

1(−1);
(3) a B-scroll over a null curve of constant Gauss curvature 2 in S 3

1(1).

P. Let M2 be a proper biharmonic pseudo-Riemannian surface in M3
1(c), where

c ∈ {−1, 1}. By Lemma 5.2, the eigenvalues of the shape operator AN are constant. For
simplicity, we put A = AN .

Case (i). A is diagonalisable: if A has exactly two mutually distinct eigenvalues λ
and µ, by [1, Theorem 3.5] we have that c + 〈N, N〉λµ = 0. Combining this and (5.1)
yields that λ + µ = 0, which is a contradiction with the assumption that M2 is proper
biharmonic. Therefore, A = λI, where I is the identity operator. Since A satisfies (5.1),
we obtain that λ2 = 1. By virtue of [1, Theorem 5.1], M2 is congruent to (1) or (2).

Case (ii). A is not diagonalisable: in this case, the index of M2 is equal to 1 and hence
〈N, N〉 = 1. If A has a double real eigenvalue λ, then, by Lemma 5.3, M2 is congruent
to a B-scroll over a null curve (5.12) with (5.13). It follows from (5.1) and (5.13)
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that λ2 = c = 1. Therefore, M2 is congruent to (3). If A has complex eigenvalues
α ± βi, then A is represented as

A =

(
α −β
β α

)
(5.14)

with respect to an orthonormal frame. By equation (2.3) of Codazzi and (5.14), we find
that M2 is a flat surface. Hence, equation (2.2) of Gauss and (5.14) show that c = −1
and α2 + β2 = 1. In this case, the shape operator A does not satisfy (5.1) because M2

is nonharmonic.
The converse is verified by using Lemma 5.1. �

References

[1] N. Abe, N. Koike and S. Yamaguchi, ‘Congruence theorems for proper semi-Riemannian
hypersurfaces in a real space form’, Yokohama Math. J. 35 (1987), 123–136.

[2] L. J. Alias, A. Ferrandez and P. Lucas, ‘2-type surfaces in S 3
1 and H3

1 ’, Tokyo J. Math. 17 (1994),
447–454.
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