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Abstract

The purpose of this paper is to classify nonharmonic biharmonic curves and surfaces in de Sitter 3-space
and anti-de Sitter 3-space.
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1. Introduction

In [8], Eells and Sampson defined biharmonic maps between Riemannian manifolds
as an extension of harmonic maps, and Jiang [10] obtained their first and second
variational formulas. Since harmonic maps are always biharmonic, it is natural and
interesting to investigate nonharmonic biharmonic maps, which are called proper
biharmonic maps. A submanifold is called a biharmonic submanifold if the isometric
immersion that defines the submanifold is a biharmonic map. During this last decade,
many interesting results on proper biharmonic maps and submanifolds have been
obtained (see, for example, [3]). In particular, proper biharmonic curves and surfaces
in real 3-space forms have been classified (see [4, 5]).

In [12], the author introduced the notion of biharmonic maps between pseudo-
Riemannian manifolds. If the ambient space is the pseudo-Euclidean space, the
notion of biharmonic submanifolds introduced in [12] coincides with Chen’s notion of
biharmonic submanifolds, that is, submanifolds with harmonic mean curvature vector
field (see [6]). Proper biharmonic curves and surfaces in the pseudo-Euclidean 3-space
have been classified (see [0, 7]). In particular, it was proved that there exists no proper
biharmonic surface in pseudo-Euclidean 3-space.

In this paper, we classify proper biharmonic curves and surfaces in de Sitter 3-space
and anti-de Sitter 3-space (Theorems 4.4, 4.5 and 5.4). Contrary to the case of pseudo-
Euclidean 3-space, there exist proper biharmonic surfaces in those spaces. A further
important point is that an example of a proper biharmonic surface in de Sitter space
having no Riemannian counterpart is obtained.
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2. Preliminaries
Let E be pseudo-Euclidean n-space with metric given by
N n
g= —Z d)ci2 + Z dx?,
i=1 Jj=s+1

where {xi, ..., x,} is the natural coordinate system of E?. Then E” is a flat pseudo-
Riemannian manifold with index s. We put

s n+1 1
+1 2 2
510 = {0, w2 Y =),
i=1 j=s+1
s+1 n+l 1
+1 2 2
H;l(c): {(x19"'7xn+1)€El;+1 _Z X; + Z Xj=z<0}.
=1 jest2

These spaces are complete pseudo-Riemannian manifolds with index s of constant
curvature ¢. The pseudo-Riemannian manifolds EY, S7(c) and Hj(c) are called
Minkowski space, de Sitter space and anti-de Sitter space, respectively. These spaces
with index 1 are called Lorentz space forms.

Denote n-dimensional Lorentz space forms of constant curvature ¢ by M/ (c). The
curvature tensor R of M{(c) is given by

R(X,Y)Z = c((Y, Z)X — (X, Z)Y), (2.1)

where (, ) is the metric tensor of M7 (c).

Let M? be a pseudo-Riemannian surface in M13(c). We denote by V and V the Levi-
Civita connections on M? and M f (c), respectively. Let X and Y be vector fields tangent
to M? and let £ be a normal vector field. Then the formulas of Gauss and Weingarten
are given by

VyY = VyY + W(X, Y),
Vxé = —A¢X + Dxé,

respectively, where h, A and D are the second fundamental form, the shape operator
and the normal connection, respectively. The mean curvature vector field H is defined
by H = % trace h.

Denote by R the curvature tensor of M?. Then the equations of Gauss and Codazzi
are given respectively by

RX, Y)Z, W) = c((X, WXY, Z) = (X, ZXY, W)) 55
+ (WX, W), h(Y, Z)) - (h(X, Z), h(Y, W)), 22
(Vxh)(Y, Z) = (Vyh)(X, Z), (23)
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where X, Y, Z, W are vectors tangent to M, and Vh is defined by
(Vxm)(Y, Z) = Dxh(Y, Z) — l(VxY, Z) — h(Y, VxZ).

The Laplace operator which acts on the sections of the normal bundle 7+M? is
defined by AP = —Zle (e, ei)(D,,De, — DVe,ei)’ where {e;} is a local orthonormal frame
of M?. The gradient of a function f on M? is defined by grad f = —Ziz:l(e,-, e(eif)e;.

3. Biharmonic maps

Let M™ and N" be pseudo-Riemannian manifolds of dimensions m and n,
respectively, and ¢ : M™ — N" a smooth map. We denote by V and V the Levi-Civita
connections on M™ and N", respectively. Then the fension field T1(¢) is a section of
the vector bundle ¢*TN" defined by

71() = trace(V*dg) = » (es, ei)(VE d(er) — dp(Ve,e).
i=1

Here V¢ and {e;} denote the induced connection by ¢ on the bundle ¢*TN", which is
the pull-back of V, and a local orthonormal frame field of M"™, respectively.

A smooth map ¢ is called a harmonic map if its tension field vanishes. A map ¢ is
harmonic if and only if it is a critical point of the energy

£@) = [ ) (doten. doen) dv
=1

under compactly supported infinitesimal variations, where dv is the volume form of
M™.
We define the bitension field as follows:

m
72(9) = D (e e)(VEVE = V5 )Ti(@) + RY(i(@), ddlen) dole)),  (B.D)
i=1
where RV is the curvature tensor of N”. We say that a smooth map ¢ is a biharmonic
map (or 2-harmonic map) if its bitension field vanishes (see [10, 12, 13]). If ¢ is a
biharmonic isometric immersion, then M™ is called a biharmonic submanifold in N".
Harmonic maps are clearly biharmonic. Nonharmonic biharmonic maps are called
proper biharmonic maps. A biharmonic map ¢ is characterised as a critical point of
the bienergy

Ex(¢) = f<T‘(¢)’ 71(¢)) dv

under compactly supported infinitesimal variations (see [10]). For recent information
on biharmonic maps, we refer to [3, 11].

In the case in which N" is pseudo-Euclidean space and ¢ = (¢1,...,¢,) is an
isometric immersion, then

T2(¢) = AMAM(¢1’ e ¢n)7
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where Ay =-3" (e, e;)(eie; — (Vee;)). Thus, biharmonicity for an isometric
immersion into pseudo-Euclidean space is equivalent to biharmonicity in the sense
of Chen (see [6]).

As for proper biharmonic submanifolds in real or Lorentz 3-space forms, the
following classification results have been obtained.

Tueorem 3.1 [5]. Let M be a submanifold of real 3-space forms of nonpositive
constant sectional curvature. Then M is biharmonic if and only if it is harmonic.

Tureorem 3.2 [4]. Let y: I — S3(1) be a proper biharmonic unit speed curve and let
x=1io¢, wherei:S3(1) — E* is the canonical inclusion. Then x is congruent to one
of the following two families.

(1) x(r) = (cos V2t/V2, sin V2t/V2, dy, dy), where d* + d2 = 1.

(2)

o (COS V1 +kt sinV1+kt cos V1 -kt sin l—kt)
x = 9 b b b
V2 V2 V2 V2

where 0 <k < 1.

TueoreM 3.3 [4]. Let M? be a proper biharmonic surface in S3(1). Then M? is locally
a piece of S*(2) € S3(1).

ProposiTION 3.4 [6, 7]. Let x be a unit speed curve in E? Then x is proper biharmonic
if and only if x is congruent to one of the following:

(1) a spacelike curve such that (x", x"y = 0, which is given by
x(s) = (as® + bs?, as® + bs?, s)

for some constants a and b satisfying a* + b* # 0;

(2) a spacelike helix with a spacelike principal normal vector field satisfying k* =

2= g2

2 2
a a a
x(s) = (—s3, = —— + s)
6
for some nonzero constant a,
(3) a timelike helix satisfying k¥* = t*> = a*;
2 2
a a a
3 3 2
x(s) = (—s +5, —5, =5 )
6 6 2

fOl" some nonzero constant a.

TueorREM 3.5 [6]. Let x : M* — E3 be a biharmonic isometric immersion of a pseudo-
Riemannian surface M? into E? Then x is harmonic.

The purpose of this paper is to classify proper biharmonic submanifolds in de Sitter
3-space and anti-de Sitter 3-space.
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4. Biharmonic curves in nonflat Lorentz 3-space forms

Let (M3, g, V) be a Lorentz 3-manifold and let y : [ — Mf be a unit speed curve,
that is, a curve satisfying g(y’,y’) = 1. A unit speed curve v is called spacelike
(respectively, timelike) if g(y’,y’) = 1 (respectively, g(v’,y") = —1). A unit speed curve
v is said to be a Frenet curve if g(?y,y’, ﬁy/y’) # 0. A unit speed curve is said to be a
geodesic if V,,y’ = 0.

Let P = (p1, p2, p3) be an orthonormal frame field along a Frenet curve y such that
p:1 =¥’ and P satisfies the following Frenet—Serret equations (see [9]):

0 -k O
V,P=P|e&k 0 eTt|,
0 -7t O

where « and 7 are called the curvature and torsion of y, respectively, and €; = g(p;, p:)-
Note that €, ;63 = —1. A unit speed curve is a geodesic if and only if k = 0 at any point.

The vectors p, and ps are called the principal normal vector field and the binormal
vector field of vy, respectively. A Frenet curve with constant curvature and torsion is
called a helix. In particular, a helix with zero torsion is called a circle. The mean
curvature vector field H, of y is given by H, = —e3xp,. We remark that H, = 71(y).

Lety:I— Mf(c) be a Frenet curve. Then, using (2.1) and (3.1), we see that y is
biharmonic if and only if the mean curvature vector H,, satisfies AHY = cH,, where Ais
the Laplace operator acting on the sections of y*T M ]3 (c). Applying [9, Theorem 3.2],
we have the following proposition.

Prorosition 4.1. Lety: [ — M?(c) be a Frenet curve. Then vy is proper biharmonic if
and only if y is a helix with

c=—-6ak +677), «k+0.

Let E™! be the corresponding pseudo-Euclidean space where Mi(c) is lying.
By a similar computation to [5, Proof of Proposition 4.1], we obtain the following
proposition.

Prorosition 4.2. Let ¢ : M™ — M'{(c) be an isometric immersion and let x =1io ¢,
where i: Mj(c) — E;’” is the canonical inclusion. Then

72() = T2(x) + 2emi (x) + (2m* = {T1(x), T1(O))x.

By Proposition 4.2, we have the following corollary (see [5, Corollary 4.2]).

CoroLLARY 4.3. Lety: I — Ml3(c) be a unit speed curve. Then 'y is biharmonic if and
only if x(s) =1i o y(s) satisfies

X 426, X)x” + (1= e(r1(y), T1(Y))x = 0. “.1)

By applying Corollary 4.3, we classify proper biharmonic curves in nonflat Lorentz
space forms as follows.
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TueorREM 4.4. Let y: 1 — S?(l) be a unit speed curve in de Sitter 3-space. Then vy
is proper biharmonic if and only if x =1io0 vy is congruent to one of the following five
families.

(1) A spacelike curve with {ti(y), T1(y)) = 0;
x(s) = (c1 + ¢25) cos s + (c3 + ¢45) sin s,

where ci,cy,c3 and cy4 are constant vectors orthogonal to each other
satisfying {c1, c1) ={c3, c3) = 1 and {2, c2) = (¢4, c4) = 0; however, (¢, c2)* +
(cy, C4>2 #0.

(2) A spacelike circle with a spacelike principal normal vector field satisfying x = 1;

x(s) = ¢ + ¢ cos V2s + c3 sin V2s,

where c1, ¢y and c3 are constant vectors orthogonal to each other satisfying
1
(c1, c1) ={ca, c2) ={c3, ¢3) = 3.

(3) A spacelike helix with a spacelike principal normal vector field satisfying

K2_T2 — 1,.

x(s) = c¢; cosh(Vk — 1s) + ¢ sinh(Vk — 15) + ¢3 cos(Vk + 1) + ¢4 sin(Vk + 1),

where c1, ca, c3 and ¢4 are constant vectors orthogonal to each other satisfying

(c1,¢1) = —(c2, 2) = (€3, €3) = (C4, C4) = 3.
(4) A timelike circle satisfying k = 1;

x(s) =c1 + ¢y cosh V2s + c3 sinh \/zs,

where ¢y, cy and c3 are constant vectors orthogonal to each other satisfying

(c1,¢1) =(c2, €2y = —(c3,03) = 5.
(5) A timelike helix satisfying k¥* — %> = 1;

x(s) =c1 cos Vk — 1s + ¢ sin Vk — 1s + ¢3 cosh Vk + 1s + ¢4 sinh Vk + 1s,

where c1, ¢, ¢3 and cy are constant vectors orthogonal to each other satisfying
_ _ _ _1
(c1, c1) ={c2, c2) ={c3, c3) = —(c4, €4) = 3.

Proor. We solve (4.1) under the condition that (x, x) = 1, (x’, x’) = 1 and 7{(y) # 0,
that is, (x’, x")x” + x # 0 for all s. We divide (4.1) into three types.

Case (i). x is spacelike and (7{(y), 71(y)) = 0: (4.1) is rewritten as
AW 42" +x=0,
whose solutions are congruent to (1).

Case (ii). xis aspacelike helix with a spacelike principal normal vector field satisfying
2

k%> — 12 =1: (4.1) is rewritten as
A 425" + (1= kP)x=0.

If « = 1 (respectively, k > 1), then x is congruent to (2) (respectively, (3)).
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Case (iii). x is a timelike helix satisfying «*> — 72 = 1: (4.1) is rewritten as

X = 2x" + (1 =*)x=0.
If « = 1 (respectively, k > 1), then x is congruent to (4) (respectively, (5)). m|

THEOREM 4.5. Lety : I — Hl3(— 1) be a unit speed curve in anti-de Sitter 3-space. Then
v is proper biharmonic if and only if x =i o y is congruent to one of the following five
Sfamilies.

(1) A spacelike curve with (t1(y), T1(y)) = 0;

x(s) = (¢ + c28)e’ + (c3 + cy8)e”?,
where ¢, ¢, c3 and c4 are constant vectors satisfying {ci, c3) = —% and{c;, c;) =
0 unless (i, j) = (1, 3) or (3, 1); however, {(cy, c2)* + {(c4, c4)* # 0.
(2) A spacelike helix with a spacelike principal normal vector field satisfying
K—-12=-1landk+0;

x(s) = e**(c1 cos Bs + c; sin Bs) + e~ **(c3 cos Bs + ¢4 sin Bs),

where a and 8 are constants satisfying o> — 8> =1, 2a8 = «, and moreover
c1, 2, c3 and c4 are constant vectors satisfying {(ci, c3) ={Ca, C4) = —% and
{ci,cjy =0unless (i, j)=(1,3),(3, 1), (2,4) or (4,2).

(3) A spacelike circle with a timelike principal normal vector field satisfying x = 1;

v(s) = c| + ¢, cosh V2s + ¢3 sinh \/Es,

where cy, c; and c3 are constant vectors orthogonal to each other satisfying

(c1, 1)y ={c2, 02y = ~(c3, €c3) = — 1.
(4) A spacelike helix with a timelike principal normal vector field satisfying «* +
2=1andk#0;

x(s) =cj cos V1 — ks + ¢, sin V1 — ks + ¢3 cosh V1 + ks + ¢4 sinh V1 + ks,

where c1, ca, c3 and c4 are constant vectors orthogonal to each other satisfying
1
(c1,c1) ={c2, c2) ={c3, c3) = —(c4, €4) = —5.
(5) A timelike helix satisfying k> — > = —1 and « # 0;

x(s) = e**(cy cos Bs + ¢, sin Bs) + e"*(c3 cos Bs + ¢4 sin Bs),

where a and B are constants satisfying o> — 8> = —1, 2a =k, and moreover
c1, 2, c3 and c4 are constant vectors satisfying {(ci, c3) ={Ca,Cq) = —% and
(cis ¢j) =0 unless (i, j) = (1,3), (3, 1), (2,4) or (4, 2).

Proor. We solve (4.1) under the condition that (x, x) = 1, (x’, x’) = +1 and 7(y) # 0,
that is, (x’, x")x”" — x # 0 for all s. We divide (4.1) into four types.
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Case (i). x is spacelike and (7{(y), 71(y)) = 0: (4.1) is rewritten as
A _2x" 4+ x=0,
whose solutions are congruent to (1).

Case (ii). xis aspacelike helix with a spacelike principal normal vector field satisfying

k> — 1> =—1and k # 0: (4.1) is rewritten as

A _2x" + (1 +5)x=0,

whose solutions are congruent to (2).

Case (iii). xis a spacelike helix with a timelike principal normal vector field satisfying
K+ 12> =1and « £ 0: (4.1) is rewritten as

A 2% + (1= kP)x=0.
If k = 1 (respectively, O < k < 1), then x is congruent to (3) (respectively, (4)).
Case (iv). x is a timelike helix satisfying k*> — 72 = —1: (4.1) is rewritten as
x4+ 2% + (1 +kH)x =0,

whose solutions are congruent to (5). O

5. Biharmonic surfaces in nonflat Lorentz 3-space forms

By a similar computation to [4, Proof of Theorem 4.1] (see [6, Lemma 2.1]), we
obtain the following lemma.

LemMa 5.1. Let M? be a pseudo-Riemannian surface in a Lorentz 3-space form of
constant sectional curvature c. Then M? is biharmonic if and only if

APH = (2¢ - (N, N) trace A%)H,
2 trace Ap,u(-) + grad (H, H)) =0,

where N is a unit normal vector field.

We need the following two lemmas to classify proper biharmonic pseudo-
Riemannian surfaces in nonflat Lorentz 3-space forms.

LemMa 5.2. Let M? be a pseudo-Riemannian surface in a Lorentz 3-space form of
constant sectional curvature c. Then M? is proper biharmonic if and only if it has
nonzero constant mean curvature and Ay satisfies

2¢ — (N, N) trace A% = 0. (5.1)

Proor. Let M? be a proper biharmonic pseudo-Riemannian surface in M;(c) and let
{e1, ez, e3} be a local orthonormal frame field such that {e;, e;} are tangent to M?
and ez is normal to M?. We put € = {(e;, ¢;> and H = fe;. Note that ;663 = —1.
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By Lemma 5.1,
Auf = 2c — e trace A% f, (5.2)
A(grad f) = —e f(grad f),
where Ay f = — 37 (e, eMeieif) — (Vee)f} and A = A,,.
Let U = {p € M? | (grad f?)(p) # 0}. Assume that U is nonempty. Since —&; f is an

eigenvector of A by (5.2) and traceA = 2e; f, the shape operator A is diagonalisable
and we can choose a local orthonormal frame field {e, e,} such that e, is parallel to

grad f. Then
erf =0, (5.3)
h(ei,e)) = —€ifes, hle,e2) =0, h(er, er)=3efes, (5.4)
trace A% = 10f2. (5.5

We put Ve,; = wlj ej. Then w% = w%. From (5.3) and equation (2.3) of Codazzi,
wi(e) =0, 3eif =—4fwi(e). (5.6)

By the first equation of (5.6), we can choose a local coordinate system {u, v} such that
e; = 0/0u and e, is parallel to d/dv. Then, from (5.3), we have f = f(u).
We denote by f” and f” the first and the second derivatives of f with respect to x.

Using (5.6),
AfAuf =3e(f) —4aff". (5.7)
By combining (5.2), (5.5) and (5.7), we obtain
Aff" =3(f") +40e f* + 8ce f* = 0. (5.8)
If we put @ = (f)%, then (5.8) can be rewritten as
g 3
— - —0="206f-4
af ~2f ef ce f,
which implies that
0=—-8ef* - 8eicfl+Cf2, (5.9)

where C is a constant.
On the other hand, by (5.4), (5.6) and equation (2.2) of Gauss with X = W = ¢; and
Y=Z= e,

16
4" =) = 166 f* - ?ce]fz =0. (5.10)
Combining (5.8) and (5.10) implies that
1
6=—1462f4—?0061f2. (5.11)

By (5.9) and (5.11), f is constant on U, which is a contradiction. Therefore, U is
empty, that is, M? has constant mean curvature. Hence, by (5.2), we get (5.1).
The converse is clear from Lemma 5.1. ]
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LemMA 5.3 [2]. Let M? be a surface with index 1 in M?(C) and let (t — 1)?, A being
a nonzero constant, be the minimal polynomial of its shape operator Ay. Then, in a
neighbourhood of any point, M?* is a B-scroll over a null curve given by

x(s, u) = y(s) + u¥Y(s), (5.12)

where y(s) is a null curve in Ml3(c) - Ef with an associated Cartan frame {X, Y, Z}.
That is, {X, Y, Z} is a pseudo-orthonormal frame field along y(s):

XX)=XY)=0, (X, Y)=-1,
X.2)=Y,2)=0, (Z,7Z)=1,

such that

Y (s) = X(s),
Z'(s) = =AX(s) — k()Y (s),

where k(s) # 0 for all s. Moreover, the shape operator Ay of (5.12) is represented as

4 0
AN:(k(s) /l) (5.13)

with respect to the usual frame {3/0s, 0/du}.

Contrary to Theorem 3.5, there exist proper biharmonic pseudo-Riemannian
surfaces in nonflat Lorentz 3-space forms as follows.

Tureorem 5.4. Let M? be a pseudo-Riemannian surface in a Lorentz 3-space form of
constant sectional curvature ¢, where c € {(—1,1}. Then M? is proper biharmonic if
and only if it is congruent to one of the following:

(1) ST cSi);

(2) H(-2)CH;(-1);

(3) a B-scroll over a null curve of constant Gauss curvature 2 in S%(l).

Proor. Let M? be a proper biharmonic pseudo-Riemannian surface in Mf(c), where
ce{-1,1}. By Lemma 5.2, the eigenvalues of the shape operator Ay are constant. For
simplicity, we put A = Ay.

Case (i). A is diagonalisable: if A has exactly two mutually distinct eigenvalues A
and y, by [1, Theorem 3.5] we have that ¢ + (N, N)du = 0. Combining this and (5.1)
yields that A + g = 0, which is a contradiction with the assumption that M? is proper
biharmonic. Therefore, A = A, where [ is the identity operator. Since A satisfies (5.1),
we obtain that A% = 1. By virtue of [1, Theorem 5.1], M? is congruent to (1) or (2).

Case (ii). A is not diagonalisable: in this case, the index of M?is equal to 1 and hence
(N, N) = 1. If A has a double real eigenvalue A, then, by Lemma 5.3, M? is congruent
to a B-scroll over a null curve (5.12) with (5.13). It follows from (5.1) and (5.13)
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that 2> =c =1. Therefore, M? is congruent to (3). If A has complex eigenvalues
a + Bi, then A is represented as
_[@ B
A= ( o ) (5.14)

B

with respect to an orthonormal frame. By equation (2.3) of Codazzi and (5.14), we find
that M? is a flat surface. Hence, equation (2.2) of Gauss and (5.14) show that ¢ = —1
and a? + 82 = 1. In this case, the shape operator A does not satisfy (5.1) because M?
is nonharmonic.

The converse is verified by using Lemma 5.1. O
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