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1. Introduction

The resemblance of the Goursat problem

«» = /(*, y.«,«*,«,)
(1.1) u(x, 0) = <p(x), M(0 , y) = y>(y), <p{0) = y>(0)

O^x^a, O^y^b

for the hyperbolic partial differential equations to the initial value problem

(1.2)
y{*o) = 2/o 0 <x <La

for the ordinary differential equations has suggested the extension of many
well known numerical methods existing for (1.2) to the numerical treatment
of (1.1). Day [2] discusses the quadrature methods while Diaz [3] generalizes
the simple Euler-method. Moore [6] gives an analogue to the fourth order
Runge-Kutta-method and Tornig [7] generalizes the explicit and implicit
Adams-methods.

The subject of this paper is the development of a numerical procedure
for finding an approximate solution of the Goursat problem (1.1) and is
based upon the idea of using cubature formulae which are exact for polyno-
mials of known degrees. In case the function f(x, y, u, ux, uv) happens to
be a polynomial of certain known finite degree, the method may be used
to obtain exact numerical results. The paper has been divided into five
sections. In Section 2, methods for obtaining the initial numerical approxi-
mation to the exact solution have been discussed. Section 3 deals with an
iteration scheme for improving the values obtained in Section 2. The
convergence of the numerical approximations in Section 3 to the exact
solution has been discussed in Section 4. Section 5 considers a non-linear
example to show a good agreement of the computed values with the exact
values.

355

https://doi.org/10.1017/S1446788700005425 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700005425
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2. Calculation of starting values

Before proceeding to obtain a numerical approximation to the initial
field, we shall assume that

(i) the real-valued function f(x, y, u, ux, uy) is defined for all values of
(x, y,u,ux, uy) which satisfy the inequalities

x0 <; x <; XQ+CI, yo^y ^ yo+b, —co<u, ux, uu < +00.

(ii) f(x, y, u, ux, uy) is continuous and bounded in absolute value, so
that for a certain non-negative constant M

\f(x,y,u,ux,yy)\ -g,M.

(iii) f(x,y,u, ux,uy) satisfies the Lipschitz condition in the three
arguments u, ux and uy, i.e., there is a constant L S> 0 such that

\f(x, y, u, ux, uv)~f{x, y, u*. u*,u*)\ < L[\u-u*\ + \ux-u*\ + \ uy-u*\]

for any (u,ux,uy) and (u*, u*, u*), whenever (x, y) lies in the rectangle

R:xo<^x <, xo+a, y0 £ y <L yQ+b.

(iv) The real valued function <p(x) is defined for all x in the interval
x0 ^ x ^ xo-\-a and possesses a continuous first order derivative y'(x) in
this interval while the real valued function y>(y) is defined for all y in the
interval y0 ^.y f£ yo-\-b and possesses a continuous first order derivative
y>' (y) in this interval.

Having ensured the unique existence of the solution of the Goursat
problem (1.1), it is suggestive to consider the following system of integral
equations equivalent to (1.1):

u(x,y) = <p

(2.1) p{x,y) =q>'(x)+j*f(x,rj,u(x,ri),p(x,Ti),q(x,ri))dr]

q(x, y) = f'(y)+ /*/(£> y, «(l, y),p(£, y), ?(£. y))d£

where
du(x,y) du(x,y)

p ^ ' yy — T, > qv0' y> — z •ex oy

The procedure to be described can be viewed as a technique of stepwise
approximate integration of these equations. Let us consider a subdivision
of the rectangle

R : x0 ^ x ^ xo+a, y0 <L y <: yo + b
given by

*0 — *0 ^ •''1 ^- •''2 ^ ^- *m—1 ~̂ •''m — •''OT'*'

yo = Vo < Vi < y% < • • • < yn-i < yn = yo+b,
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where

Numerical solution of a partial differential equation

Xi+1 = Xt-\-h, h > 0

357

, k>o
i = 0, 1, 2, •••, m - 1 )

= 0, 1,2, • • • , « - ! ) •

The straight lines which are parallel to the axis and are passing through
these points subdivide the rectangle R into mn closed subrectangles

K;,n n).K;, ( = o, l, ••- ,»», s = o,
If we denote

Mr>8 = u(xr, ys); Pr>, = p{xr, ys); qr<s = q{xr, ys),

f(x,y,u,p,q) = F{x,y); f{xr,ys,ur_B,pTtS,qrtS) = / r > s ,

the system of integral equations (2.1) can be written in the form

(2.2) Mf+1,s+1 = ur+hs + ur,s+1-ur,s + T + 1 r>+1 F(t, n)dUn,
J Xr J V,

(2-3) pr+1,8+1 = pr+i,s+lV'+1 F(xr+1, r,)dr,,

(2-4) qr+i,s+1 = qr,s+i+ \'M F(S, ys+1)dZ.

This representation of the system (2.1) is more suitable from computational
point of view.

Before making use of these equations for the starting values, we shall
further assume that the exact values of the partial derivatives p{x,y)
and q (x, y) along the axis of y and x, respectively, are known to us (see
example in Section 5). In case the exact values of these quantities are not
available, an approximation to them may be obtained, by using Adam's-
methods (see [5]) as follows:

Denoting the backward difference operator by V, the equations (2.3)
and (2.4) for the set of points (xr, 0), (0, ys), (r = 0, 1, 2, • • • m;
s = 0, 1, 2, • • • n) may be expressed in the form

(2.5)

(2-6)

where

n+1,

p=0
v, yo)+K+i,

a, = - f u{u+l){u+2) • • • (u+p-l)du,
P • Jo

, 8n+lF(x0,y)
\Rn+1\ ^ £«+

8yn + l

*m+ll

, y0)

8xm+1

Max

Max
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If we neglect the remainder terms in (2.5) and (2.6) and express all the
differences in terms of the values of the function at the pivotal points,
then the approximations to the values of

Po,.+i. 9V+i,o (r = 0, 1, • • • tn-1; s = 0, 1, • • •, n - 1 )

may be obtained from
n

(2-7) Po,s+i = Po,s+k2Pn,pfo,s-p,
p=0

(2.8) qr+1 0 = qr

where

" (P

/>=»

The coefficients fi^ depend upon n as well as v, which makes it more
difficult to change the number of differences employed in (2.7) and (2.8).
Some numerical values of the coefficients /S^,, have been listed in Table 1
of this paper.

It
V

o
1

2
Li

•k

A

5

0

i
J.

1

2
1
2

TABLE 1.

2

2 3
1 2
16.
1 2
5

T2

Values of p/li v

ft

3

5 5
2 4
5 9
2 4
3 7
2 4
9

i n

4

19Q1
7 2 0

2 7 7 4
7 2 0

2 6 1 6
7 2 0

12.74
7 2 0
2.51
720

5

4277
1440
7923

— 1440
9982
1440
7298

~~ 1440
2877
1440
4 7 5

1440

Since the accuracy of the values of the initial field depends upon the ac-
curacy of the values of pOyS+1 and qT+ly0 computed above, therefore, before
making any attempt for the calculation of the starting values it is advisible
to refine them by some iterative scheme. If we use the modified multistep
method [1] the convergence of which is already ensured, then for the set
of points under consideration, the iterative scheme shall read

(2-9) Po,s = i<*pPo,s-P+k[2bpfOyS_p+bl+1F(xo,ys_c)],
p=0 p=0
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[5] Numerical solution of a partial differential equation 359

(2.10) qs>0 = 2
p=0

p=0
(xs_c) y0)],

where the values of the parameters ap, bp and c are chosen in such a way
so as to yield stable processes of orders as high as possible. For a particular
value (used in example of Section 5 we list down in Table 2, the value of
ap and bp for a particular value of c =

TABLE 2

p \

0
1

o

3

4

1

ap

0
i

0

K
i
6
1
6
2
3

ap

0
32
31
1
3T

2

K
15
93
12
93
1
T5
64
93

ap

0
783
617
135
617
31
617

0

3

K
465
3085
135
3085
495
3085
39

3085
2304
3085

We shall evaluate the double integral in (2.2) by cubature formulae similar
to those discussed in [8]. These formulae shall be based upon the idea of
approximating the function F(x, y) occurring in (2.2) by a Langrange
polynomial P(x, y) of the type

(2.11)
i=0 3=0

which coincides with the function F(x, y) at a set of suitably predetermined
(M2+3M+2)/2 points. If we now demand the cubature formula

IN =
(2.12)

N

T = l

to be exact for all polynomials of degree N, we get a system of equations
which determines the weights wT and the points xT and yT.

For example the formulae

(2.13)

(2.14)

I3 = ± ±

40 ' -n 15h, 40 /<±Vi
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(where summations extend over all distinct combinations of signs) are
exact for 3rd and 5th degree polynomials. Using these cubature formulae in
(2.2) and making approximations to the integrals involved in (2.3) and (2.4)
by suitable quadrature formulae, we obtain a system of equations which
may be used for the calculation of the starting values. It may however be
noted that the determination of the coefficients Cti in (2.11) can be avoided
by choosing a particular Langrange polynomial which coincides with the
function values of F(x, y) at the set of points involved in the cubature
formula (2.13) and (2.14) and also coincides with F(x,y) at a few other
points. For in this case values of the polynomial P(z, y) at this set of points
shall be identical with the values of the function F(x, y) which may be
calculated by making use of the following approximate formulae (in which

(2.15) u(xQ+ah,y0+rk) = [l + 2(o*+T3)-3(o*+r*)]u(x0,y0) + [ 3 T 2 - 2 T 3 ]

(xo+h, y0)
, y0)

, y0+k)+h(d*-oi)p(x0+h, y0)

0, yo)+k(rs-ri)q(xi), yo+k)
+koHq{x0+h, yo)+hkar(l-a-r)F{xo, y0)+O(hi)

(2.16) p(xQ+ah, yo+rk) = - [ (a 2 -a) {«(*„, yo)~u{xQ+k, y0)}]

2k or

+
, y0)

+r2p(x0, yo+£) + (3<r2-2<;)/>(zo+A, yQ)
+kr(l-r~2a)F(x0, y0)+O(h3)

(2.17) q(xo + ah, yo+rk) = - [ ( T 2 - T ) { M ( ^ , yo)-u{xo, yo+k)}]
k

2har

, y0)
+ho(l-2r-o)F(x0, y0)+O(h3).

These approximations are valid in each subrectangle with its corners
denoted by (x0, y0), (xo+h, y0), (x0, yo+k) and (xo+h, yo+k).

For evaluating the double integral in (2.2) one may however use the
cartesian product formulae as well. For example, if in particular we use the
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cartesian product formulae corresponding to the Lobatto four-point rule
in one dimension

(2.18) J <p(r)dr = - 2 > P 9 , ( T , ) - %1 ^ J x0 < | < xo+h,

where

Tj — x 0 , T 2 — xo-\- I I h, T 3 — a;0~l~ I — I h, T4 — #o+'?>

^ . j ; ,

we get for the system of equations (2.2), (2.3) and (2.4), the following
equivalent system:

(2.19) wr+M+I = ur+liS+ur>s+1-urtS+ — 2 2 i V ^ V T^

(2.20) Pr+1?s+1 = Pr+ltS+ | i avFfo+i. ^ ) + £,

(2.21) ?r + 1 , ,+ 1 = ? r , s + i+ ^ 2 ^ ^ ( T / , , «/S

where

with

DJ = fy+qL+ffP+uvvfQ

(2.22)

We prefer the use of Lobatto quadrature formula since the values
of the function F(x, y), at the set of points needed for the evaluation of the
integrals in (2.3) and (2.4), are already made available in the process of
evaluating the double integral in (2.2). For the calculation of starting values
one may neglect the error terms in (2.16), (2.17) and (2.18) and use the
resulting formulae for the approximate calculation of the quantities

" r + i . . + i . A+i ,«+i> ? r+ i , .+ i (r = 0,1,- •• m—1, s = 0 , 1, • • •, n— 1 ) .

In order to have some idea about the applicability of the results discussed
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in this section we performed calculations for the Liouville differential
equation [8]:

uxy — e
with initial condition

In this case, as is obvious, it is not possible to get the exact values of
p(0, y) and q(x, 0) by mere inspection of the differential equation, therefore
a recourse was made to the equations (2.7) to (2.10). The results obtained
with h — k = 0.05 for the initial field have been listed in Table 3 of this
section.

These results have been compared with the exact values obtained from
the exact solution of this problem given by

u{z, y) = (x+y)l2-log

32«
TABLE 3 1. Values of the initial field in the partial differential equation = ei

Bxdy

y\x

0.1

0.2

0.3

0.4

0.5

0.1

-.69314727
-.69314716

-.69439673

-.69439662

-.69813908

-.69813885

-.70435542

— .70435520

-.71301531
-.71301520

0.2

-.69439673
-.69439662

-.69314747

-.69314713

-.69439723

-.69439663

-.69813968

-.69813881

-.70435592

-.70435510

u(x, y)

0.3

— .69813908
— .69813885

-.69439723

-.69439663

— .69314827

— .69314717

-.69439813
-.69439660

-.69814048

-.69813880

0.4

-.70435542

-.70435520

— .69813968

-.69813881

— .69439813

-.69439660

-.69314927

-.69314710

-.69439903

-.69439660

0.5

-.71301531
-.71301520

-.70435592

-.70435510

-.69814048

-.6981880

-.69439903

-.69439660

-.69315007

-.69314710

1 The upper value in each row gives the computed value, the lower value in each row
gives the exact value.

3. Refining the initial field by an iteration scheme

In Section 2, while deriving the cubature formulae we had used ir-
rational points to obtain the values of the function at the pivotal points.
Using the method discussed below one can derive some cubature formulae

https://doi.org/10.1017/S1446788700005425 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700005425


[9] Numerical solution of a partial differential equation 363

which involve the values of the function at the pivotal points only and are
helpful in deriving the iteration scheme. Let us suppose that this time the
function F(x, y) is replaced by the Langrange polynomial Q(x, y) of the
form

2n 2n

Q(*.y) = l 2C'iix*y> (i+j^2n),
!=0 3=0

which coincides with the values of function F(x, y) at a set of suitably
predetermined points. If we now demand that the relation

be true for all polynomials of certain finite degree (say M), then we get a
system of equations which determines the values of Ra, xa, and y^. For
example, if one takes In = 1, 3, 5 etc. in the Langrange polynomial taken
above one gets the following cubature formulae

(3.2) 7, = f

(3.3) 75 = M[-112S l+4s2+5s3+64s4],

where

»i = Qi.,>

H = Qi.i+i+Qi+i,i-\-Qi.i-i+Qi-i,i.

S3 =

As discussed in the last section the polynomial Q (x, y) should be made
to coincide with the values of the function F(x, y) at a set of suitably
predetermined points. One may obtain quite a variety of such formulae
giving us the values of the double integral. If we denote by 7^, a cubature
formula exact for all polynomials of degree 5S N, then the equation (2.2)
reads

Ur+l,s+l =

where

Ei = r-. n n{s-*,.,)F(t)in n{t-u^w-*) *
atl J c L/»=i v=i p=i v=i J

c being a simple closed rectificable curve containing R in its interior.
Again making use of the modified multistep method for the integrals in

https://doi.org/10.1017/S1446788700005425 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700005425


364 M. K. Jain and K. D. Sharma [10]

(2.3) and (2.4), the equations iterating the values of p and q are given by
i i

(3.5) A+M+l = 1 a
PPr+l,s+l-p + k 2,

p=0 1=0

I I

(3-6) ?r+a,s+l = 2 <*p<Ir+l-p,S+l + k 2
/>=0 />=0

where
321+217

= 2bl+1

rc(i_c)...(/-c)-i
 2T 1 1 1 1-1

L l\ J L c l—c 2—c l—c\

Here we have assumed that the values of the quantities otbained from
the previous steps are exact. If we neglect the error terms in the above
equations, the first set of iterated values will be given by

(3.8) < ] = «r.^1+«^1..-«_1,^1+A* 2 1 ^ , , # 1

(summation is taken over all nodal points occurring in the Langrange
polynomial)

(3-9) p™ = A.-1+ 2 «,&._,+* I bpf
[°l-

P=O p—o

(3.10) #3 = ?r_1)S+ i a ^ ^ . + A 2 b ^ .
p=0 p=0

lr,s — J\Xr> V$> ur,»'Pr,s> Hr,») >

where the weights Apa. are to be read from the equations (3.2), (3.3), • • •
and the constants a's and b's occurring in the last two equations for dif-
ferent values of c are to be taken from Table 2. The iteration scheme
corresponding to p ̂  1 is as follows

(3.11) «£(•
M »

(3.12) ^ i ] = pw+k j btf
/l=0

(3.13) q[^ = ^fJ+A 2 b,(f
v=0

/~ „ M[/H-l] V,[P+1] /jt/»+l]\

(r = 1, 2, • • •, tn; s = 1, 2, • • •, «).
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The convergence of this iteration scheme has been discussed in Section 4.
Having obtained the refined values of u(x, y), p(x, y), q(x, y) at the pivo-
tal points, one is now in a position to write down a Hermite polynomial
expression approximating the analytic solution of u(x, y) of the problem
(1.1) in the entire region R.

4. Convergence of the iteration scheme

For discussing the convergence of the numerical approximations
obtained in section (3), we shall write

(4-2) l4

then we may write down the following estimates for the equations (3.11),
(3.12) and (3.13):

I

(4.3) \£P}\ ̂  £L [£&„

I

The addition of these three equations gives

i i

I

This can easily be seen to be of the form

(4.4) S # ^ 2 I\BTf\S^T1]-
1 = 1 3 = 1

If all the eigen-value of the matrix

B = (\BfJ)

are numerically < 1, then the convergence of the series
oo oo oo

p=0 /)=0
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is ensured. From this it follows that
m} n

Max {2 2 \BT;"\} < l (partial sum criterion),
ii l j l

m n

Max { J 2 \B7f\} < 1 (split sum criterion).
m, n i=l

These inequalities give us the upper bound for the interval lengths h and k.
For h = k, N — m — n = 2 and 1=1, both these conditions are satisfied if

Similarly we may obtain upper bounds for any other set of values of N,
m, n and I.

5. Example

As an example we shall consider the non-linear partial differential
equation

(5.1) uxy=pqlu+u

which involves all the variables u, p and q and is associated with the boundary
conditions

(5.2) u{x, 0) = <?\ M(0, y) = cos y.

If we write down the given differential equation (5.1) for points lying
on the axis, then

, v)
^ = p(0, y)q(0, y)lu(0, y)+u{0, y),

(5.3)
dqlx, 0)
-±\ = P(x, 0)q(x, 0)lu(x, O)+u(x, 0).

ox

From which it easily follows that

(5.4) p(0, y) =y cos y, q(x, 0) = xe*'''.

For obtaining the numerical results we wrote programmes for the IBM
1620 (Model 1) computer. The starting values were calculated by using
the equations (2.19) to (2.21) with h = k — 0.05. These values were iterated
two times with the help of the equations (3.11), (3.12) and (3.13) written
for I = 1, 2, N = 5, h = 0.05. The exact solution of the partial differential
equation (5.1) is

u (x, y) = d* +xv cos y.
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TABLE 4*

e{x, y)

iteration
number

.1 .2 .3 .4 .5

.1

.2

.3

.4

.5

0
1
2

0
1

2

0
1

2

0
1

2

0
1

2

-.200 x
-.226 x

-.226 x

-.200 x

-.456 x

-.453 x

-.700 x

-.683 x

-.675 x

-.200 x

-.862 x

-.853 x

-.900 x
-.908 x

-.908 x

io-«
10-'

10-'

io-«

10-'

10-'

10-'

10-'

io-7

io-«
io-'

io-'

io-'

10-'
10-'

-.400 x
-.512x
-.258 x

-.500 X
-.353 X

-.353 X

-.600 X

-.644 x

-.466 X

-.500 x
-.195X

-.129X

-.300 X

-.538 x
-.258 x

io-6

10-'

10-'

10-«

io-8

io-8

io-6

10-'

10-'

io-6

10-'

10-'

io-»
10-'

10-'

— .500x 10-*
— .962x10"'

-.938x10-'

-.800x10-°

-.873x10-'

-.538x10-'

-.900x10-'

-.230xl0-«

-.144xlO-«

-.700x10-'
-.270x10-8

-.109x10-8

-.400x10-8

— .416x10-8
-.180x10-8

-.500 x
-.170x
-.162x

-.100x

-.131x

-.354 x

-.110x

-.444x

-.192x

-.700 x
-.586 x

-.836 x

-.200 x
-.103 x
-.103 x

10-8
10-8

10-8

io-6

10-8

10-'

io-6

10-8

10-8

10-8

10-«

io-'

10-8
10-8
10-8

-.800 X
-.279x
-.264 x

-.140X
-.340 X

— .149X

-.120x

-.969 x

-.409 X

-.200 x
-.364 x

-.210X

-.160X
-.681 x
-.428 X

10-«
10-8

10-8

io-6

10-8

10-«

io-5

10-8

10-8

10-8

10-8
10-8

io-6

10-8

10-8

* The first row gives the errors in the values of the initial field, the second row gives the
errors in the values obtained after first iteration. The third row gives the errors in the values
obtained after second iteration.

TABLE 5*. Solution of the partial differential equation MCT = pqju + u

0.1

0.2

0.3

0.4

0.5

0.1

1.0151046
1.0151045

1.0099140

1.0099138

0.99432457

0.99432443

0.96828488

0.96828470

0.93184932

0.93184919

0.2

1.0565318
1.0565317

1.0616934

1.0616933

1.0558101

1.0558100

1.0384934

1.0384933

1.0094603
1.0094601

U(x, y)

0.3

1.1218641

1.1218640

1.1386749

1.1386748

1.1437456

1.1437453

1.1362928

1.1362926

1.1156263
1.1156260

0.4

1.2153001

1.2153007

1.245908

1.245907

1.2640343
1.2640341

1.2684188
1.2684186

1.2578651

1.2578648

0.5

1.3431154

1.3431151

1.3907808
1.3907806

1.4251947

1.4251944

1.4445115

1.4445120

1.446890

1.446889

* Upper value in each row gives the computed value.
Lower value in each row gives the exact value.

In order to study the rate of convergence of the iteration process we
list in Table 4, the errors in the computed values of u (x, y) for the initial
field, obtained after first iteration and second iteration, respectively. The
results obtained after two iterations have been listed in Table 5.
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As is expected, the work involved in the case when u, p and q are all
present in the function / is more than when p, q are absent (refer [2]).
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