ON A MEASURE ZERO STABILITY PROBLEM OF A CYCLIC EQUATION

JAEYOUNG CHUNG ${ }^{\boxtimes}$ and JOHN MICHAEL RASSIAS

(Received 25 August 2015; accepted 4 July 2015; first published online 27 October 2015)

Abstract

Let G be a commutative group, Y a real Banach space and $f: G \rightarrow Y$. We prove the Ulam-Hyers stability theorem for the cyclic functional equation

$$
\frac{1}{|H|} \sum_{h \in H} f(x+h \cdot y)=f(x)+f(y)
$$

for all $x, y \in \Omega$, where H is a finite cyclic subgroup of $\operatorname{Aut}(G)$ and $\Omega \subset G \times G$ satisfies a certain condition. As a consequence, we consider a measure zero stability problem of the functional equation

$$
\frac{1}{N} \sum_{k=1}^{N} f\left(z+\omega^{k} \zeta\right)=f(z)+f(\zeta)
$$

for all $(z, \zeta) \in \Omega$, where $f: \mathbb{C} \rightarrow Y, \omega=e^{2 \pi i / N}$ and $\Omega \subset \mathbb{C}^{2}$ has four-dimensional Lebesgue measure 0 .

2010 Mathematics subject classification: primary 39B82; secondary 39B52.
Keywords and phrases: asymptotic behaviour, Baire category theorem, Cauchy functional equation, cyclic functional equation, first category, Lebesgue measure, quadratic functional equation.

1. Introduction

Throughout this paper, let G, X and Y be a commutative group, a real normed space and a real Banach space, respectively, and H be a finite cyclic subgroup of $\operatorname{Aut}(G)$ (the automorphism group of G). Denote the order of H by $|H|$. A function $f: G \rightarrow Y$ is said to be a quadratic mapping if f satisfies the equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{1.1}
\end{equation*}
$$

for all $x, y \in G$. In [16] Skof proved the Ulam-Hyers stability of the quadratic functional equation (1.1). (See also [8, 9] and [10, pages 175-179] for the history and further results on the Ulam-Hyers stability of functional equations.)

[^0](C) 2015 Australian Mathematical Publishing Association Inc. 0004-9727/2015 \$16.00

Theorem 1.1 [16]. Let $\delta \geq 0$. Suppose that $f: G \rightarrow Y$ satisfies the inequality

$$
\|f(x+y)+f(x-y)-2 f(x)-2 f(y)\| \leq \delta
$$

for all $x, y \in G$. Then there exists a unique quadratic mapping $q: G \rightarrow Y$ such that

$$
\|f(x)-q(x)\| \leq \frac{1}{2} \delta
$$

for all $x \in G$.
Generalising the above result, Sibaha et al. [14] proved the Ulam-Hyers stability of the functional equation

$$
\begin{equation*}
\frac{1}{|H|} \sum_{h \in H} f(x+h \cdot y)=f(x)+f(y) \tag{1.2}
\end{equation*}
$$

for all $x, y \in G$. We call $f: G \rightarrow Y$ satisfying (1.2) an H-cyclic mapping. (See [5] for more general results.)

Theorem 1.2 [14]. Let $\delta \geq 0$. Suppose that $f: G \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
\left\|\frac{1}{|H|} \sum_{h \in H} f(x+h \cdot y)-f(x)-f(y)\right\| \leq \delta \tag{1.3}
\end{equation*}
$$

for all $x, y \in G$. Then there exists a unique H-cyclic mapping $q: G \rightarrow \mathbb{C}$ such that

$$
\|f(x)-q(x)\| \leq \delta
$$

for all $x \in G$.
Remark 1.3. In particular, if $H=\{I,-I\}$, where $I: G \rightarrow G$ is the identity, then Theorem 1.2 implies Theorem 1.1 and, if $H=\{I\}$, Theorem 1.2 implies the well-known Ulam-Hyers stability of the Cauchy functional equation [8].

It is a very interesting subject to consider functional equations or inequalities satisfied on restricted domains or satisfied under restricted conditions [1-4, 6, 11, 15]. Among the results, Jung and Rassias proved the Ulam-Hyers stability of the quadratic functional equations in a restricted domain $[9,13]$.

Theorem 1.4. Let $d>0$. Suppose that $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
\|f(x+y)+f(x-y)-2 f(x)-2 f(y)\| \leq \delta \tag{1.4}
\end{equation*}
$$

for all $x, y \in D:=\left\{(x, y) \in X^{2}:\|x\|+\|y\| \geq d\right\}$. Then there exists a unique quadratic mapping $q: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-q(x)\| \leq \frac{7}{2} \delta \tag{1.5}
\end{equation*}
$$

for all $x \in X$.

It is very natural to ask if the restricted domain D in Theorem 1.4 can be replaced by a smaller subset $\Omega \subset D$ (for example a subset of measure 0 if X is a measure space). In [7], the stability of (1.4) is considered in a set $\Omega \subset\left\{(x, y) \in \mathbb{R}^{2}:|x|+|y| \geq d\right\}$ of measure $m(\Omega)=0$ when $f: \mathbb{R} \rightarrow Y$. As a result, it is proved that if $f: \mathbb{R} \rightarrow Y$ satisfies (1.4) for all $(x, y) \in \Omega$, then there exists a unique quadratic mapping $q: \mathbb{R} \rightarrow Y$ satisfying (1.5). As a consequence, it is also proved that if f satisfies the asymptotic condition

$$
\|f(x+y)+f(x-y)-2 f(x)-2 f(y)\| \rightarrow 0
$$

as $|x|+|y| \rightarrow \infty$ in Ω, then f is a quadratic mapping.
In this paper, generalising the results in [7, 9, 13, 14], we consider the Ulam-Hyers stability of the functional equation (1.2) in restricted domains. Firstly, we assume that $\Omega \subset G \times G$ satisfies the following condition: for given $x, y \in G$ there exists $t \in G$ such that

$$
\begin{equation*}
\{(x+h \cdot y, t),(x+h \cdot t, y),(x, t): h \in H\} \subset \Omega . \tag{1.6}
\end{equation*}
$$

As an abstract approach, we first prove that if $f: G \rightarrow Y$ satisfies (1.3) for all $(x, y) \in \Omega$, then there exists a unique H-cyclic mapping q such that

$$
\|f(x)-q(x)\| \leq 3 \delta
$$

for all $x \in G$. In particular, if $G=X$ and $d \geq 0$, then $\Omega=\{(x, y) \in X \times X:\|x\|+\|y\| \geq d\}$ satisfies (1.6).

Secondly, when $G=\mathbb{C}$, by constructing a subset $\Omega \subset \mathbb{C}^{2}$ of measure 0 satisfying (1.6), we consider a measure zero stability problem of (1.2): that is, we consider the inequality

$$
\left\|\frac{1}{N} \sum_{k=1}^{N} f\left(z+\omega^{k} \zeta\right)-f(z)-f(\zeta)\right\| \leq \delta
$$

for all $(z, \zeta) \in \Omega$, where $\omega=e^{2 \pi i / N}$. Finally, we refine the results in $[7,9,13]$ and prove that if f satisfies (1.4) for all $(x, y) \in \Omega$, then there exists a unique quadratic mapping $q: \mathbb{R} \rightarrow Y$ such that

$$
\|f(x)-q(x)\| \leq \frac{3}{2} \delta
$$

for all $x \in \mathbb{R}$, where $\Omega \subset \mathbb{R}^{2}$ has two-dimensional Lebesgue measure 0 .

2. Stability of the equation in restricted domains

Throughout this section we assume that $\Omega \subset G \times G$ satisfies (1.6). We prove the Ulam-Hyers stability of (1.2) in Ω.

Theorem 2.1. Let H be a finite cyclic subgroup of the group of automorphisms of G and $\delta \geq 0$. Suppose that $f: G \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
\left\|\frac{1}{|H|} \sum_{h \in H} f(x+h \cdot y)-f(x)-f(y)\right\| \leq \delta \tag{2.1}
\end{equation*}
$$

for all $(x, y) \in \Omega$. Then there exists a unique H-cyclic mapping $q: G \rightarrow Y$ such that

$$
\|f(x)-q(x)\| \leq 3 \delta
$$

for all $x \in G$.
Proof. Let

$$
Q(f)(x, y)=\frac{1}{|H|} \sum_{h \in H} f(x+h \cdot y)-f(x)-f(y)
$$

Then

$$
\begin{equation*}
\sum_{k \in H} Q(f)(x+k \cdot y, t)=\frac{1}{|H|} \sum_{k \in H} \sum_{h \in H} f(x+k \cdot y+h \cdot t)-\sum_{k \in H} f(x+k \cdot y)-|H| f(t) \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k \in H} Q(f)(x+k \cdot t, y)=\frac{1}{|H|} \sum_{k \in H} \sum_{h \in H} f(x+k \cdot t+h \cdot y)-\sum_{k \in H} f(x+k \cdot t)-|H| f(y) . \tag{2.3}
\end{equation*}
$$

From (2.2) and (2.3)

$$
\begin{align*}
& \sum_{k \in H} Q(f)(x+k \cdot t, y)-\sum_{k \in H} Q(f)(x+k \cdot y, t) \tag{2.4}\\
&=\sum_{k \in H} f(x+k \cdot y)+|H| f(t)-\sum_{k \in H} f(x+k \cdot t)-|H| f(y) \\
&=|H| Q(f)(x, y)-|H| Q(f)(x, t) .
\end{align*}
$$

Thus, from (2.4)

$$
\begin{equation*}
Q(f)(x, y)=\frac{1}{|H|} \sum_{k \in H} Q(f)(x+k \cdot t, y)-\frac{1}{|H|} \sum_{k \in H} Q(f)(x+k \cdot y, t)+Q(f)(x, t) . \tag{2.5}
\end{equation*}
$$

In view of (1.6) and (2.1), for given $x, y \in G$ we can choose $t \in G$ such that

$$
\begin{equation*}
\|Q(f)(x+k \cdot t, y)\| \leq \delta, \quad\|Q(f)(x+k \cdot y, t)\| \leq \delta \quad \text { and } \quad\|Q(f)(x, t)\| \leq \delta \tag{2.6}
\end{equation*}
$$

for all $k \in H$. Now, it follows from (2.5) and (2.6) that

$$
\begin{aligned}
\|Q(f)(x, y)\| \leq \frac{1}{|H|} & \sum_{k \in H}\|Q(f)(x+k \cdot t, y)\| \\
& +\frac{1}{|H|} \sum_{k \in H}\|Q(f)(x+k \cdot y, t)\|+\|Q(f)(x, t)\| \leq 3 \delta
\end{aligned}
$$

for all $x, y \in G$. Thus, by Theorem 1.2, there exists a unique H-cyclic mapping $q: G \rightarrow Y$ such that

$$
\|f(x)-q(x)\| \leq 3 \delta
$$

for all $x \in G$. This completes the proof.

Now, let G be a real normed space with norm $\|\cdot\|$ and $\Omega=\{(x, y):\|x\|+\|y\| \geq d\}$ with $d>0$. Then Ω satisfies (1.6). Thus, as a direct consequence of Theorem 2.1 we obtain the following corollary.

Corollary 2.2. Let $d, \delta \geq 0$. Suppose that $f: X \rightarrow Y$ satisfies the inequality

$$
\left\|\frac{1}{|H|} \sum_{h \in H} f(x+h \cdot y)-f(x)-f(y)\right\| \leq \delta
$$

for all $x, y \in X$ such that $\|x\|+\|y\| \geq d$. Then there exists a unique H-cyclic mapping $q: X \rightarrow Y$ such that

$$
|f(x)-q(x)| \leq 3 \delta
$$

for all $x \in X$.
As a consequence of the Corollary 2.2, we obtain the asymptotic behaviour of f satisfying

$$
\begin{equation*}
\left\|\frac{1}{|H|} \sum_{h \in H} f(x+h \cdot y)-f(x)-f(y)\right\| \rightarrow 0 \tag{2.7}
\end{equation*}
$$

as $\|x\|+\|y\| \rightarrow \infty$. We need the following lemma.
Lemma 2.3. Let $f: X \rightarrow Y$ be a bounded H-cyclic mapping. Then $f=0$.
Proof. Assume that $\|f(x)\| \leq M$ for all $x \in X$ with $M>0$. Letting $y=x$ in (1.2) and using the triangle inequality we have

$$
\|2 f(x)\|=\left\|\frac{1}{|H|} \sum_{h \in H} f(x+h \cdot x)\right\| \leq \frac{1}{|H|} \sum_{h \in H}\|f(x+h \cdot x)\| \leq M
$$

for all $x \in X$. Thus, we have $\|f(x)\| \leq \frac{1}{2} M$ for all $x \in X$. Continuing this process we obtain $\|f(x)\| \leq 2^{-n} M$ for all $x \in X$ and $n \in \mathbb{N}$, which implies that $f(x)=0$ for all $x \in X$. This completes the proof.

Corollary 2.4. Suppose that $f: X \rightarrow Y$ satisfies (2.7). Then f is an H-cyclic mapping.
Proof. The condition (2.7) implies that for each $n \in \mathbb{N}$, there exists $d_{n}>0$ such that

$$
\left\|\frac{1}{|H|} \sum_{h \in H} f(x+h \cdot y)-f(x)-f(y)\right\| \leq \frac{1}{n}
$$

for all $(x, y) \in X^{2}$ such that $\|x\|+\|y\| \geq d_{n}$. By Corollary 2.2 , there exists a unique H-cyclic mapping $q_{n}: X \rightarrow Y$ such that

$$
\begin{equation*}
\left|f(x)-q_{n}(x)\right| \leq \frac{3}{n} \tag{2.8}
\end{equation*}
$$

for all $x \in X$. Replacing n by m in (2.8) and using the triangle inequality,

$$
\begin{equation*}
\left|q_{m}(x)-q_{n}(x)\right| \leq \frac{3}{n}+\frac{3}{m} \leq 6 \tag{2.9}
\end{equation*}
$$

for all $x \in X$. Let $q_{m, n}(x)=q_{m}(x)-q_{n}(x)$ for all $x \in X$. Then, by (2.9), $q_{m, n}$ is a bounded H-cyclic mapping. By Lemma 2.3 we have $q_{m, n}=0$ and hence $q_{m}=q_{n}:=q$ for all $m, n \in \mathbb{N}$. Letting $n \rightarrow \infty$ in (2.8) we have $f(x)=q(x)$ for all $x \in X$. This completes the proof.

As an interesting example, let $G=\mathbb{C}, f: \mathbb{C} \rightarrow Y$ and $H=\left\{\omega^{k}: k=1,2, \ldots, N\right\}$ for a fixed positive integer N, where $\omega=e^{2 \pi i / N}$. Then, as a direct consequence of Theorem 2.1, we obtain the following stability result for the functional equation

$$
\begin{equation*}
\frac{1}{N} \sum_{k=1}^{N} p\left(z+\omega^{k} \zeta\right)=p(z)+p(\zeta) \tag{2.10}
\end{equation*}
$$

for all $z, \zeta \in \mathbb{C}$.
Corollary 2.5. Let $d, \delta \geq 0$. Suppose that $f: \mathbb{C} \rightarrow Y$ satisfies the inequality

$$
\left\|\frac{1}{N} \sum_{k=1}^{N} f\left(z+\omega^{k} \zeta\right)-f(z)-f(\zeta)\right\| \leq \delta
$$

for all $z, \zeta \in \mathbb{C}$ such that $|z|+|\zeta| \geq d$. Then there exists a unique mapping $q: \mathbb{C} \rightarrow Y$ satisfying (2.10) such that

$$
\|f(z)-p(z)\| \leq 3 \delta
$$

for all $z \in \mathbb{C}$.
Remark 2.6. Let $A_{n}: \mathbb{C}^{n} \rightarrow Y$ be an n-additive function: that is, for each $1 \leq i \leq n$,

$$
A\left(z_{1}, \ldots, z_{i}+\eta_{i}, \ldots, z_{n}\right)=A\left(z_{1}, \ldots, z_{i}, \ldots, z_{n}\right)+A\left(z_{1}, \ldots, \eta_{i}, \ldots, z_{n}\right)
$$

for all $z_{1}, \ldots, z_{n}, \eta_{i} \in \mathbb{C}$. Then it is easy to see that

$$
\begin{equation*}
p(z)=A_{n}(z, \ldots, z) \tag{2.11}
\end{equation*}
$$

is a solution of (2.10). Is it true that all general solutions of (2.10) are given by (2.11)?
Let $I: G \rightarrow G$ be the identity mapping and $H=\{I,-I\}$. Then (1.6) is reduced to the following: for given $x, y \in G$ there exists $t \in G$ such that

$$
\{(x+y, t),(x-y, t),(x+t, y),(x-t, y),(x, t)\} \subset \Omega .
$$

As a direct consequence of Theorem 2.1 we obtain the following corollary.
Corollary 2.7. Let $d, \delta \geq 0$. Suppose that $f: G \rightarrow Y$ satisfies the inequality

$$
\|f(x+y)+f(x-y)-2 f(x)-2 f(y)\| \leq \delta
$$

for all $x, y \in \Omega$. Then there exists a unique quadratic mapping $q: G \rightarrow Y$ such that

$$
\|f(x)-q(x)\| \leq \frac{3}{2} \delta
$$

for all $x \in G$.

In particular, if G is a real normed space, as a direct consequence of Corollary 2.7, we obtain the following, which refines Theorem 1.4.

Corollary 2.8. Let $d, \delta \geq 0$. Suppose that $f: X \rightarrow Y$ satisfies the inequality

$$
\|f(x+y)+f(x-y)-2 f(x)-2 f(y)\| \leq \delta
$$

for all $x, y \in X$ such that $\|x\|+\|y\| \geq d$. Then there exists a unique quadratic mapping $q: X \rightarrow Y$ such that

$$
\|f(x)-q(x)\| \leq \frac{3}{2} \delta
$$

for all $x \in X$.
In particular, letting $H=\{I\}$ we obtain the following as a direct consequence of Corollary 2.2.

Corollary 2.9. Let $d, \delta \geq 0$. Suppose that $f: X \rightarrow Y$ satisfies the inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \delta
$$

for all $x, y \in X$ such that $\|x\|+\|y\| \geq d$. Then there exists a unique mapping $a: X \rightarrow Y$ satisfying

$$
a(x+y)=a(x)+a(y)
$$

such that

$$
\|f(x)-a(x)\| \leq 3 \delta
$$

for all $x \in X$.

3. The Ulam-Hyers stability in a set of Lebesgue measure zero

In this section, we consider the functional inequality

$$
\begin{equation*}
\left\|\frac{1}{N} \sum_{k=1}^{N} f\left(z+\omega^{k} \zeta\right)-f(z)-f(\zeta)\right\| \leq \delta \tag{3.1}
\end{equation*}
$$

for all $(z, \zeta) \in \Omega$, where $f: \mathbb{C} \rightarrow Y$ and $\Omega \subset \mathbb{C}^{2}$ is of four-dimensional Lebesgue measure zero, and the quadratic functional inequality

$$
\begin{equation*}
\|f(x+y)+f(x-y)-2 f(x)-2 f(y)\| \leq \delta \tag{3.2}
\end{equation*}
$$

for all $(x, y) \in \Omega \subset \mathbb{R}^{2}$, where $f: \mathbb{R} \rightarrow Y$ and Ω is of two-dimensional Lebesgue measure zero, which refines the result in [7].

We first consider (3.1). As we see in the Corollary 2.5, the inequality (3.1) is a particular case of (2.1) when $G=\mathbb{C}$ and $H=\left\{\omega^{k}: k=1,2, \ldots, N\right\}$ for a fixed positive integer N, where $\omega=e^{2 \pi k i / N}$. Now, (1.6) reduces to the following: for given $z, \zeta \in \mathbb{C}$ there exists $\eta \in \mathbb{C}$ such that

$$
\begin{equation*}
\left\{\left(z+\omega^{k} \zeta, \eta\right),\left(z+\omega^{k} \eta, \zeta\right),(z, \eta)\right\} \subset \Omega \tag{3.3}
\end{equation*}
$$

for all $k=1,2, \ldots, N$. By virtue of Theorem 2.1 it suffices to construct a set $\Omega \subset \mathbb{C}^{2}$ of measure zero satisfying (3.3).

It is known from [12, Theorem 1.6] that there exists a set $K \subset \mathbb{R}$ of Lebesgue measure 0 such that $\mathbb{R} \backslash K$ is of first Baire category: that is, $\mathbb{R} \backslash K$ is a countable union of nowhere dense subsets of \mathbb{R}.

Lemma 3.1 [7, Lemma 2.4]. Let K be a subset of \mathbb{R} of measure 0 such that $\mathbb{R} \backslash K$ is of first Baire category. Then, for any countable subsets $U \subset \mathbb{R}, V \subset \mathbb{R} \backslash\{0\}$ and $M>0$, there exists $\lambda \geq M$ such that

$$
\begin{equation*}
U+\lambda V=\{u+\lambda v: u \in U, v \in V\} \subset K \tag{3.4}
\end{equation*}
$$

From now on we identify \mathbb{C} with \mathbb{R}^{2}.
Theorem 3.2. Let K be the set defined in Lemma 3.1, R be the rotation

$$
R=\left[\begin{array}{cccc}
\frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} & 0 \\
0 & \frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} & 0 \\
0 & \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2}
\end{array}\right]
$$

and $\Omega=R^{-1}(K \times K \times K \times K)$. Then Ω satisfies (3.3) and has four-dimensional Lebesgue measure 0 .

Proof. Let $z=x+i y, \zeta=u+i v, \eta=t+i s \in \mathbb{C}, k=1,2, \ldots, N$, and let

$$
\begin{aligned}
P_{z, \zeta, \eta, k}=\{ & \left.\left(x+u \cos \frac{2 \pi k}{N}-v \sin \frac{2 \pi k}{N}, y+u \sin \frac{2 \pi k}{N}+v \cos \frac{2 \pi k}{N}, t, s\right)\right\} \\
& \cup\left\{\left(x+t \cos \frac{2 \pi k}{N}-s \sin \frac{2 \pi k}{N}, y+t \sin \frac{2 \pi k}{N}+s \cos \frac{2 \pi k}{N}, u, v\right),(x, y, t, s)\right\} .
\end{aligned}
$$

Then Ω satisfies (3.3) if and only if, for every $z=x+i y, \zeta=u+i v \in \mathbb{C}$, there exists $\eta=t+i s \in \mathbb{C}$ such that

$$
\begin{equation*}
R\left(\bigcup_{k=1}^{N} P_{z, \zeta, \eta, k}\right) \subset K \times K \times K \times K . \tag{3.5}
\end{equation*}
$$

The inclusion (3.5) is equivalent to

$$
S_{z, \zeta, \eta}:=\bigcup_{k=1}^{N}\left\{\frac{\sqrt{2}}{2}\left(p_{1} \pm p_{3}\right), \frac{\sqrt{2}}{2}\left(p_{2} \pm p_{4}\right):\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \in P_{z, \zeta, \eta, k}\right\} \subset K .
$$

Now, we can choose $\alpha \in \mathbb{R}(\alpha \neq 0)$ such that

$$
\cos \frac{2 \pi k}{N}-\alpha \sin \frac{2 \pi k}{N} \neq 0, \quad \sin \frac{2 \pi k}{N}+\alpha \cos \frac{2 \pi k}{N} \neq 0
$$

for all $k=1,2, \ldots, N$. Then it is easy to check that the set $S_{z, \zeta, t+\alpha t i}$ is contained in the set of form $U+t V$, where

$$
\begin{aligned}
U= & \bigcup_{k=1}^{N}\left\{\frac{\sqrt{2}}{2}\left(x+u \cos \frac{2 \pi k}{N}-v \sin \frac{2 \pi k}{N}\right), \frac{\sqrt{2}}{2}\left(y+u \sin \frac{2 \pi k}{N}+v \cos \frac{2 \pi k}{N}\right)\right\} \\
& \cup\left\{\frac{\sqrt{2}}{2}(x-u), \frac{\sqrt{2}}{2}(y-v), \frac{\sqrt{2}}{2}(x+u), \frac{\sqrt{2}}{2}(y+v), \frac{\sqrt{2} x}{2}, \frac{\sqrt{2} y}{2}\right\} \\
V= & \bigcup_{k=1}^{N}\left\{ \pm \frac{\sqrt{2}}{2}, \pm \frac{\sqrt{2} \alpha}{2}, \frac{\sqrt{2}}{2}\left(\cos \frac{2 \pi k}{N}-\alpha \sin \frac{2 \pi k}{N}\right), \frac{\sqrt{2}}{2}\left(\sin \frac{2 \pi k}{N}+\alpha \cos \frac{2 \pi k}{N}\right)\right\} .
\end{aligned}
$$

By (3.4) in Lemma 3.1, for given $z=x+i y, \zeta=u+i v \in \mathbb{C}$ and $M>0$ there exists $t \geq M$ such that

$$
S_{z, \zeta, t+\alpha t i} \subset U+t V \subset K
$$

Thus, Ω satisfies (3.3). This completes the proof.
Theorem 3.3. There exists a set $\Omega \subset \mathbb{R}^{4}$ of Lebesgue measure zero such that if $f: \mathbb{R}^{4} \rightarrow$ Y satisfies the inequality

$$
\left\|\frac{1}{N} \sum_{k=1}^{N} f\left(z+\omega^{k} \zeta\right)-f(z)-f(\zeta)\right\| \leq \delta
$$

for all $(z, \zeta) \in \Omega$, then there exists a unique mapping $q: \mathbb{R}^{4} \rightarrow Y$ satisfying

$$
\frac{1}{N} \sum_{k=1}^{N} q\left(z+\omega^{k} \zeta\right)=q(z)+q(\zeta)
$$

for all $z, \zeta \in \mathbb{C}$ such that

$$
\|f(z)-q(z)\| \leq 3 \delta
$$

for all $z \in \mathbb{C}$.
Remark 3.4. It is easy to see that the set $\Omega_{d}:=\{(z, \zeta) \in \Omega:|z|+|\zeta| \geq d\}$ also satisfies (3.3). Thus, the result of Theorem 3.3 holds true when Ω is replaced by Ω_{d}. Thus, as a consequence of Theorem 3.3 with the above remark, we obtain the strong version of asymptotic behaviour of f satisfying

$$
\begin{equation*}
\left\|\frac{1}{N} \sum_{k=1}^{N} f\left(z+\omega^{k} \zeta\right)-f(z)-f(\zeta)\right\| \rightarrow 0 \tag{3.6}
\end{equation*}
$$

as $|z|+|\zeta| \rightarrow \infty,(z, \zeta) \in \Omega$.

Corollary 3.5. Suppose that $f: \mathbb{R}^{4} \rightarrow Y$ satisfies (3.6). Then f satisfies the functional equation

$$
\frac{1}{N} \sum_{k=1}^{N} f\left(z+\omega^{k} \zeta\right)=f(z)+f(\zeta)
$$

for all $z, \zeta \in \mathbb{C}$.
Proof. The proof is the same as that of Corollary 2.4.
Secondly, we consider (3.2). In view of Corollary 2.4, it suffices to construct a set $\Omega \subset \mathbb{R}^{2}$ of measure zero satisfying (2.10).
Theorem 3.6. Let $\Omega=e^{-\pi i / 4}$ be the rotation of $K \times K$ by $-\pi / 4$. Then Ω satisfies (2.10) and has two-dimensional Lebesgue measure 0 .

Proof. The proof is very similar to that of Theorem 3.2. However we give the proof for completeness. Let $x, y, t \in \mathbb{R}$ and let

$$
P_{x, y, t}=\{(x+y, t),(x-y, t),(x+t, y),(x-t, y),(x, t)\} .
$$

Then Ω satisfies (2.10) if and only if, for every $x, y \in \mathbb{R}$, there exists $t \in \mathbb{R}$ such that

$$
\begin{equation*}
e^{\pi i / 4} P_{x, y, t} \subset K \times K \tag{3.7}
\end{equation*}
$$

The inclusion (3.7) is equivalent to

$$
S_{x, y, t}:=\left\{\frac{1}{\sqrt{2}}(u-v), \frac{1}{\sqrt{2}}(u+v):(u, v) \in P_{x, y, t}\right\} \subset K .
$$

It is easy to check that the set $S_{x, y, t}$ is the set of form $U+t V$, where

$$
U=\left\{\frac{1}{\sqrt{2}}(x+y), \frac{1}{\sqrt{2}}(x-y), \frac{1}{\sqrt{2}} x\right\}, \quad V=\left\{\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right\} .
$$

By Lemma 3.1, for given $x, y \in \mathbb{R}$ and $M>0$ there exists $t \geq M$ such that

$$
S_{x, y, t}=U+t V \subset K
$$

Thus, Ω satisfies (2.10). This completes the proof.
By Corollary 2.7 and Theorem 3.5 we have the following (compare with [7, Theorem 2.1]).
Theorem 3.7. Let $d, \delta \geq 0$. There exists a set $\Omega \subset \mathbb{R}^{2}$ of Lebesgue measure zero such that if $f: \mathbb{R} \rightarrow Y$ satisfies the inequality

$$
\|f(x+y)+f(x-y)-2 f(x)-2 f(y)\| \leq \delta
$$

only for all $x, y \in \Omega$, then there exists a unique quadratic mapping $q: \mathbb{R} \rightarrow Y$ such that

$$
\|f(x)-q(x)\| \leq \frac{3}{2} \delta
$$

for all $x \in \mathbb{R}$.

Acknowledgement

The authors are very thankful to the referee for valuable suggestions.

References

[1] A. Bahyrycz, 'On solutions of the second generalization of d'Alembert equation on a restricted domain', Appl. Math. Comput. 223 (2013), 209-215.
[2] A. Bahyrycz and J. Brzdęk, 'On solutions of the d'Alembert equation on a restricted domain', Aequationes Math. 85 (2013), 169-183.
[3] A. Bahyrycz and M. Piszczek, 'Hyper stability of Jensen functional equation', Acta Math. Hungar. 142 (2014), 353-365.
[4] B. Batko, 'Stability of an alternative functional equation', J. Math. Anal. Appl. 339 (2008), 303-311.
[5] B. Bouikhalene, E. Elquorachi and J. M. Rassias, 'A fixed points approach to stability of the Pexider equation', Tbil. Math. J. 7(2) (2014), 95-110.
[6] J. Brzdęk, 'On a method of proving the Hyers-Ulam stability of functional equations on restricted domains', Aust. J. Math. Anal. Appl. 6 (2009), 1-10.
[7] J. Chung and J. M. Rassias, 'Quadratic functional equations in a set of Lebesgue measure zero', J. Math. Anal. Appl. 419 (2014), 1065-1075.
[8] D. H. Hyers, 'On the stability of the linear functional equations', Proc. Nat. Acad. Sci. USA 27(1941) 222-224.
[9] S.-M. Jung, 'On the Hyers-Ulam stability of the functional equations that have the quadratic property', J. Math. Anal. Appl. 222 (1998), 126-137.
[10] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis (Springer, New York, 2011).
[11] M. Kuczma, 'Functional equations on restricted domains', Aequationes Math. 18 (1978), 1-34.
[12] J. C. Oxtoby, Measure and Category (Springer, New York, 1980).
[13] J. M. Rassias, 'On the Ulam stability of mixed type mappings on restricted domains', J. Math. Anal. Appl. 281 (2002), 747-762.
[14] M. A. Sibaha, B. Bouikhalene and E. Elqorachi, 'Hyers-Ulam-Rassias stability of K-quadratic functional equation', J. Inequal. Pure Appl. Math. 8(3) (2007), 13 pages; Art 89.
[15] J. Sikorska, 'On two conditional Pexider functinal equations and their stabilities', Nonlinear Anal. 70 (2009), 2673-2684.
[16] F. Skof, 'Proprietá locali e approssimazione di operatori', Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.

JAEYOUNG CHUNG, Department of Mathematics, Kunsan National University, Kunsan 573-701, Republic of Korea e-mail: jychung@kunsan.ac.kr

JOHN MICHAEL RASSIAS, Section of Mathematics and Informatics,
Pedagogical Department E. E.,
National and Kapodistrian University of Athens, Greece
e-mail: jrassias@primedu.uoa.gr

[^0]: This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (no. 2015R1D1A3A01019573).

