DIRECTED PACKINGS OF PAIRS INTO QUADRUPLES

DAVID B. SKILLICORN

(Received 10 August 1981)
Communicated by W. D. Wallis

Abstract

A directed packing of pairs into quadruples is a collection of 4 -subsets of a set of cardinality v with the property that each ordered pair of elements appears at most once in a 4 -subset (or block). The maximal number of blocks with this property is denoted by $D D(2,4, v)$. Such a directed packing may also be thought of as a packing of transtivie tournaments into the complete directed graph on v points. It is shown that, for all but a finite number of values of $v, D D(2,4, v)$ is maximal.

1980 Mathematics subject classification (Amer. Math. Soc.): 05 B 40.

1. Introduction

A directed packing is a collection of k-subsets (called blocks) of a set of cardinality v with the property that every ordered t-subset appears in at most one block. A t-set is contained in a k-set if its symbols appear in order, possibly interspersed with other symbols. Thus, the block $a b c d$ contains the six pairs: $a b, a c, a d, b c, b d$ and $c d$. The maximal number of blocks with this property is denoted by $D D(t, k, v)$ for each choice of t, k and v. In this paper, directed packings of pairs into quadruples are considered.

A counting argument can be used to derive an upper bound on the value of $D D(2,4, v)$. As no ordered pair can appear more than once, no symbol can appear in more than $2(v-1)$ pairs. Therefore its frequency cannot be greater than $\mathrm{L} 2(v-1) / 3\lrcorner$ since each time it appears in a block it appears in 3 pairs. Summing frequencies over all symbols gives

$$
\begin{equation*}
D D(2,4, v) \leqslant\left\llcorner\frac{v}{4}\left\llcorner\frac{2(v-1)}{3}\right\lrcorner\right\lrcorner . \tag{1}
\end{equation*}
$$

Call the right-hand side of (1), $U(v)$.

[^0]A lower bound may be derived by considering ordinary packings. A packing may be made into a directed packing by writing each block of the packing twice, once forward and once reversed. This gives the lower bound

$$
\begin{equation*}
D D(2,4, v) \geqslant 2 D(2,4, v) \tag{2}
\end{equation*}
$$

2. The easy cases

D. J. Street and J. R. Seberry [4] have shown that, when $v \equiv 1(\bmod 3)$, a directed packing exists which contains every ordered pair exactly once. Such a structure is called a directed balanced incomplete block design and is of special interest having, for example, some of the statistical sampling properties of row complete latin squares. So we have

Theorem l. If $v \equiv 1(\bmod 3)$ then

$$
D D(2,4, v)=U(v)
$$

When $v \equiv 2(\bmod 3)$, A. E. Brouwer [1] has shown that

$$
\begin{equation*}
\left.D(2,4, v)=\mathrm{L} \frac{v}{4}\left\llcorner\frac{v-1}{3}\right\lrcorner\right\lrcorner . \tag{3}
\end{equation*}
$$

This result can be used to prove
Theorem 2. If $v \equiv 2(\bmod 3)$ then

$$
D D(2,4, v)=U(v)
$$

Proof. (1) and (2) give, when $v \equiv 2(\bmod 3)$

$$
2 \mathrm{~L} \frac{v}{4} \mathrm{~L} \frac{v-1}{3} \mu \leqslant \leqslant D(2,4, v) \leqslant \mathrm{L} \frac{v}{4} \mathrm{~L} \frac{2(v-1)}{3} \mu .
$$

The left- and right-hand sides are equal, implying the result.

3. An indirect product construction

Theorem 3. If there are directed packings on w and v points such that $D D(2,4, w)=n$ and $D D(2,4, v)=m$ then

$$
D D(2,4, w(v-b)+b) \geqslant w m+n(v-b)^{2}
$$

for all $b=0,1$ such that $v-b \in O A(4)($ that is $v-b \neq 2$ or 6 for which there do not exist 2 mutually orthogonal latin squares).

Proof. Take w sets of size v which are disjoint except for b points which are common to all of them. Call these sets $C_{i}(i=1,2, \ldots, w)$. From w copies of the packing on v points on these sets (since $b \leqslant 1$ there are no repeated pairs). The pairs from distinct sets are included as follows: take n orthogonal arrys of size 4 by $(v-b)^{2}$ and index the columns so that if $p_{1} p_{2} \cdots p_{4}$ is a block of the packing on w points then one of the orthogonal arrays has rows of the form $x_{p_{1}} x_{p_{2}} \cdots x_{p_{4}}$.

All ordered pairs from within each of the $C_{i} s$ may only appear in the packing written on C_{i}. Ordered pairs of the form $x_{i} y_{j}(i \neq j)$ may only appear in the orthogonal array indexed by the block containing $i j$. The constructed object is therefore a directed packing on $w(v-b)+b$ points and has $w m+n(v-b)^{2}$ blocks.

This theorem is useful when the lower bound on the right-hand side equals the upper bound (1). This happens in the following cases.

Corollary 4. If $w \equiv 1(\bmod 3)$ and $v \equiv 0(\bmod 12)$ and $D D(2,4, v)=U(v)$ then

$$
D D(2,4, w v)=U(w v)
$$

Corollary 5. If $w=4,7$ or 10 and $v \equiv 0(\bmod 12)$ and $D D(2,4, v)=U(v)$ then

$$
D D(2,4, w(v-1)+1)=U(w(v-1)+1)
$$

To use these results, maximal packings with v in the congruence class $0(\bmod 12)$ must be constructed. The two smallest cases are shown below.
$D D(2,4,12)=21$.

$$
\begin{aligned}
& 1_{1} 0_{2} 1_{2} 0_{1} \\
& 0_{4} 2_{4} 0_{3} 0_{1} \\
& 2_{2} 1_{2} 0_{3} 0_{4} \\
& 1_{3} 2_{1} 0_{2} 0_{3} \quad \text { all developed mod } 3 . \\
& 2_{1} 0_{1} 2_{3} 0_{4} \\
& 2_{4} 0_{2} 1_{1} 0_{4} \\
& 2_{3} 1_{4} 0_{3} 0_{2}
\end{aligned}
$$

$$
D D(2,4,24)=90
$$

$0_{2} 0_{1} 0_{3} 0_{4}$	$4_{2} 5_{4} 2_{1} 0_{4}$	
$0_{4} 0_{3} 1_{2} 0_{1}$	$3_{4} 5_{2} 1_{3} 0_{4}$	
$0_{1} 1_{4} 2_{3} 0_{2}$	$1_{1} 3_{1} 4_{3} 0_{4}$	$5_{3} 1_{3} 2_{3} 0_{4}$
$1_{3} 3_{1} 4_{2} 0_{1}$	$3_{2} 5_{2} 2_{4} 0_{1}$	all developed
$0_{3} 4_{3} 1_{1} 0_{2}$	$1_{4} 5_{4} 4_{4} 0_{1}$	mod 6.
$2_{1} 1_{3} 4_{4} 0_{3}$	$3_{1} 4_{1} 2_{1} 0_{2}$	
$1_{4} 3_{4} 1_{2} 0_{3}$	$5_{2} 3_{2} 2_{2} 0_{3}$	

Construction of the remaining packings in this class depends on the following theorem.

Theorem 6 [2, Brouwer, Hanani, Schrijver]. Necessary and sufficient conditions for the existence of a group divisible design on v points with blocks of size 4 and groups of size m are that $v \equiv 0(\bmod m), v-m \equiv 0(\bmod 3)$ and $v=m$ or $v \geqslant 4 m$ (except for two cases $v=8, m=2$ and $v=24, m=6$).

Theorem 7. If $\Delta(v)=U(v)-D D(2,4, v)$ then

$$
\Delta(12 v) \leqslant v \Delta(12) \text { for } v \geqslant 4 .
$$

Proof. By Theorem 6, there exists a group divisible design on $12 v$ points $(v \geqslant 4)$ with v groups of size 12 and $24 v^{2}-2 v-10$ directed blocks. Replacing each group by a directed packing on 12 points, the result follows.

In fact, since $D D(2,4,12)=21$ it follows that

Theorem 8. If $v \equiv 0(\bmod 12), v \neq 36$, then

$$
D D(2,4, v)=U(v)
$$

Theorem 8, together with Corollaries 4 and 5, give

Theorem 9. For v in the following congruence classes, $D D(2,4, v)=U(v)$:

$$
\begin{aligned}
v \equiv 45(\bmod 48), & v \neq 141 \\
v \equiv 78(\bmod 84), & v \neq 246 \\
v \equiv 111(\bmod 120), & v \neq 351
\end{aligned}
$$

4. A recursive construction

TheOrem 10. If $m \in O A(10), m \equiv 0(\bmod 12), D D(2,4, m)=U(m)$ and $0 \leqslant t$ $\leqslant m$ then

$$
\Delta(10 m+3 t) \leqslant \Delta(m+3 t) .
$$

Proof. The following directed group divisible designs exist:

1. $D G D D$ on 10 points with 10 groups of size 1 and 15 directed blocks.
2. $D G D D$ on 13 points with 1 group of size 4,9 groups of size 1 and 24 directed blocks.
Take a transversal design with 10 groups of size m. Use the construction of R. M. Wilson [5, Fundamental Construction] giving each point a weight of 1 except t points in a single group given a weight of 4 . The resulting directed group divisible design has 9 groups of size $m, 1$ group of size $m+3 t$ and $m(15 m+9 t)$ blocks. Replacing each of the groups by a directed packing of an appropriate size results in a directed packing on $10 m+3 t$ points, the number of whose blocks falls short of the upper bound by at most as much as the directed packing on $m+3 t$ points.

Theorem 11. If v is sufficiently large then

$$
D D(2,4, v)=U(v)
$$

Proof. By Theorem 8 , if $v \equiv 0(\bmod 12)$ and $v>36$ then $D D(2,4, v)=U(v)$.
If $v \equiv 3(\bmod 12)$ and $0 \leqslant t \leqslant 399$ then v can be expressed as $10 m+3 t$ in such a way that $m+3 t \equiv 111(\bmod 12)$. The largest m not known to be in $O A(10)$ is $m=3576$ so that if $m>3576$ the conditions of Theorem 10 are satisfied. Therefore if $v \geqslant 35778$ and $v \equiv 3(\bmod 12)$ then $D D(2,4, v)=U(v)$.

If $v \equiv 6(\bmod 12)$ and $0 \leqslant t \leqslant 279$ then v can be expressed as $10 m+3 t$ with $m+3 t \equiv 78(\bmod 84)$. If $v \geqslant 35778$ the result follows.

Similarly if $v \equiv 9(\bmod 12)$ and $0 \leqslant t \leqslant 159$ then v can be written as $10 m+3 t$ in such a way that $m+3 t \equiv 45(\bmod 48)$ and if $v \geqslant 35781$ the result follows.

Using Theorem 3, a computer program was run to determine which other packings are maximal using m values known to be in $O A(10)$. This showed that, in fact, if $v>15579$ then $D D(2,4, v)=U(v)$. A list of values of v for which $D D(2,4, v)$ is not known to be maximal can be found in [3].

References

[1] A. E. Brouwer, 'Optimal packings of $K_{4} s$ into a K_{n} ', J. Combinatorial Theory B 26 (1979), 278-297.
[2] A. E. Brouwer, H. Hanani and A Schrijver, 'Group divisible designs with block size four', Discrete Math. 20 (1977), 1-10.
[3] D. B. Skillicorn, Directed packings and coverings with computer application (Ph.D. Thesis, University of Manitoba, 1981).
[4] D. J. Street and J. R. Seberry, 'All DBIBDs with block size four exist', Utilitas Math. 17 (1980), 27-34.
[5] R. M. Wilson, 'Construction and uses of pairwise balanced designs', Proc. of NATO Advanced Study Inst. on Combinatorics, Nijenrode Castle, Brukelen (1974), pp. 19-42.

Department of Mathematics, Statistics and Computing Science Dalhousie University
Halifax, Nova Scotia B3H 4H8
Canada

[^0]: © Copyright Australian Mathematical Society 1982

